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Abstract: Ellipsoidal invariant sets have been widely used as target sets in MPC. These sets
can be computed by constructing appropriate Linear Difference Inclusions together with
additional constraints to ensure that the ellipsoid lies within a given Inclusion Polytope.
The choice of this polytope has a significant effect on the size of the computed ellipsoid,
but the optimal inclusion polytope cannot in general be computed systematically. This
paper shows that use of polytopic invariant sets overcomes this difficulty, resulting in larger
stabilizable sets without loss of closed-loop performance. In the interests of online efficiency,
consideration is focused on interpolation-based NMPC. Copyright c

�
2002 IFAC
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1. INTRODUCTION

The size of an invariant target set has a strong in-
fluence on the region of attraction of the associated
MPC law, and the maximization of target set volume
and computation of the corresponding feedback law
is therefore a matter of practical importance. For lin-
ear systems this volume maximization can be cast as
a convex problem which is efficiently solvable via
semidefinite programming (SDP) (Boyd et al., 1994).
It is possible to extend the SDP approach to Nonlin-
ear MPC (NMPC), either by using a linear dynamic
approximation together with Lipschitz bounds on the
error of approximation (Michalska and Mayne, 1993;
Chen and Allgöwer, 1998), or by using a Linear Dif-
ference Inclusion (LDI) (Liu, 1968; Boyd et al., 1994)
in place of the original nonlinear system, and thus de-
termining an invariant ellipsoid for an uncertain linear
time-varying system (Kothare et al., 1996; Boyd et
al., 1994). In both cases the invariant ellipsoid must
be contained within the region of state space on which
the approximation is valid. To balance the require-
ments for (i) non-conservative approximation of the
plant dynamics, and (ii) a large domain on which the
approximation is valid, it is clearly necessary to allow
the region of validity of approximation to be variable,
and this leads to a nonconvex problem which can be
difficult to solve systematically.

It was shown in Chen et al. (2001) that, for some ex-
amples, invariant ellipsoids of greater volume are ob-
tained using LDIs than is possible through the use of
Lipschitz bounds. However the approach is based on
LDI approximation over a polytopic domain (which
for convenience will be referred to here as an Inclusion
Polytope), and this causes computational problems.
The choice of inclusion polytope is instrumental in

determining the size of the maximum volume invari-
ant ellipsoid, yet the the optimal choice for the in-
clusion polytope is by no means obvious, leaving ad
hoc heuristic procedure as the only avenue for design.
Furthermore the approach is overly conservative since
the inclusion polytope covers a larger region than the
inscribed invariant ellipsoid, and this leads to signifi-
cant conservativism in the linear time-varying system
used to approximate the nonlinear plant dynamics.

In order to remove conservativism, in this paper we
allow the difference between the region on which the
LDI representation is valid and the corresponding in-
variant set to be arbitrarily small. This is achieved
by using low-complexity polytopic invariant sets in
place of ellipsoidal invariant sets. In conjunction with
low-complexity inclusion polytopes, this choice of in-
variant set enables the maximization of volume and
computation of a corresponding linear feedback law
to be performed using linear programming. Further-
more it allows the inclusion polytope to be optimized
systematically through the computation of a sequence
of invariant polytopes which converges to a limit that
coincides with a (locally) optimal inclusion polytope.

This paper shows that: (i) low-complexity polytopic
invariant sets can have significantly larger volume
than invariant ellipsoidal sets; (ii) the design of maxi-
mum volume low-complexity invariant polytopes can
be performed systematically through the sequential
offline solution of a number of simple linear pro-
grams; and (iii) such polytopic sets can be used effec-
tively in NMPC. In the interest of deriving efficient
NMPC algorithms suitable for fast-sampling appli-
cations, we adopt the univariate interpolation frame-
work used in Cannon and Kouvaritakis (2001). The
approach is applicable to input-affine nonlinear sys-
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tems. We illustrate the benefits of polytopic invariant
sets as well as their effectiveness in NMPC through
numerical examples.

2. PROBLEM STATEMENT

The algorithms developed in this paper apply to non-
linear systems with input-affine models of the form:

xk
�

1 � f
�
xk ��� G

�
xk � uk � yk � Cxk (1)

with xk �	� n , uk �
� l , yk ��� m , and f
�
0 ��� 0. It is

assumed that the system is subject to input constraints:

uk � U � U ��
 u : � u ��� u � (2)

where u is the vector of control limits. The extension
to state constraints and/or non-symmetric constraints
is straightforward and will not be considered here.

Let Π0 denote a low-complexity polytope

Π0 ��� x : � V 0x � ∞ � 1 �
for full-rank V 0 ��� n � n . We assume that, for any
inclusion polytope Π0 within the operating region, it
is possible to construct a set 
�� Ai Bi � � i � 1 ��������� p � so
that the model (1) satisfies the inclusion condition:

f
�
x ��� G

�
x � u � Co 
 Aix � Biu � i � 1 ��������� p � � �

x � u �!� Π0 " U
(3)

where Co denotes the convex hull. Under this condi-
tion, all trajectories of the system (1) corresponding to
input trajectories 
 uk � for which

�
xk � uk �#� Π0 " U for

all k $ 0 are also trajectories of the LDI (Liu, 1968):

xk
�

1 � Co 
 Aixk � Biuk � i � 1 �������%� p � � (4)

Thus the evolution of (1) is captured by an uncertain
LTV model generated by considering all possible lin-
ear combinations of a given set of linear models. Pro-
cedures for computing suitable sets of linear models
exist if, for example, f and G are continuously differ-
entiable (Boyd et al., 1994). Consider for example the
class of bilinear systems described by (1) for

f
�
x �&� Ax � G

�
x �#�(' G1x )�)�) Glx * (5)

with Gi �+� n � n . Then the LDI (4) is valid for all
x � Π0 if Ai and Bi are defined as:

Ai � A � Bi � B � G
�
v0

i �,� i � 1 ��������� 2n (6)

where 
 v0
i � i � 1 �������-� 2n � are the vertices of Π0.

The objective is to develop an NMPC algorithm which
achieves regulation while respecting constraints, and
which optimizes performance as measured by the cost

J∞ �
∞

∑
k . 1

� yk � ∞ � (7)

The tracking problem with or without integral action
can be routinely converted into an equivalent regula-
tion problem and will not be considered separately.

The most common paradigm for NMPC designates
the control inputs over the first N samples of the

prediction horizon as free variables and prescribes a
fixed feedback law

uk
�

i / k � κ
�
xk
�

i / k �,� i $ N (8)

over the remainder of an infinite prediction horizon.
The inputs 
 uk

�
i / k � k � 0 �������-� N 0 1 � are used to

minimize online a predicted cost incorporating a suit-
able terminal penalty term. In this optimization con-
straints (2) are handled explicitly over the first N
predicted samples, and implicitly thereafter through a
terminal state constraint (Chen and Allgöwer, 1998;
De Nicolao et al., 1998). The terminal constraint
forces the predicted state xk

�
N / k to lie in a target set,

which, under the model (1) and fixed control law
u � κ

�
x � , is feasible (in the sense that u � κ

�
x � satisfies

constraints for all x in the target set) and invariant.

A popular choice of target set is the ellipsoid:

E �1� x : xT Px � 1 �
where P satisfies the requirements for feasibility and
invariance (Michalska and Mayne, 1993; Chen and
Allgöwer, 1998). By constraining κ

�
x � to be linear:

κ
�
x �#� Kx (9)

and approximating (1) using the LDI (4), it is possible
to compute P simultaneously with κ

�
x � and also obtain

a bound on closed-loop performance (w.r.t. a 2-norm
cost) (Kothare et al., 1996; Chen et al., 2001). Clearly
the LDI approximation is valid everywhere in E if

E 2 Π0 � (10)

It follows that, under this condition invariance and fea-
sibility of E for each of the linear systems comprising
the LDI ensures invariance and feasibility of E under
the nonlinear dynamics of the closed-loop model.

Notwithstanding (10), the computation of the optimal
P and κ with respect to the maximization of the vol-
ume of E and/or minimization of a worst-case bound
on closed-loop performance can be cast as a convex
problem which is efficiently solvable via semidefinite
programming. Furthermore for fixed V 0, (10) can be
easily incorporated into the SDP problem. However
the choice of Π0 has a significant effect on the maxi-
mum achievable volume for E and the optimal value
for V 0 is by no means obvious. Allowing V 0 to be
variable leads to a nonconvex problem, the solution
of which has only been attempted on an ad hoc ba-
sis (Chen et al., 2001). Moreover the constraint that E
be invariant under the dynamics of the LDI associated
with Π0 is highly conservative. This is because the
inclusion condition of (3) has to hold for all x � Π0,
whereas for x � E the model can be represented by
an LDI xk

�
1 � Co 
 A 3ixk � B 3iuk � i � 1 �������%� p 34� where

Co 
�� A 3i B 3i � � i � 1 �������%� p 34� is necessarily a subset of
Co 
�� Ai Bi � � i � 1 ��������� p � since E is a subset of Π0.
Clearly the accuracy of the approximation of the plant
dynamics on E given by the LDI associated with Π0

improves as the difference Π0 0 E is reduced.



3. INVARIANT FEASIBLE POLYTOPES

A simple way to circumvent the difficulties caused by
mismatch between the inclusion polytope and invari-
ant set is to replace the ellipsoid E by a polytope Π:

Π ��� x : � Vx � ∞ � γ � � γ � 0

with V square and full-rank. Then invariance and
feasibility under the closed-loop system (1,8) require

� Vxk
�

1 � ∞ 0+� Vxk � ∞ � 0
 

xk � Π (11)
� κ � xk � ��� u

 
xk � Π � (12)

However the invariance condition (11) implies only
Lyapunov stability, and to improve performance with
respect to the cost of (7), (11) can be strengthened to

� Vxk
�

1 � ∞ 0 � Vxk � ∞ � 0 � Cxk � ∞  
xk � Π (13)

since we then have following obvious result.

Lemma 1. If (12) and (13) hold for some κ and V ,
then the cost of (7) for the closed-loop system (1,8)
has upper bound γ for any initial condition in Π.

Proof: For any x0 in Π, under (13) the state xk remains
in Π at all future times. The bound γ is obtained by
summing (13) over k � 0 � 1 ������� . �
Remark 2. Although (13) guarantees asymptotic con-
vergence of the output: limk � ∞ yk � 0, it does not
imply convergence of xk to 0 unless (1,8) is observable
for all initial conditions in Π. To ensure convergence
of the state itself it is possible to replace (13) by:

� Vxk
�

1 � ∞ 0 � Vxk � ∞ � 0 ε � Vxk � ∞  
xk � Π (14)

for ε � 0. The convergence conditions (13) and (14)
imply invariance and therefore (with a slight abuse of
nomenclature) define the required invariance property.

To invoke (12) and (13) or (14) to the closed-loop
model (1,8), we use the LDI approximation (4). As in
the ellipsoidal case, to facilitate simultaneous compu-
tation of a suitable feedback law we constrain κ

�
x � to

be linear (9). This choice of κ
�
x � may significantly af-

fect the volume of Π, however the approach described
below can be applied to prespecified nonlinear feed-
back laws through the construction of suitable LDIs
(see e.g. Bacic et al. (2001)).

The 2n vertices 
 v j � of Π are defined via

v j � γV � 1s j � j � 1 ��������� 2n (15)

where 
 s j � j � 1 �������%� 2n � is the set of all possible
n-dimensional vectors whose elements are � 1. By
ordering the indices so that 
 s1 ��������� sn � are linearly
independent, the the complete set of 2n vertices can
be parameterized in terms of the first n alone. For
convenience such a set of n vertices will be referred
to as primary vertices; all others can be expressed as
linear combinations of 
 v1 �������-� vn � :
v j �

�
� v1 )�)�) vn � � s1 )�)�) sn � � 1s j j � n � 1 ������� � 2n � 1

0 v j � 2n � 1 j � 2n � 1 � 1 ��������� 2n

(16)

For fixed inclusion polytope Π0, optimization of Π � K
over the primary vertices subject to invariance and
feasibility can be formulated as stated below.

Theorem 3. With the constant αγ set to zero, the fol-
lowing nonlinear program defines the maximum vol-
ume polytope Π � Π0 which is invariant and feasible
for (4) under linear feedback u � Kx.

min
γ

v j � w j � j . 1 � 	 	 	
� n 0 logdet � � v1 )�)�) vn �
� � αγγ (17)

subject to the following inequality constraints invoked
for i � 1 ��������� p, j � 1 ��������� 2n � 1:

� V � Aiv j � Biw j � � ∞ � γ 0+� Cv j � ∞ (18)
�w j ��� u (19)

� V 0v j � ∞ � 1 (20)

where, for j � n � 1 ��������� 2n � 1, v j is defined by (16)
and w j ���w1 )�)�) wn � � s1 )�)�) sn � � 1s j. The optimal lin-
ear feedback gain can be recovered the from the solu-
tion for 
 v j � w j � j � 1 ��������� n � via

K �1�w1 )�)�) wn � � v1 )�)�) vn � � 1 � (21)

Proof: For the LDI (4), condition (13) requires that
� V � Aix � Biu � � ∞ 0 � Vx � ∞ � 0 � Cx � ∞, i � 1 ��������� p, 
x � Π. These constraints can be expressed as lin-

ear inequalities in x � u by introducing slack variables
µ � η: �V � Aix � Biu � � � � η 0 µ � 1, �Vx ��� η1, �Cx ��� µ1
(where 1 � � 1 )�)�) 1� T with dimension dependent on
context). To ensure that a set of symmetric linear
inequalities are satisfied for all x in the polytope Π,
it is necessary and sufficient to invoke them at the
vertices 
 v j � j � 1 �������-� 2n � 1 � . This is done in (18)
and (19) which invoke invariance and feasibility re-
spectively. Moreover the volume of Π is 2nγ � det

�
V � ,

which from (15) is proportional to the determinant of
the matrix of primary vertices � v1 )�)�) vn � . �
Remark 4. The optimization of Theorem 3 is over
not only the primary vertices of Π, but also over
the controller gain K, which is defined in terms of

 � v j � w j � � j � 1 ������� n � via Kv j � w j.

Remark 5. Theorem 3 employs the invariance condi-
tion of (13) but can instead be asserted for (14) by
setting γ � 1 and replacing the RHS of (18) by 1 0 ε.

Remark 6. For αγ � 0, the objective (17) may lead to
a large volume polytope at the cost of a large γ which
in turn implies a poor bound on performance. In this
case a compromise between performance and size of
polytope can be reached by choosing suitable αγ

� 0.

The invariance constraint (18) is nonconvex since it
involves the product of V , which is a linear function
of γ � v1 )�)�) vn � � 1, with terms that depend linearly on
the variables 
 v j � and 
 w j � . This constraint can be
formulated as a bilinear constraint by introducing ad-
ditional variables q and invoking membership of Π via



x � Π iff x � ' v1 )�)�) v2n � 1 * q � 1T � q � � 1 (22)

However, due to the bilinearity of this condition, the
optimization of Theorem 3 remains a nonconvex prob-
lem which can raise considerable computational de-
mands. This difficulty can be circumvented by break-
ing the optimization into a sequence of simpler prob-
lems, each of which is concerned with optimizing only
a single vertex vk, the remainder of the primary ver-
tices being fixed at the values computed at the previous
optimization, denoted below as 
 v0

j � . Thus let ck de-
note the vector that is orthogonal to all except the kth
primary vertex vk, then the optimization of Theorem 3
for fixed Π0 can be performed by solving a sequence
of linear programs (LPs) as indicated below.

Theorem 7. With the constant αγ set to zero, the max-
imum volume polytope Π � Π0 which is invariant and
feasible for (4) under linear feedback u � Kx can be
computed by solving the following LP successively
for the individual vertices vk, k � 1 ��������� n.

min
γ � vk

w j � j . 1 � 	 	 	 � n
Qi � Ni � i . 1 � 	 	 	 � p

cT
k vk � αγγ (23)

subject to the following linear constraints invoked for
i � 1 �������-� p, j � 1 �������%� 2n � 1:

Ai � v1 )�)�) vn � � Bi �w1 )�)�) wn � �1� v1 )�)�) vn � Ni (24)

Ni � s1 )�)�) sn � � 1 � s1 )�)�) s2n � 1 � �
� s1 )�)�) sn � � 1 � s1 )�)�) s2n � 1 � Qi (25)

1T �Qie j � � � γ 0 � Cv j � ∞ � 1T (26)
�w j � � u (27)

� V 0v j � ∞ � 1 (28)

(e j denotes the jth column of the identity matrix),
where the kth rows of Ni for i � 1 ��������� p and the
primary vertices v j for j

�� k are constants defined by

eT
k Ni � eT

k N0
i (29)

v j � v0
j � (30)

and where 
 v0
j � j � 1 ��������� n � and 
 N0

i � i � 1 �������%� p �
are defined by the previously computed LP solution.

Proof: Given the definition of ck, it is easy to show
that cT

k vk is proportional to the determinant of the
matrix of primary vertices, det

� � v1 )�)�) vn � � , and hence
proportional to the volume of Π. Constraints (24–
26) are equivalent to the the invariance condition (18)
re-written using the membership condition of (22),
while (27–28) are identical to the feasibility and in-
clusion constraints of (19–20). Note also that the con-
straints of (24–28) are linear in the optimization vari-
ables γ, vk, wk, and 
 Qi � Ni � i � 1 �������%� p � . For (25–
28) this is obvious, whereas for (24) it is due to (29–
30) which fix the kth rows of Ni, i � 1 �������-� p and
all except the kth column of � v1 )�)�) vn � to constant
values. The solution of the previously computed LP
in the implied sequence of optimization problems is

necessarily feasible for the current LP, since only con-
straints (29–30) are changed when a new LP is de-
fined, and these are by definition feasible for the previ-
ously computed solution. Therefore the maximization
of volume through (23) with αγ � 0 leads to a se-
quence of solutions corresponding to feasible invariant
polytopes Π of monotonically increasing volume. It
follows that the sequence of LP solutions is guaran-
teed to converge to a (possibly local) solution of the
nonlinear program (17–20). �
Remark 8. The optimal feedback gain is recoverable
from the solution for 
 v j � w j � j � 1 �������-� n � via (21).

Remark 9. Theorem 7 is stated with reference to the
invariance condition of (13) but can be asserted for
that of (14) instead by setting γ � 1 and replacing the
RHS of (26) by 1 0 ε.

Remark 10. To ensure that the relative weighting
of γ and det

� � v1 )�)�) vn � � is the same for different
LPs in the implied sequence, ck should be defined
through Laplace’s expansion in terms of cofactors of
� v0

1 )�)�) v0
n � whenever αγ

� 0 is employed in the objec-
tive (17).

Although the optimization of (17–20) and its realiza-
tion as a sequence of LPs in Theorem 7 is based on an
LDI representation of the plant model, it also ensures
that feasibility (12) and invariance (13) are satisfied
for the actual nonlinear dynamics since Π � Π0 is in-
voked via (20). However, to optimize Π and K for the
nonlinear model it is necessary to allow the inclusion
polytope Π0 to be variable. The following theorem
shows that Π0 can be optimized systematically by
solving a sequence of optimizations of form (17–20)
(or (23–28)) in which, at the ith iteration, a new inclu-
sion polytope Π0

i
�

1 is defined to be a scaled version of
a previously computed feasible invariant polyope Πi.

Theorem 11. Let Πi �(� x : � Vix � ∞ � γi � � Π0
i be

invariant and feasible under linear feedback u � Kix
for the LDI associated with the inclusion polytope Π0

i .
Then there exists a scaling factor ρi � � 0 � 1 � such that
the optimization of Theorem 3 (or Theorem 7), with
inclusion polytope Π0 � Π0

i
�

1 defined via

Π0
i
�

1 � � x : ρi � Vix � ∞ � γi � 1 � �
yields a new invariant and feasible polytope Πi

�
1 of

volume greater than or equal to Πi.

Proof: Denote the LDI associated with Π0
i as xk

�
1 �

Co 
 Aixk � Biuk � i � 1 ��������� p � and suppose that Π0
i
�

1
is chosen to be equal to Πi, i.e. ρi � 1. Then Π0

i
�

1 �
Π0

i since Πi � Π0
i , and it follows that the non-

linear model (1) is represented by an LDI xk
�

1 �
Co 
 A 3ixk � B 3iuk � i � 1 �������%� p 3 � for all xk � Π0

i
�

1, where
Co 
�� A 3i B 3i � � i � 1 �������%� p 34� is necessarily a subset of
Co 
�� Ai Bi � � i � 1 ��������� p � . Therefore Πi

�
1 � Πi will



be a feasible, but possibly suboptimal, solution to
the optimization of Theorem 3 (or Theorem 7) with
Π0 � Π0

i
�

1. This implies that, by choosing scaling
parameters ρi � 1, solutions Πi

�
1 will be obtained for

which vol
�
Πi
�

1 � $ vol
�
Πi � . �

Theorem 11 provides the systematic means for opti-
mizing (sequentially) the volume of an invariant fea-
sible set. Key to this is the possibility of allowing the
Inclusion Polytope Π0

i
�

1 to become coincidental with
the previously computed invariant/feasible polytope
Πi. Such a sequential approach clearly is not possi-
ble for the case of ellipsoidal sets which have to be
contained within a given Inclusion Polytope.

4. NMPC ALGORITHM

Online computational demands can be a limiting fac-
tor in NMPC of systems with fast dynamics, such
as electromechanical systems for which the sampling
interval may need to be of the order of milliseconds.
This can prohibit the use of long horizons and hence
make the characterization of the degrees of freedom
as future control moves computationally unviable. An
effective alternative is to interpolate over a linear mix
of predicted trajectories. The simplest form of inter-
polation involves a single interpolation variable, al-
lowing the mix of two predicted trajectories: one that
provides the guarantee of recursive feasibility (and
hence stability) and another that steers the algorithm
to the current optimal whenever feasible.

It is easy to show that the unconstrained optimal
control law for the system (1) with respect to the
cost (7) is given by

uopt � 0 'CG
�
x � * � 1

CAx
 

x � Ωδ (31)

where Ωδ � � x : σ �CG
�
x � * $ δ � with σ

� ) � denoting
the minimum singular value of

� ) � , and δ being an
arbitrarily small positive number. For such a choice of
δ, Ωδ can be avoided through the use of an arbitrarily
small perturbation of the control law (31). Although
optimal for (7), (31) does not ensure convergence to
the origin or even boundedness of the closed-loop sys-
tem state; both these problems become relevant in the
case of nonminimum phase dynamics. Moreover (31)
may violate system constraints.

To retain optimality whenever possible while ensuring
closed-loop stability, predicted control laws can be
generated by combining (31) with a “detuned” feed-
back law, udet � κ

�
x � , which stabilizes (1). Suitable

κ
�
x � and a corresponding feasible invariant polytopic

set can be designed as described in section 3, and it
will therefore be assumed here that κ

�
x �#� Kx.

The implied interpolation gives predictions:

uk / k � λk � � λkKxk 0 � 1 0 λk �,�CG
�
xk � � � 1C f

�
xk � (32)

xk
�

1 / k � f
�
xk ��� G

�
xk � uk / k � λk �

In the interest of optimality, λk should be as small as
possible subject to uk / k satisfying system constraints
and under the further constraint that a feasible control
move uk

�
1 / k will exist at the next sampling instant.

Under these conditions it is possible to establish a
recursive guarantee of feasibility and hence stability,
with the additional guarantee that the algorithm will
converge to the unconstrained optimal feedback law.

Algorithm 1. At every time instant k minimize λk

subject to the predictions of (32) satisfying (2) and
a. the inequality of (13); or
b. the inequality of (14);

implement the corresponding input prediction uk / k.

Denote the polytopes defined through Theorem 3 or 7
using invariance condition (13) or (14) as Πa and Πb

respectively. Then the closed-loop stability properties
of Algorithms 1a,b are as given below.

Theorem 12. Algorithm 1a stabilizes the origin of (1)
and, for all initial conditions in Πa, steers the output
to zero while ensuring that the state remains within
Πa. Algorithm 1b asymptotically stabilizes the origin
of (1) with region of attraction containing Πb.

Proof: From the definitions of Πa, Πb and K, it follows
that for any initial condition in Πa [Πb] there exist
values of λk � 1 for which Algorithm 1a [1b] is
feasible. Furthermore, feasibility is ensured at the
next sampling instant through condition (13) [(14)],
which ensures that remains in Πa [Πb] at all future
times. The sum of inequality (13) [(14)] over all future
time instants implies that the infinite sum of � Cxk � ∞
[ � Vxk � ∞] will be bounded by γ � 1 � ε � , thereby implying
that the output [state] converges to the origin. �
Remark 13. Invariance condition (13) is less stringent
than (14) and thus results in larger regions of attrac-
tion, and/or reduced closed-loop cost. However Algo-
rithm 1b may be preferred in the case where non-zero
equilibrium states exist in the kernel of C.

5. NUMERICAL EXAMPLES

Example 1. This example illustrates the advantages of
feasible invariant polytopic sets over ellipsoidal sets
in terms of volume enlargement of the relevant sta-
bilizable sets. To allow direct comparison with previ-
ous work on the computation of terminal regions for
NMPC, the model is adapted from a continuous-time
bilinear system used in Chen and Allgöwer (1998)
and Chen et al. (2001). An approximate discrete-time
realization of this model, for a sampling interval of T
is given by:

xk
�

1 �
�
1 T
T 1 � xk � T � µ

�
1
1 � � � 1 0 µ �

�
1 0
0 0 4� xk � uk

where µ � 0 � 9, and T � 0 � 01 is chosen. As in the
continuous-time case, the model is unstable at

�
x � u � �



�
0 � 0 � and its linearization about the origin is uncon-

trollable but stabilizable. The system is subject to in-
put and state constraints:

� u ��� 2 � � x � � � 4 4 � T � (33)

A feasible invariant ellipsoid E ��
 x : xT Px � 1 � can
be computed by maximizing vol

�
E � over P, K and

Π0 (the inclusion polytope) using heuristic search to
determine Π0 in conjunction with SDP to compute
P� K for given Π0, as prescribed in Chen et al. (2001).
This leads to the ellipsoid shown in Fig. 1 along with
the associated inclusion polytope Π0 (dashed line).
The values of V 0, P and K are as follows:

V 0 �
�
0 � 4545 0

0 0 � 5000� � P �
�
0 � 4643 0 � 3805
0 � 3805 0 � 5618� �

K �1� 0 1 � 2628 0 1 � 4109� vol
�
E �&� 9 � 2208

which is comparable to the maximum volume ellip-
soid and corresponding linear feedback gain obtained
in Chen et al. (2001), for which vol

�
E � � 9 � 0835.

However, the approach of Theorems 7 and 11 with
αγ � 0 converges to the maximum volume feasible
invariant polytope of Fig. 1 in solid line, for which:

V 0 �
�
0 � 1638 0 0 � 3931
0 � 6066 0 � 6066 � � V � V 0 � γ � 1 �

K �1� 0 1 � 2131 0 1 � 2128� vol
�
Π � � 11 � 8405

i.e. vol
�
Π � is 28% larger than vol

�
E � . Furthermore

the computation of Π via Theorem 11 is easier to
implement than the computation of E , for which there
is no systematic means of updating Π0.
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Fig. 1. Comparison of maximum area feasible invari-
ant polytopic and ellipsoidal sets for Example 1.

Example 2. This example compares the closed-loop
performance of interpolation NMPC based on ellip-
soidal target sets and polytopic target sets. In Cannon
and Kouvaritakis (2001), interpolation NMPC is ap-
plied to the bilinear plant model:

xk
�

1 �
�

0 � 28 0 0 � 78
0 0 � 78 0 0 � 59� xk �

� �
0 � 71
1 � 62� � �

0 � 34 0 � 36
0 � 41 0 0 � 65� xk � uk

yk � ' 0 0 � 69 0 � 20* xk

which is unstable and nonminimum phase at
�
x � u � ��

0 � 0 � , and has input constraint:

� u ��� 0 � 5 �

Computing the maximum volume feasible polytopic
set satisfying invariance condition (13) by setting
aγ � 0 results in K � � 0 � 1515 0 � 1514� and vol

�
Π � �

11 � 5937. Maximizing the volume of a feasible in-
variant ellipsoid over P, K, and V 0 yields K �
� 0 � 0291 0 � 2561� and vol

�
E � � 9 � 4634. However, de-

spite Π covering an area of state space 22% larger
than E , interpolation MPC based on the polytopic set
Π provides comparable closed-loop performance with
that based on E . Table 1 gives closed-loop costs av-
eraged over 100 initial conditions equispaced around
the boundary of E (E is contained entirely within Π).
The � 1 cost is given by (7) whereas the � 2 cost refers
to the index ∑∞

k . 1 � yk � 22.

Table 1. Closed-loop costs of Interpolation
MPC for Example 2

Volume Average � 1 cost Average � 2 cost
E 9.4634 1.1443 0.4131
Π 11.5937 1.1245 0.4160
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