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Abstract: This paper presents an evaluation of the benefits of streamflows forecast-
ing in long-term hydroelectric scheduling problem. In the approach considered, at
each stage of planning a forecast of the future inflows is made and an operational
decision for the following stage is obtained by a deterministic optimization model,
in a partial open-loop feedback control framework. The influence of the forecasting
model in the performance of this control policy is analysed by simulation using
historical inflows record. The effectiveness of the approach was measured using
the mean and standard deviation values for hydro generation and operational
costs during the planning period, taking into account the hydroelectric plants of
the Southeast Brazilian System as a case study. Copyright © 2002 IFAC.
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1. INTRODUCTION

Long term hydrothermal scheduling (LTHS) is a
complex problem due to various aspects involved,
including the randomness of inflows into the hydro
plants, the interconnection of hydro plants located
in a cascade and the nonlinearity of hydro produc-
tion and thermal cost functions. It is important
that these aspects be regarded simultaneously for
an adequate modeling of the problem.

In this paper, the approach considered in the
solution of the LTHS problem combines a deter-
ministic optimization of the problem (Hanscom et
al., 1980), (Bissonnette et al., 1986), (Oliveira and
Soares, 1990) with inflows furnished by a forecast-
ing model. The deterministic optimization model
permits the representation of the hydro system in

detail, considering each hydro plant individually,
including its operational constraints and nonlinear
production characteristics. Moreover, the stochas-
tic model contemplated for the representation of
the inflows can be quite general, based on any
methodology and specific for each hydro plant in
the system.

The optimal decision based on the current forecast
of future inflows is implemented until a new inflow
forecast becomes available based on the latest
available information in the system. In this way,
the operational policy is determined within the
framework of partial open-loop feedback control
(Bertsekas, 1995), (Martinez and Soares, 2002).

The goal of the present paper is to evaluate the
benefits of streamflow forecasting in LTHS, taking



into account the partial open-loop feedback con-
trol framework. Three different inflow forecasting
models are considered: the long-term average in-
flows, a lag-one periodic autoregressive model and
a neurofuzzy network model.

The performance of the approach was evaluated
by simulation using historical inflow records. De-
terministic optimization, assuming perfect fore-
sight of inflows during the planning period, was
also considered in order to evaluate the influence
of the randomness of inflows in the LTHS problem.
A test system composed of hydroelectric plants lo-
cated in the Southeastern Brazilian Power System
was considered as a case study.

The paper is structured as follows: Section 2 de-
scribes the formulation of the LTHS problem. Sec-
tion 3 presents the partial open-loop feedback con-
trol policy adopted. Section 4 presents the three
different models for the stochastic representation
of inflows. Section 5 shows the numerical results
for the test system and finally Section 6 presents
the conclusions of the study.

2. LTHS FORMULATION

The deterministic version of the LTHS can be for-
mulated as the following nonlinear programming
problem:
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The objective function (1) is composed of two
terms which represent the operational cost during
the planning period and the future cost associated
with the final storage in the reservoirs.

The operational cost ); represents the minimum
cost of complementary non-hydro sources such as
thermoelectric generation, imports from neighbor-
ing systems, and load shortage. The function
is determined by the economic dispatch of such
sources and, as consequence, is a convex increasing
function of the total non-hydro generation G;.

The function V (zr) is a terminal condition which
represents the future operational cost as a func-
tion of the final reservoir storage. This term is
essential for the equilibrium between the use of
water during the planning period and its use af-
terwards.

Equation (2) represents for each stage the power
balance, where P; is the total hydro geneeration
and D; is the total load demand.

Hydro generation at plant ¢ and stage t is a
nonlinear function represented by equation (4),
where the constant k; is the product of wa-
ter density, gravity acceleration and average tur-
bine/generator efficiency, hy,, is the water head
function represented by equation (??) and g;; is
the water discharge through the turbines of the
hydro plant i.

The water head is a function of the water stor-
age in the reservoir, z;; and water release from
the reservoir u; s, where s;; represents the water
spillage from the reservoir. The forebay ¢(.) and
tailrace 0(.) elevations are fitted by polinomial
functions.

The equality constraint in (6) represents the water
balance in the reservoir at each stage ¢, where
y; is the incremental water inflow. Other terms,
such as evaporation and infiltration have not been
considered for the sake of simplicity.

Lower and upper bounds on variables, expressed
by constraints (8)-(11), are imposed by physical
operational constraints of the hydro plant, as well
as other constraints associated with the multiple
uses of water, such as irrigation, navigation and
flood control.

3. PARTIAL OPEN-LOOP FEEDBACK
CONTROL

In the partial Open-Loop Feedback Control (OLFC)
approach (Martinez and Soares, 2002), the ran-
domness of inflows is considered in an implicit
way since stochastic variables are assigned to their
expected values, provided by inflow forecasting
models.



The problem is solved by a deterministic opti-
mization model, and the optimal decision variable
associated with the first stage is implemented. In
order, to avoid error propagation, the scheme is
repeated at each stage throughout the planning
period.

The solution of the deterministic optimization
model is obtained by a nonlinear network flow
algorithm specially developed for hydrothermal
scheduling (Oliveira and Soares, 1990).

One important issue in the design of the OLFC
approach is the terminal condition V' (z7), which
establishes a trade-off between the benefits asso-
ciated with the use of water for hydro generation
during the planning period and the expectation of
future benefits deriving from storage at the end
of the planning period, both measured in terms of
non-hydro generation savings.

One way of obtaining a proper terminal condition
is to extend the end of the optimization period
so that the influence of V(zr) on the decision
during the first stage becomes negligible. However,
this can be rather inconvenient since the extension
of the planning period increases the forecasting
errors. On the other hand, establishing a shorter
planning period so that the forecasting model
will be able to provide better performance would
require an accurate estimation of the expected
future operational cost since, in this case, the
influence of the terminal condition on the decision
of the first stage is crucial.

The terminal condition considered in this paper
will try to maintain the storage of the hydro plant
as full as possible at the beginning of the dry
season, which is May for the hydro plants consid-
ered in the case study. This terminal condition is
inspired on the solution of the deterministic opti-
mization model over the historical inflow records.

Assuming that T represents the next month of
April, the solution of the deterministic optimiza-
tion model is obtained considering the terminal
condition V(zr) = M(ZT — xr), where M is a
positive constant large enough to ensure that the
terminal condition prevails over the remaining ob-
jective function.

4. STREAMFLOW FORECASTING MODELS

The stochastic models considered in the OLFC
policy are based on historical inflows. The monthly
series of natural inflows are seasonal series and
present a periodic behavior.

The first model adopted for the representation
of the inflows is the Long Term Average (LTA)
inflow, which corresponds to a very simple fore-
casting model. The intention is to design the sys-

tem operation assuming that future hydrological
conditions will be identical to the historical aver-
age values. Others forecasting models considered
in the paper are a lag-one periodic autoregressive
model and a neurofuzzy network model, which are
briefly described.

4.1 Periodic Auto Regressive

Inflow series have been frequently represented
by autoregressive models where the parameters
have a periodic behavior, such as Periodic Auto
Regressive models (PAR).

In this paper, a lag-one periodic autoregressive
PAR(1) model was applied to the actual historical
inflow records after normalization of the series by
subtracting the expected value and dividing by
the standard deviation. As a result, the PAR(1)
model is represented by:

Zt(rym) = ¢mzt(r,m)71 + Qt(r,m) (13)
where,

¢ is the autocorrelation coefficient of the nor-
malized serie;

ay(r,m) 1 a sequence of uncorrelated random
variables with distribution N(0,7,,1);

24(r,m) Tepresents the padronized serie

Zt(rm) = Yt(r,m) — Hm (14)
Om
where,

Yi(r,m) is the inflow at time t(r,m) = 12(r —
1) + m, with r being the year and m the
month;

lm is the expected value of the inflow for
month m;

o 18 the standard deviation of the inflow for
month m.

The autocorrelation coefficients ¢,, were esti-
mated using the Maximum Likelihood Estimate
method as suggested in (Box et al., 1994),
(Vecchia, 1985).

4.2 Neurofuzzy Network Model

Another inflow forecasting model considered in
this paper is based on a new class of Neurofuzzy
Network (NN) proposed by (Figueiredo et al.,
1995). In these networks the essential parameters
for modelling a fuzzy system, such as fuzzy rules
and membership functions, are learned through
a constructive learning method where neurons
groups compete when the network receive a new
input.

The NN has a feedforward architecture with five
layers. The topology of the neurofuzzy network



presents two essential features: the mapping of
fuzzy rules into or from the network structure
is direct, and the fuzzy inference and the neural
processing are in complete agreement. Therefore,
the approach proposed has a dual nature, i.e., it
can be seen either as a neural fuzzy network or a
fuzzy rule based system.

Fuzzy inference is a mapping from an observed
nonfuzzy space Z C R" to the fuzzy sets in Z. A
fuzzy set defined in Z is characterized by a mem-
bership function F : Z — [0,1] (Zadeh, 1978).
The network emulates fuzzy reasoning mecha-
nisms, encoding the fuzzy rule base in the form
of “If a set of conditions is satisfied, Then a set of
consequences is inferred”.

The grade of membership of z; in Z is zg, i.e.,
Z(xy) = 2, if ¢ € Iy = (x5,2F), where Z is
a fuzzy set and zp is a numerical value of the
input space. The numerical value of the output y
is determined by a sequence of stages, as proposed
by (Pedrycz and Gomide, 1998), (Yager and
Filev, 1994):

1. Matching: For each rule i and each antecedent
Jj, compute the possibility measure P’ for fuzzy
sets A; and A%, given by:

P;(x) = %{T (4;(x), A;(x))} (15)

where S is taken over all k, and x = (z1,...,2pn)’
is the input vector, and T and S denote the t-norm
and co-norm, respectively.

2. Antecedent Aggregation: For each rule i com-
pute its activation level H*, defined by:

Hi() = T{P)(x)} (16)
3. Rule Aggregation: The output y is computed
by:
N N o
y(x) =Y H(x) w/ Yy H(x) (17)
i=1 i=1

where w; denotes the weight of the connection i.

The learning algorithm consists of the presenta-
tion of input/desired output pairs to the network.
The t¢-th pair presented to the network is given
by (x(t), ya(t)), x(t) = (@1(t), .., war(t))’
the input vector and y,(t) the desired output.
The structure of the network changes during the
training, which means that the number of fuzzy
rules is not constant (N = N(t), where t is the
iteration index). When the network receives a new
input the neuron groups compete. If one of the
neurons group wins, the desired performance is
satisfied and the parameters are adjusted. If the
desired performance cannot be satisfied or if no
neuron group matches the input a new group is
added to the structure of the network.

The learning method acquires new knowledge
whenever necessary. The strategie provides an
automatic way to learn parameters for a fuzzy
model without interference or participation of an
expert.

This approach was applied to seasonal stream-
flow forecasting in (Ballini et al., 2001) using a
database of average monthly inflows of Brazilian
hydroelectric plants. The results obtained with
the model were compared to a multilayer feedfor-
ward network and periodic autoregressive models,
showing a significant decrease in the forecasting
€ITors.

5. SIMULATION RESULTS

In this work, the test system comprises the hydro-
electric plants of the Grand River cascade, located
in the Southeastern region of Brazil (Figure 1).
The main characteristics of the hydro plants are
presented in Table 1.
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Fig. 1. Grande River cascade.

The operational cost v; is obtained by an eco-
nomic dispatch of the non-hydro sources available,
resulting in a convex increasing operational cost
function. For the Brazilian Southeastern Power
System, an estimative of the operational cost is
given by the following quadractic function:

¥y = 0.02(D; — P,)? (18)

The performance of the OLFC, considering differ-
ent forecasting models, was analysed using a simu-
lation model which reproduces the behavior of the



Table 1. Hydroelectric plant character-

istic.
Installed Storage Discharge
Capacity  Capacity  max/min
Name (MW) (hm?) (hm?/s)
Camargos 48 572 32/288
Itutinga 52 - 32/244
Furnas 1312 17217 196/1692
M. Moraes 478 2500 247/1328
Estreito 1104 - 252/2028
Jaguara 424 - 255/1564
Volta Grande 380 - 275/1584
Porto Colémbia 328 - 307/1988
Marimbondo 1488 5260 441/2944
Agua Vermelha 1380 5169 510/2922

hydrothermal system. The simulations were made
over the historical inflow records in the period
from May 1931 to April 2000. A simulation with
perfect forsight of the future inflows, named (PF),
was also considered. The statistics of interest are
the mean and standard deviation values of hydro
generation and operational cost.

In a first study, the operation of a single hydro
plant (Furnas) system and a constant load de-
mand D; of 1312 MW was considered. Table 2
presents the mean and standard deviation values
of hydro generation and operational cost for this
case.
Table 2. Numerical results for Furnas
hydro plant.

Inflow Hydro Generation  Op. Cost [x10°]
Information = Mean St. Dev. Mean St. Dev.
PF 743.02 173.97 3.7725 1.9137
LTA 722.62 237.44 4.3023 2.8825
PAR(l) 725.41 248.91 4.3253 3.0426
NN 740.78 158.67 3.9880 2.3960

The results show higher average hydro generation
with the use of the NN model. The standard devi-
ation obtained in this case was smaller, and since
the operational cost is convex and increasing, such
flat behavior lead to smaller final operating costs.
It is quite interesting to observe that the solution
based on the NN model did not differ significantly
from the solution obtained with perfect foresight
of inflows.

Figure 2 shows the trajectories of water storage in
the reservoir obtained by the OLFC policy with
different forecasting models during the period
from May 1950 to April 1960, which includes the
critical inflow period of the Grand river.

Note in Figure 2 that from 1950 to 1952 and
from 1959 to 1960, which corresponds to aver-
age periods, the differences among the forecast-
ing models are relatively low, in contrast to the
large diffences verified from 1952 to 1956, which
corresponds to the driest period of the historical
records. The OLFC policy associated with the
NN model resulted in a solution that lead to
higher storage levels in the reservoir, increasing

the productivity of the plant and therefore its
efficiency. The improved performance during the
critical period, where the operational cost and the
shortage risk are greater, makes the OLFC policy
with NN forecasting model an adequate approach
for LTHS.

The results also revealed that the operational
policy based on the LTA forecasting model did not
differ significantly from those obtained with the
PAR(1) model. This suggests that the multiple
steps ahead forecasting with the PAR(1) model
quickly tend to the average inflow values.

In a second study, the system comprising the
whole cascade and a constant load demand of
7188 MW is considered. The numerical results are
presented in Table 3.

Table 3. Statistics of simulations for
Grand River cascade.

Inflow Hydro Generation ~ Op. Cost [x10°]
Information = Mean  St. Dev.  Mean  St. Dev.
PF 4858.7 875.03 6.5975 3.9153
LTA 4667.0 1157.40 8.1990 7.2450
PAR(1) 4670.7 1219.40 8.3365 7.6964
NN 4726.5 1166.50 7.9060 7.0584

In this case, the reduction observed in cost with
the NN model were about 5% in relation to the
PAR(1) model, showing a significant improvment
due to the use of more efficient forecasting models
in the OLFC policy.

6. CONCLUSIONS

This paper reported a study about the influence of
hydrologic information in long term hydrothermal
scheduling. The control policy considered com-
bines a deterministic optimization model with an
inflow forecasting model, in an open-loop feed-
back control framework. At each stage in this
control policy, the future inflows were foreseen
and a deterministic optimization model obtains
an operational decision for the next stage.

Three different inflow forecasting models were
compared: the long term average inflow, a lag-
one periodic autoregressive model and a neuro-
fuzzy network model. The effectiveness of each
forecasting model was evaluated by the mean and
standard deviation values of hydro generation and
operational cost. A case study was performed
using the hydro plants of the Grand river in
Southestern Brazil. The results show that a better
inflow foercasting model can reduce operational
cost about 5
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