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Abstract

Abstract: Although odometry is nonlinear, it yields sufficiently to linearized
analysis to produce a closed-form transition matrix and a symbolic general
solution for both deterministic and stochastic error propagation. The implica-
tion is that vehicle odometry can be understood at a level of theoretical rigor
that parallels the well-known Schuler oscillation of inertial navigation error
propagation. Response to initial conditions is shown to be expressible in
closed form and is path-independent. Response to input errors can be related
to path functionals. The general linearized solution for stochastic error prop-
agation for two typical cases of odometry is derived and applied to two exam-
ple trajectories. Copyright © 2002 IFAC.
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1. INTRODUCTION
This paper addresses the problem of understand-
ing the relationship between random error
present in sensor indications in odometry, and
the resultant error in computed vehicle pose. The
word “understanding” must be emphasized
because a numerical solution to the problem of
computing the resultant error is trivial. The
enhanced understanding of the general case that
is enabled by symbolic solutions is the motiva-
tion for the present work.

1.1. Motivation

This work is motivated by a recurrent set of
questions which arise when designing and con-
structing position estimation systems for mobile
robots for which the answer always seems to
require numerical solution. How good do the
sensors need to be? What kind of localization
error can be expected if this particular sensor is
used? Why do some errors seem to cancel out on
closed paths while others reverse when you drive
backwards? What is the best way to calibrate the
model of this sensor?

1.2. Prior Work

Analytical analysis of error propagation in
mobile robot odometry seems to have been

largely ignored in the literature with a few
exceptions. Early work in (Wang 1988) concen-
trates on improving estimates for a single itera-
tion of the estimation algorithm by incorporating
knowledge of the geometry of the path followed
between odometry updates. In (Borenstein and
Feng 1995) a method is presented which permits
the calibration of systematic errors which are
observable on rectangular closed trajectories by
solving geometric relationships. In (Chong and
Kleeman 1997) a solution is obtained for non
systematic error on constant curvature trajecto-
ries by solving a recurrence equation. This paper
presents the general solution for linearized sto-
chastic error propagation for any trajectory and
any error model. Extensions to systematic error
are immediate.

1.3. Problem Description

One of the most important distinctions in posi-
tion estimation is that between triangulation and
dead reckoning. The essential difference from a
mathematics perspective is whether the available
observations project onto the states of interest, or
onto their derivatives. Odometry is a form of
dead reckoning. In order to take the most direct
advantage of available theory, a “forced dynam-
ics” formulation of odometry will be used.



Odometry is modelled as a nonlinear dynamical errors in the computed vehicle pose:

system where the measurements, normally
denoted , are identified with the usual con-
trol inputs .

The state vector  and input vector  are
chosen to be:

The associated odometry equations are those of
the “integrated heading” case:

The x axis is chosen as the heading datum. This
situation is illustrated below:

Many alternative formulations of odometry are
possible but the above formulation has two key
properties. First, it is homogeneous in the inputs
so the zero input response is zero. Second, it is in
echelon form because any given equation
depends only on the states below it in the order
listed. As a result of the second property, the
total solution is immediate and well-known:

Since closed form solutions to integrals of gen-
eral functions do not exist, the best that can be
achieved is to eliminate the self reference of the
state derivative to the state itself and write an
explicit integral for the trajectory resulting from
the input. This form above is as closed-form as a
general solution can be.

This paper addresses the following problem. Let
the inputs to the system be corrupted by additive
errors as follows:

Using these input errors and the system dynam-
ics, determine the behavior of the associated

2. LINEARIZED ERROR DYNAMICS
Perturbative techniques linearize nonlinear
dynamical systems in order to study their first
order behavior. As long as errors are small, the
perturbative dynamics are a good approximation
to the exact behavior, and for the present pur-
poses, will be far more illuminating. Equation
(1) is linearized as follows:

A second input vector  has been introduced
to differentiate systematic from random error
sources.  is simply the component of 
which is random. By superposition, systematic
and random error sources can be treated indepen-
dently.

The Jacobians may depend on the state and the
input, and are evaluated on some reference tra-
jectory:

Although equation (3) may still be nonlinear in
the state and the input, it is linear in the perturba-
tions. If the errors are random in nature, the state
covariance and input spectral density matrices
can be defined:

To express random error propagation, the second
moment or “covariance” of the error is consid-
ered. The linearized propagation of covariance is
derived in several texts including (Gelb 1974)
and the result is known as the linear variance
equation:

2.1. Transition Matrix

The linearized differential equation (3) is of the
form of a time varying linear system:

While the transition matrix  (which is
tantamount to a solution) is known to exist for
such systems, though it may not be easy to find.
However, consider a matrix exponential of the
following  integral of the system Jacobian:
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Fig 1. Coordinates for odometry. 
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where the matrix exponential is defined as usual error occurring later at time . In effect, linear-t

by the infinite matrix power series:

When this exponential commutes (Brogan 1974)
with the system dynamics matrix:

it is the transition matrix which solves the associ-
ated time-varying linear system.

This is so because the transition matrix, by (one)
definition, satisfies the homogeneous system dif-
ferential equation:

On substituting equation (6) into (8), the com-
mutativity property becomes necessary to estab-
lish the equality. This property of “commutative
dynamics” is the key to generating a total solu-
tion to the error propagation equations of odome-
try. Once a closed-form expression for the
transition matrix is available, everything else fol-
lows from classical theory.

2.2. Matrix Exponential 

It was noted earlier that the odometry system is
in echelon form. Essentially, this means that the
system Jacobian  is strictly upper triangular:

and since  is composed entirely of defi-
nite integrals of , it is also strictly upper tri-
angular. It can be shown that the nth power (and
hence all subsequent powers) of an  strictly
upper triangular matrix vanishes. This means
that the matrix exponential can be easily written
by summing the first few nonzero terms.
Accordingly, closed-form expressions for the
transition matrix become available if it also satis-
fies equation (7).

2.3. Solution for Commutative Dynamics

If  is the transition matrix for the origi-
nal deterministic system dynamics, then the
well-known solution (Stengel 1994) is the matrix
convolution integral:

The only unknown in this equation is the transi-
tion matrix. The (potentially nonsquare) input
transition matrix can be defined as:

This matrix maps a given systematic or random
error at time  onto its net effect on the state

ization for the purposes of studying error propa-
gation amounts to treating errors occurring at
different times independently of each other.

2.4. Error Propagation Behavior

The solution consists of a state (initial condi-
tions) response and an input response. The state
response is always path independent and hence it
vanishes on any closed trajectory. The input
response is the integral of a positive semidefinite
matrix and hence all of its eigenvalues are non-
decreasing.

3. APPLICATION TO ODOMETRY
This section will derive the error propagation
equations for a few common forms of odometry.

3.1. Direct Heading Odometry

The term direct heading odometry will be used to
refer to the case where a direct measurement of
heading is available rather than its derivative.
For example, a compass could be used to mea-
sure heading directly and a transmission encoder
could be used to measure the linear velocity of
the center of an axle of the vehicle. 

The heading and error in heading are respec-
tively equal at all times to the heading measure-
ment and its error. Considering the heading to be
an input, the state equations are:

This system is clearly memoryless since the
states do not appear on the right hand side. Per-
turbing it gives:

The exponential of the integrated Jacobian is:

This clearly satisfies equation (7), so it is the
transition matrix. Substituting into the general
solution in equation (9) gives:

Equation (10) is the general linearized solution
for the propagation of random error in 2D direct
heading odometry for any trajectory and any
error model.

3.2. Integrated Heading Odometry
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In integrated heading odometry, an angular
σ 0( ) σ 0( ) σ 0( ) T
velocity indication is available which is inte-
grated to get the heading. For example, a gyro
could be used to measure heading rate and a
transmission encoder, groundspeed radar, or fifth
wheel encoder could be used to measure the lin-
ear velocity of the center of an axle of the vehi-
cle. This is the case given in equation (1)
repeated here for reference:

Also, define the notation for curvature with
. Perturbing this, gives:

Where the first matrix is the system Jacobian:

The following expressions for the coordinates of
the endpoint from the perspective of the point

 are defined:

Next, the integrated system Jacobian is:

Since , the exponential of the inte-
grated system Jacobian is:

Now, this matrix satisfies equation (7) because
. Therefore, this matrix is the

transition matrix .

Substituting into the general solution in equation
(9) gives:

Where the initial state response  is given by:

Equation (11) is the general linearized solution
for the propagation of random error in 2D inte-
grated heading odometry for any trajectory and
any error model.

3.3. Intuitive Interpretation

It is clear now that the solution could have been
written by inspection. The initial conditions
affect the endpoint error in a predictable manner
and the remaining terms amount to an addition of
the effects felt at the endpoint at time  of the
errors occurring at each time  between the start
and end as illustrated in figure 2:

The matrix relating input systematic errors
occurring at time  to their effect at time t is:

Therefore, the covariance relationship is:

These expressions are exactly what equation (11)
is integrating. Linearization amounts to treating
all errors as if they were independent in the sense
that the endpoint is not changed to reflect the
result of previous errors as the integral proceeds
forward through time.

4. ERROR MODELS
The general results are functions of the reference
trajectory and the error models. Specific trajecto-
ries and error models will be assumed here in
order to get specific results.

4.1. Specific Error Models

For direct heading, a “motion dependent” ran-
dom walk (where variance grows linearly with
distance) will be assumed. A constant spectral
probability density for the compass leads to a
time dependent random walk contribution to the
position coordinates. For integrated heading, a
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motion dependent random walk encoder vari- The solution for integrated heading becomes:

ance will be assumed as well as a constant gyro
bias stability. For differential heading, two
potentially different motion dependent random
walk variances will be assumed. These assump-
tions are summarized in the following table.

The absolute value signs appear to keep variance
positive regardless of the direction of motion.

5. SOLUTIONS ON PARTICULAR 
TRAJECTORIES

Using the above assumed errors, error propaga-
tion is completely determined by the trajectory
followed. This section gives closed-form propa-
gation equations for linear and constant curva-
ture trajectories.

5.1. Straight Trajectory

A linear trajectory, starting at the origin, parallel
to the x axis is defined by the following inputs:

and the associated solution to equation (1):

The solution for direct heading becomes:

Covariance remains diagonal. Alongtrack vari-
ance increases linearly with distance. Crosstrack
variance also increases linearly under the
assumption that velocity is constant.

Constant velocity was assumed for some ele-
ments of the second term. Heading variance is
linear in time as was intended. Heading covari-
ance with crosstrack is linear in distance and
time. Alongtrack variance is (to first order) lin-
ear in distance rather than time whereas
crosstrack variance is cubic in time (or distance
for constant velocity).

5.2. Constant Curvature Trajectory

A constant curvature (arc) trajectory, starting at
the origin, initially parallel to the x axis is
defined by the following inputs:

and the associated solution to equation (1):

The solution for direct heading becomes:

The overall behavior is a sum of linearly increas-
ing, first harmonic, and second harmonic terms.
A constant probability ellipse will steadily
increase in size while rotating twice per orbit of
the original trajectory. The integrated heading
moment matrices for arc trajectories are defined
in Table 2.
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Table 2. Integrated Heading Moment Matrices
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The solution for integrated heading then mal estimation techniques based on the Kalman

becomes:

Constant velocity was assumed. Heading vari-
ance  increases linearly with time as was
intended. The covariances of translation with
heading  and  include a pure oscillation
plus another oscillation at the fundamental fre-
quency whose amplitude increases linearly with
heading, distance, or time. Translational covari-
ance  includes pure oscillations at the funda-
mental and second harmonic frequencies. One
term is a second harmonic oscillation whose
amplitude grows linearly with heading, distance,
or time. The translational variances  and 
include terms of similar character to  (but
there is no fundamental term) but they also
include a pure linear term in distance, heading,
or time which does not oscillate. Both the gyro
and the encoder variances cause these linear
terms in the translational variances.

5.3. Simulation

For illustration purposes, the time evolution of
the elements of the state covariance in the con-
stant curvature integrated heading case are pro-
vided in the following figure.

6. CONCLUSIONS
It has not been the intention here to demonstrate
that the covariance propagation models are valid
approximations of reality. The entire community
invokes this assumption routinely in using opti-

filter (Smith and Cheesemen 1986). The purpose
here has been to show that the equations which
are commonly solved numerically can be solved
in closed form.

It has been shown that closed-form solutions
exist for sensor error propagation in commonly
encountered forms of odometry. This property,
combined with the property that the system Jaco-
bian is upper triangular, means that a total solu-
tion to odometry error propagation exists in
symbolic form. As a result, the entire theory of
linear systems can be applied to odometry in
symbolic form provided the error models and the
trajectory are expressed symbolically.

Resultant state estimation error is always a com-
bination of the state response and the input
response. The former is always path independent
and vanishes on any closed trajectory. The latter
can be reduced to expressions involving path
functionals.

In addition to their pedagogic value, the results
of this paper can be used in design to determine
acceptable levels of sensor error. They can also
be used to calibrate Kalman filter sensor uncer-
tainty models in a very principled manner.
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