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Abstract: We present a survey of results on a recently formulated variant of the classical
(stochastic) multiarmed bandit problem in which no assumption is made on the mechanism
generating the rewards. We describe randomized allocation policies for this variant and prove
bounds on their regret as a function of the time horizon and the number of arms. These bounds
hold for any assignment of rewards to the arms and are tight to within logarithmic factors.

1. INTRODUCTION The performance of a policy is measured with respect
to a given horizon model. In the finite horizon model
The multiarmed bandit (Robbins, 1952; Berry and the goal is to minimize the policy’s expecteairet at
Fristedt, 1985; Presmaet al., 1990) is a stochas-  horizon T, defined by
tic adaptive control problem in which the goal is to
maximize the retur 3 +X o+ whereX; , € R T
is the reward at time¢ associated with the control (1@.% Hi) T-E le“t .
iy € {1,...,N}, andN > 1 is a fixed parameter. In the - =
classical formulation of this problem, the controller is
gambler, who repeatedly pulls the arms dfi@rmed  Herey,, ..., uy, are the expected rewards of the arms.
slot machine. For each arng {1,...,N}, therewards  That is,E[X ,] = p for eachi andt. Hence, the regret
X 1,% 2,-.. are assumed to be i.i.d. random variables measures how much the allocation strategy lost, on
with unknown distribution (reWardS are also assumed average, for not p|ay|ng Consistenﬂy the arm with the
independent acrosy The gambler’s goal is to max- highest reward expectation.
imize his return by pulling, as often as possible, the . )
arm with the highest reward expectation. The strategy -@i @nd Robbins were the first ones to show that, un-
used by the gambler to choose which arm to pull next der mild assumptions on the reward distributions, the
based on past observed rewards is calledlBtation expected regret for the optimal policy must eventually
policy. We will denote withl,1.,... the sequence of grow Ioga.rlthmlcally in the siz& of the horizon (Lai .
arms pulled by a given allocation policy. and Robbins, 1985).. In the' same paper, they also give
examples of allocation policies achieving, for reward
The essence of the bandit problem lies in the needgistributions in the exponential family this optimal
of balancing, as accurately as possible, exploitation |ogarithmic rate. These policies typically work by es-
with exploration. Exploitation corresponds to pulling timating the reward expectation of each arm via upper
the arm with the highest reward estimate. Exploration confidence bound estimators. Such estimators use the
corresponds to pulling other arms in order to reveal, reward sample average biased by the length of its
by refining current reward estimates, arms with a bet- one-sided confidence interval — see also (Agrawaj’
ter reward expectation. Any allocation policy for the 1995: Burnetas and Katehakis, 1996; Yakowitz and
bandit problem must somehow deal with this trade- | owe, 1991). We now illustrate this technique in the
off. simple case of rewards bounded in [Bgl] interval —
see (Aueet al., 2002). Let>_<i7t be the sample average
1 partial support from ESPRIT Working Group EP 27150 (Neuro- O the reward of arnmi at timet, and |etS’t be the
COLT Il) is gratefully acknowledged. number of times arni was pulled in the first time




steps.Then,attime t + 1, the policy pulls the arm k
maximizingtheindex

alnt

th = th + $<,t
where a > 0 is a parameterThe idea behind this
policy is very simple. For [0, 1]-valuedindependent
random variables X, 1,X 5,..., Chernof-Hoeffding
bounds(Chernof, 1952)statethat

- Int 1
(g, <n) <t

This ensuresthat the index C;. ; of the bestarm i
(i.e.suchthat . > max; H; )is smallerthanthearm’s
true expectedreward L. W|th probability at most
1/t. This is in turn usedto show that a nonzero
regret at time t occurs only with probability 1/t.
When summedover T trials, this bound yields the
desiredlogarithmic regret. In the next sections,we
will seeanotherapplicationof estimatorsbasedon
upperconfidencebounds.

In view of introducingour worst-casebanditmodel,

we now look morein detail at lower boundson the

expectedegret.Considetthecaseof aN-armedbandit
problemwith Bernoullirewards.Assignto N — 1 arms
aBernoullidistribution with parametef./2 andto the

remainingarmaBernoullidistribution with parameter
1/2+ €. Now, if we choosee sufficiently small, i.e.

€ ~ y/N/T, thenany allocationpolicy will suffer a

regret of order /TN. A proof of this fact, shovn

in (Auer et al., 2002),is includedin theappendix.

Theresultabove stateghatwhenever the reward dis-
tributions canbe chosenasa function of T, thenthe
bestachievableregretis of order/T. In the next sec-
tions,we will describeallocationpoliciesthatachiese
this square-rootegret alsoin a nonstochastidandit
setting.In particular we will describeallocationpoli-
cieswith square-rootegretevenin thecasewherethe
rewardsare not i.i.d. randomvariables,but they are
choserdeterministically in atotally arbitrary(andthus
possiblymalicious)way.

2. THEWORSTCASEMODEL

In this sectionwe describeallocationpolicieswith re-
gretboundghatholdfor ary deterministicassignment
of rewards,includedthetheworstpossibleassignment
of rewardsfor thepolicy beingconsidered.

Our worst-casebandit model is parametrizedby a
finite numberN > 1 of arms and by an unknowvn
reward assignment specifying, for eachl <i < N
andfor eacht > 1, the deterministicreal reward X; ;
obtainedby pulling armi at time t. At eachtime t,
the gambleronly knows therewardsx, 1,...,% (3

obtainedin the pastt — 1 rounds.After thearm; is

pulled, thegamblerobserwestherewardxI 1 according
to the underlyingreward aSS|gnmentWe will always
assumethat each reward belongsto a known and
boundednterval of thereals,say|[0, 1] for simplicity.

Other than this restriction on the range,the reward
assignmenis arbitrary

Wewill useG =x_;+...+X_ todenotethereturn
athorizonT of a givenallocationpolicy and Gmax to
denotethereturnat horizonT of thebestarm,i.e.

Cmax = N ZX"" :

As ourallocationpoliciesarerandomizedthey induce
a probability distribution over the setof all arm se-
quences(iy,i,,...). We will useE[G] to denotethe
expectedreturn of sucha randomizedpolicy, where
the expectationis taken with respectto the induced
distribution. Our main measureof performancefor
a policy is the expected regret againstthe bestarm,
definedby Gmax— E[G].

3. THE BASIC RESULT

In this sectionwe describeour randomizedallocation
policy Exp3 andgive boundsonits performanceAll
resultsfrom this sectionarefrom (Auer et al., 2002).
Therandomizedolicy Exp3 maintainsa weightw; ,
for eacharmi=1,...,N. Initially, theweightsaresét
tol,ie w, =1foralli Ateachtimet=12,...
an action i; is dravn accordingto the distribution
Pygs---> Pryg assigningo armi probability
W,
= (1— 7“_'_1
pie=(1-V) sV w, TN

where0 < y < 1 is an input parameterLet % 1 be
therewardreceved. Then,theweightsareupdatedcas
follows:For j=1,...,N set

R = Xi /Py i j= it_
It 0 otherwise,
Wi 1 =W &Py /N) - @)

Note that X s IS an unbiasedestimateof the actual
rewvardx . In fact,asonecaneasilycheck,

E[X’s| e lga| =% @)

wherethe expectationis conditionedon the outcomes
of thepasts— 1 randomizedulls. Notefurtherthat

Wi = exp(y(X,+-..+X,_1)/N)

This shavs how the probabilitiesp; ;, addresghe ex-
ploration/exploitation trade-of by first assigningto

eacharm a probability w; , / (szzle ,t) exponential



in the estimatedcurrentreturnfor the arm (exploita-
tion), and then mixing this probability with the uni-
form distribution 1/N overall arms(exploration).The
tuning of the mixing coeficient y will turn outto be
crucial. We start the analysisof Exp3 by statinga
lower boundonits total expectedreturnthatholdsfor
eachchoiceof theparametey.

Theorem 1. For ary N > 0 andfor ary y € (0,1], the
expectedreturnof algorithmEx p3 satisfies

NInN
Gmax— ]E[G] < (e— 1) YGmax+

for ary rewardassignmenandfor ary T > 0.

A suitabletuning of y revealsthattheregretof Exp3
comescloseto thelower boundQ (v/TN).

Corollary 2. Forary T > 0, supposehatExp3 isrun
with input parameter

y= min{l, V(NInNY/((e— 1)T)} .

Then,for ary reward assignmenthe expectedreturn
of algorithmEx p3 satisfies

Gmax— E[CG] < 2ve— 1V TNInN.

PROOF. If T < (NInN)/(e— 1), thenthe boundis
trivial sincethe expectedregret cannotbe morethan
T. Otherwise by Theoreml, the expectedregretis at
most(e— 1) yGmax+ (NInN)/y. Pluggingour choice
of y completegheproof. O

Note that the boundof Corollary 2 implies that the
perroundregretof the policy approachegeroat rate
boundedby 2v/e—1,/(NInN)/T. However, this rate
boundwas obtainedvia a tuning of the mixing coef-
ficient y thatdepend®n the horizonT. This horizon-
dependentuning can be avoided (at the expenseof
a slightly worse leading constantin the rate bound)
usinga meta-poliy thatrunsExp3 with y = y(Tguesd

where Tguessgrows geometrically(e.qg., Tyuessis dou-
bledwhenererthenumberT of playedroundsis larger
than Tgues3. With this trick we obtaina rate boundof

order,/(NInN)/T thatholdsuniformly overthetime
horizonT.

We close this sectionwith the proof of the main
theorem.

PROOF (of Theorem 1). ChooseT > 1 and let

iy,...,ip be an arbitrary sequencef actionschosen
by Exp3. LetW =w, ; +... 4wy . Wenow compute
upperandlower boundsonIn(W;_ , /W, ) andthetake
expectationoverthe policy’srandomchoicesFor the
upperbound,notethatp,; > y/N implies(y/N))?it <

1foralli,t. Thuswe get’ 7

N op—Y/N Yo Vo
<3 B e gk -2 (FR,)]
asez<1+z+(e—2)zzforz<1

y/N + (e— 2 y/N lelt

1 yh

wherein thelaststepwe used

N
zl Py X =% and pj; ij,t < Xi
=

for eachj =1,...,

In(1+x) < xgives

V\4 1o y/N (e— 2 V/N
V\Z S9- int,t+ Zixn

Summingovert we thenget

N. Taking logarithmsand using

oW _ YN (e=2) v/NZii)g

W, —1-y
Ontheotherhand,for ary actionj,
Wrpg o Wits _ Ve o
I >In—/——===3% X;;,—InN.
" W " Wy Nt; o

Combiningthe upperand lower bounds,we get that
thereturnG onthesequencel, ...,it isatleast

T N __
angFi- a3 SR

We now take expectanonwith respectto iq,...,ir.
Using(2), theexpectedreturnof Exp3 is atleast

T NInN _2)%ti_§1)9,t'
==

AN 3x- -

wherej is choserarbitrarily. Using

T N
zi lei,t < N Gmax
t=1i=

we getthe statemenbf thetheorem. O

NInN

4. CONFIDENCEBOUNDSON THE RETURN

In Sectionl we have shavn thatthe expectedregretof
algorithmExp3 after T playsin the N-armedbandit
problemis at mostorderof +/TNInN. In this section
we look more closely at the regret distribution. Fol-
lowing (Aueret al., 2002),we wouldlik e to arguethat
theactualregretGmax— G is closeto its expectedvalue
Gmax — E[G] with high probability. In this respect,
algorithm Exp3 is not good. In fact, the varianceof
eachrandomvariableX, ; is aboutl/p, = 1/y= T2
(ignoring the dependence)n N). Over T plays, the



varianceof the returnis thus T%2 which implies a
potentialregretof T3/4. To fix this problemwereplace
the estimatorX., usedin Exp3 with the corrected
estimator ’

. 1 [In(TN/3)
o
X1,t pi,t TN

Thetermaddedto )(1 + playstherole of anuppercon-
fidenceboundsimilar to the upperconfidencebounds
usedoy theallocationpoliciesfor thestochastibandit
problem.Let G; be sum,over T plays, of thesecor-

rectedestimatedor the rewardsof armi. Then,along
the lines of the proof of Corollary 2, we can prove

thatfor ary sequence,,...,i; of plays,the modified
Exp3 algorithmachievesareturnof atleast

maxG —c4/TNIn(TN/9)

1<i<N

for someconstantc > 0. It canthen be proven that
the return G, is at most G; with probability at least
1 - J simultaneouslyver all armsi. This shows that
the actual(as opposedo expected)regret Gmax— G

is at mostcy/TNIn(TN/d) with probability at least
1-— 0 with respecto the policy’srandomization.

5. REGRETAGAINST OMNISCIENT POLICIES

So far we have boundedthe policy’s regret for not
alwayschoosingthe single globally bestarm, i.e. the
armi maximizing y x i1~ More generally one could
also bound the regret for not choosinga particular
sequence of armsj’ = (i, Jor--n 1)

Boundingthe regret and simultaneouslywith respect
to all arm sequencesyith no restrictions,is clearly
hopelessYet, we cangeta resultby allowing the re-
gretto scalewith a quantitymeasuringhe“hardness”
of the sequenceA gooddefinition for hardnesf a
sequencg’ is 14 n, wheren is the numberof times
thearmbeingplayedmustbechangedn orderto pull
thearmsin theordergivenby thesequencg’.

We startby analyzingthe performanceof Exp3 with
respecto this new criterion. Let GjT =Xj 1 tX ot
A XiT bethereturnathorizonT of anarbitraryse-

quencej” = (jy, ip---, it)- Wewantto upperbound
GjT — G irrespectve to the underlyingreward assign-

ment.If the hardnes®f j' is S, thenwe canthink of
partitioning jT in S consecuiie segmentsso that the
playedaction doesnot changewithin eachsegment.
For example,if T=6andj’ =(3,3,1,1,1,1), then
the hardnessof jT is 2 and we partition it in sey-
ments(3,3) and(1,1,1,1). Now we canmeasurehe
regret of Exp3 within eachsegmentjust aswe did
in Theoreml and then sum up the regretsover the
segments.Recall that the main trick in the proof of
Theoreml wasto upperboundthelog-ratioof final to
initial weightsums.Here,this translateso upperand

lower boundthe quant|tyln(V\er+l/V\ﬁrk), whereT, is
the play wherethe k-th segmentbegun. Whereaghe
upperboundis derived very muchalongthe lines of
Theoreml, we have sometroublefor thelowerbound,
asthe sum\/\ﬁrk of the weightsat the beginning of the
segmentis unknown. To fix this problem,we slightly
alter Exp3 by replacingthe weight updatestep (1)
with

N
o a
Wig1 = Wi &Py X /N) + 5 iZl""i,t

wherea is a new input parameterThis amountsto
sharingamongall weightsa fractiona /N of thetotal
weight. Using this trick, we can prove that for each
1<i<N

Vka+1 4
In —%= W, >InN NG( W)

where G;(T,) is the return of arm i during the k-th
segment.

This argumentleadsusto prove a regretboundof the
form

G, —EG] <O (m)

]

where S is the hardnessof jT. This bound holds

uniformly over all arm sequences’. If onewantsa

resultthatholdsfor asetof armsequencesf hardness
atmostS, then,by tuning a in termsof S, theabove

boundimprovesto

G,r —E[G] < O(VSTNIN) .

6. LINEAR EVALUATION FUNCTIONS

In the worst-caséanditproblem,the strongespossi-
ble notionof regretis

S max x;, — E[C] . ®3)

1<i<N

This is the regretfor not having playedthe best pos-
sible arm sequencethat is the sequencd ..., j1)
where j; = argmax ;% for 1<t < T. There-
sultsof Section5 imply thata meaningfulboundon
this regret is achievable at horizon T whenever the
reward assignmenis such that the hardnessof the
best possiblesequencas small comparedto T. We
now considera slight variantof the worst-caséandit
problem,called the linear evaluation function prob-
lem (Long, 1997), in which a boundon (3) canbe
provenusinga differentnotionof hardnesg$or anarm
sequencdn this variant,atthe beginningof eachtime
t the policy obseresa real feature vector z;; € RY
associatedo eacharmi, whered is afixed parameter

andH iJH < 1foralli,t. Theseeaturevectorsprovide



additionalinformationthat canbe usedby the policy
to estimatethe rewards associatedo eacharm. In
particular the policy canbe thoughtof bettingon a
linearrelationshipbetweera featurevectorz ; andits
correspondingeward x; t Accordingly, the boundon
theregret(3) will scalewith the approximation error,
definedby

A Sl @

whereuy,...,uy € RY andthe minimization hasthe
additional constraints||u;|| < 1 for 1 <i < N. The
approximationerror accounts,cumulatvely over all

arms for theamounf nonlinearityin therelationship
betweertherewardsy; ; andthefeaturevectorsz; ;.

We now describea randomizedpolicy for this prob-
lem. The policy, which we call Lep (Linear Evalua-
tion Player),keepsa weight vectorw; € RY for each
armi. Thesevectorsare usedto computelinear esti-
matesX;; = w; - z; for the rewardsassociatedo the

obsened featurevectors.Let X;* the largestof these
estimatedor time t. Eacharm i is thendravn with
probability Pt inverselyproportionalto thedifference

X' — X, (with carefor the casewherei achieves

Xt*) After observingthe reward Xyt correspondindo
the actuallydravn armk, the welghtwkt is updated

by adding a term proportionalto z,,/p, if th

% and by subtractingthe sameterm if th > Xy
The purposeof this update,which is similar to the
weight updatesin the Perceptron(Rosenblatt,1958)
and Widrow-Hoff (Widrow andHoff, 1960)learning
rules,is to learnon-linethe bestlinearapproximation
for the reward associatedo eacharm. However, the
weight updateis not carried out in those roundst
where|x,; — Xk | < X' — X, This helpsto trade-of
therandomchoiceof anarmk, whoserewardestimate
th is significantlysmallerthanthe bestesnmatext*
with theinformation gainedby obervinga reward Xt

very differentfrom its esumate)(k’t.

For ary assignmenbf rewards,the regret boundfor
Lep is of theform

Zilrg%m Cl
<A+ NVT + 6, (AN?T)?/3

whereA is the approximatiorerror (4) andc; andc,
arepositive constants.
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AppendixA. LOWER BOUND

Theorem 3. For ary N > 2 andfor ary T > 1, con-
sider the N-armed bandit problem such that N —
1 arms have Bernoulli rewards with parameterl/2
and one arm has Bernoulli rewards with parameter
(1/2) (1+min{+/TN,1}/2). Then, the expectedre-
gretof ary allocationpolicy for this banditproblemis

atleast(1/20) min{+/TN, T}.

PROOF. Write the parameterof the best arm as
1/2+ ¢, wheree = min{+/TN, 1} /4, andassumehat
thebestarmis dravn atrandomfrom the N arms.We
will useK to denoteherandomindex of thisbestarm.

Fix anarbitraryallocationpolicy. We will prove that
the expectedregret of the policy after T pulls, taking
alsointo accounthe initial randomizedchoiceof the
bestarm, is at leastthe boundstatedin the theorem.
We useP andE to denoteprobabilitiesand expecta-
tions with respectto the samplespaceincluding the
choiceof thebestarmin {1,...,N} andthe choiceof

therewardsin {0,1}T. We alsowrite P, = P(- | K = i)

andE, = E[- | K =i] to denoteconditioningon K.

We will comparethe probability of certain events
computedaccordingto P with their probability com-
putedaccordingto P/, which usesthe sameparameter
1/2 for all arms.Expectationswith respecto P’ will
bedenotedvith E'.

Let T, be the numberof timesarmi was pulled by
the policy in the T rounds. The core of the proof
is the obsenation that a small increaseof ¢ in the
Bernoulli parameteiof onearm, whenall armshave
initial parameterl/2, doesnot increasedramatically
theexpectechumberof timesthisarmis pulledby ary

allocationstratgy. To prove this factnotethatT, < T

andtherefore

E[T]-E[M<T (B(x") —P'(x"))
xTe{0,1}T
<T 5 (B P

aefonT ) L e

T
2 xTe{0,1}7
T , T -
5 [Pi—P[ < 73 VPP IF)
wherein thelaststepwe useda standardnequalitybe-

tweenthe variationaldistancef|-||; andthe Kullback-
Leibler distance

D(P'IIP)= 5 P(X)in
xTe{0,1}T

We now applythechainrule for the Kullback-Leibler
distance— see, e.g., Theorem 2.5.3 (Cover and
Thomas,1991).As usual,let I, the index of the arm

pulledattimet andX, ; therewardobtainedLet also
Xt= (X 1---5 % 1)- We have

D(P'[| ;)

_ZD(P' X | XY 12,06, [ XD)

= ziﬂ’" Iy # 1)
+ ZIP”
i;“”'(" —i) (; 1_1452)

[T]<2 1 1452) ‘

D(1/2]11/2)

D(1/2||1/2+¢)

Hence,

1

E [T <E[T]+ 5 1 74g2

E'[T]In

Note also that, by definition of reward distributions,
E[G] =T/2+ ¢E[T]. We arenow readyto compute
an upperboundon the expectedreturn E[G] of the
allocationpolicy,

EG] == SE

1
1)+ 2 [ [T]in 1_1482)
1
n

2
iz e)

wherewe usedthefacts:

SEM-T and 33 V< /y-

To getalower boundon the expectedregretit is now
enoughto obsenrethat

Zl-

Z| ™
Mz ]

+

N

<

IN
Nl N

+

Z|l -
N =
Z| -

T
max E[G;] = - +¢&T

1<j<N 2
and,therefore,
E[G.| - E[G
max EG;] ~ E[G]
T T /T 1
‘£<T_N_E\/N'”1——452) :

Replacingour choicefor € andusing —In(1—x) <
4xIn(4/3) for 0 < x < 1/4 yieldsthe statemenof the
theorem.



