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Abstract: We present a survey of results on a recently formulated variant of the classical
(stochastic) multiarmed bandit problem in which no assumption is made on the mechanism
generating the rewards. We describe randomized allocation policies for this variant and prove
bounds on their regret as a function of the time horizon and the number of arms. These bounds
hold for any assignment of rewards to the arms and are tight to within logarithmic factors.

1. INTRODUCTION

The multiarmed bandit (Robbins, 1952; Berry and
Fristedt, 1985; Presmanet al., 1990) is a stochas-
tic adaptive control problem in which the goal is to
maximize the returnXi1 � 1 � Xi2 � 2 ������� , whereXit � t ���
is the reward at timet associated with the control
it
�
	 1 � ����� � N � , andN  1 is a fixed parameter. In the

classical formulation of this problem, the controller is
gambler, who repeatedly pulls the arms of aN-armed
slot machine. For each armi ��	 1 � ����� � N � , the rewards
Xi � 1 � Xi � 2 � ����� are assumed to be i.i.d. random variables
with unknown distribution (rewards are also assumed
independent acrossi). The gambler’s goal is to max-
imize his return by pulling, as often as possible, the
arm with the highest reward expectation. The strategy
used by the gambler to choose which arm to pull next
based on past observed rewards is called anallocation
policy. We will denote withI1 � I2 � ����� the sequence of
arms pulled by a given allocation policy.

The essence of the bandit problem lies in the need
of balancing, as accurately as possible, exploitation
with exploration. Exploitation corresponds to pulling
the arm with the highest reward estimate. Exploration
corresponds to pulling other arms in order to reveal,
by refining current reward estimates, arms with a bet-
ter reward expectation. Any allocation policy for the
bandit problem must somehow deal with this trade-
off.

1 Partial support from ESPRIT Working Group EP 27150 (Neuro-
COLT II) is gratefully acknowledged.

The performance of a policy is measured with respect
to a given horizon model. In the finite horizon model
the goal is to minimize the policy’s expectedregret at
horizon T , defined by�

max
1 � i � N

µi � T ����� T

∑
t � 1

XIt � t � �
Hereµ1 � ����� � µN are the expected rewards of the arms.
That is, ���Xi � t ��� µi for eachi andt. Hence, the regret
measures how much the allocation strategy lost, on
average, for not playing consistently the arm with the
highest reward expectation.

Lai and Robbins were the first ones to show that, un-
der mild assumptions on the reward distributions, the
expected regret for the optimal policy must eventually
grow logarithmically in the sizeT of the horizon (Lai
and Robbins, 1985). In the same paper, they also give
examples of allocation policies achieving, for reward
distributions in the exponential family this optimal
logarithmic rate. These policies typically work by es-
timating the reward expectation of each arm via upper
confidence bound estimators. Such estimators use the
reward sample average biased by the length of its
one-sided confidence interval — see also (Agrawal,
1995; Burnetas and Katehakis, 1996; Yakowitz and
Lowe, 1991). We now illustrate this technique in the
simple case of rewards bounded in the� 0 � 1� interval —
see (Aueret al., 2002). LetXi � t be the sample average
for the reward of armi at time t, and letSi � t be the
number of times armi was pulled in the firstt time
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steps.Then,at time t
�

1, the policy pulls the arm k
maximizingtheindex

Ck � t � X k � t ��� α ln t
Sk � t

where α  0 is a parameter. The idea behind this
policy is very simple. For � 0 � 1� -valued independent
random variables Xk � 1 � Xk � 2 � ����� , Chernoff-Hoeffding
bounds(Chernoff, 1952)statethat�! 

Xk � t �"� ln t
2Sk � t # µi $&% 1

t
�

This ensuresthat the index Ci ' � t of the best arm i (
(i.e. suchthatµi '*) maxj µ j) is smallerthanthearm’s
true expectedreward µi ' with probability at most
1+ t. This is in turn used to show that a nonzero
regret at time t occurs only with probability 1+ t.
When summedover T trials, this bound yields the
desiredlogarithmic regret. In the next sections,we
will seeanotherapplicationof estimatorsbasedon
upperconfidencebounds.

In view of introducingour worst-casebanditmodel,
we now look more in detail at lower boundson the
expectedregret.Considerthecaseof aN-armedbandit
problemwith Bernoulli rewards.Assignto N � 1 arms
a Bernoulli distributionwith parameter1+ 2 andto the
remainingarmaBernoullidistributionwith parameter
1+ 2 � ε. Now, if we chooseε sufficiently small, i.e.
ε ,.- N + T , then any allocationpolicy will suffer a
regret of order / TN. A proof of this fact, shown
in (Auer et al., 2002),is includedin theappendix.

The resultabove statesthatwhenever the rewarddis-
tributionscanbe chosenasa function of T , thenthe
bestachievableregret is of order / T . In thenext sec-
tions,wewill describeallocationpoliciesthatachieve
this square-rootregret also in a nonstochasticbandit
setting.In particular, we will describeallocationpoli-
cieswith square-rootregretevenin thecasewherethe
rewardsare not i.i.d. randomvariables,but they are
chosendeterministically in atotally arbitrary(andthus
possiblymalicious)way.

2. THE WORST-CASEMODEL

In thissectionwedescribeallocationpolicieswith re-
gretboundsthatholdfor any deterministicassignment
of rewards,includedthetheworstpossibleassignment
of rewardsfor thepolicy beingconsidered.

Our worst-casebandit model is parametrizedby a
finite number N  1 of arms and by an unknown
reward assignment specifying, for each 1 % i % N
and for eacht ) 1, the deterministicreal reward xi � t
obtainedby pulling arm i at time t. At eachtime t,
thegambleronly knows therewardsxI1 � 1 � ����� � xIt 0 1

� t 1 1

obtainedin the pastt � 1 rounds.After the arm It is

pulled,thegamblerobservestherewardxIt � t according
to the underlyingrewardassignment.We will always
assumethat each reward belongs to a known and
boundedinterval of thereals,say � 0 � 1� for simplicity.
Other than this restriction on the range,the reward
assignmentis arbitrary.

We will useG � xI1 � 1 ��������� xIT � T to denotethereturn
at horizonT of a givenallocationpolicy andGmax to
denotethereturnat horizonT of thebestarm,i.e.

Gmax � max
1 � i � N

T

∑
t � 1

xi � t �
As ourallocationpoliciesarerandomized,they induce
a probability distribution over the set of all arm se-
quences2 i1 � i2 � �����43 . We will use ���G � to denotethe
expectedreturn of sucha randomizedpolicy, where
the expectationis taken with respectto the induced
distribution. Our main measureof performancefor
a policy is the expected regret againstthe bestarm,
definedby Gmax �5���G � .

3. THE BASIC RESULT

In this sectionwe describeour randomizedallocation
policy Exp3 andgive boundson its performance.All
resultsfrom this sectionarefrom (Auer et al., 2002).
Therandomizedpolicy Exp3 maintainsa weightwi � t
for eacharm i � 1 � ����� � N. Initially, theweightsareset
to 1, i.e. wi � 1 � 1 for all i. At eachtime t � 1 � 2 � �����
an action it is drawn accordingto the distribution
p1 � t � ����� � pN � t assigningto arm i probability

pi � t � 2 1 � γ 3 wi � t
∑N

j � 1w j � t � γ
N

where0 # γ % 1 is an input parameter. Let xit � t be
therewardreceived.Then,theweightsareupdatedas
follows:For j � 1 � ����� � N set6

X j � t �87 x j � t + p j � t if j � it
0 otherwise,

w j � t 9 1 � w j � t exp 2 γ 6X j � t + N 3*� (1)

Note that
6
Xi � s is an unbiasedestimateof the actual

rewardxi � s. In fact,asonecaneasilycheck,�
: 6Xi � s ; I1 � ����� � Is 1 1 < � xi � s (2)

wheretheexpectationis conditionedon theoutcomes
of thepasts � 1 randomizedpulls.Notefurtherthat

wi � t � exp 2 γ 2 6Xi � 1 �������=� 6Xi � t 1 1
3 + N 3

This shows how the probabilitiespi � t addressthe ex-
ploration/exploitation trade-off by first assigningto

eacharm a probability wi � t +?> ∑N
j � 1w j � t @ exponential



in the estimatedcurrentreturnfor the arm (exploita-
tion), and thenmixing this probability with the uni-
form distribution1+ N overall arms(exploration).The
tuning of the mixing coefficient γ will turn out to be
crucial. We start the analysisof Exp3 by statinga
lowerboundon its total expectedreturnthatholdsfor
eachchoiceof theparameterγ.

Theorem 1. For any N  0 andfor any γ � 2 0 � 1� , the
expectedreturnof algorithmExp3 satisfies

Gmax �5�*�G � % 2 e � 1
3 γ Gmax

� N lnN
γ

for any rewardassignmentandfor any T  0.

A suitabletuningof γ revealsthat theregretof Exp3
comescloseto thelowerboundΩ A / T N B .
Corollary 2. For any T  0, supposethatExp3 is run
with input parameter

γ � min C 1 � - 2 N lnN
3 +D2�2 e � 1

3
T
3FEG�

Then,for any reward assignmentthe expectedreturn
of algorithmExp3 satisfies

Gmax �5���G � % 2 / e � 1/ T N lnN
�

PROOF. If T % 2 N lnN
3 +D2 e � 1

3
, then the boundis

trivial sincethe expectedregret cannotbe morethan
T . Otherwise,by Theorem1, theexpectedregretis at
most 2 e � 1

3 γ Gmax
� 2 N lnN

3 + γ. Pluggingourchoice
of γ completestheproof. H
Note that the boundof Corollary 2 implies that the
per-roundregretof thepolicy approacheszeroat rate
boundedby 2/ e � 1 - 2 N lnN

3 + T . However, this rate
boundwasobtainedvia a tuning of the mixing coef-
ficient γ thatdependson thehorizonT . This horizon-
dependenttuning can be avoided (at the expenseof
a slightly worse leadingconstantin the rate bound)
usingameta-policy thatrunsExp3 with γ � γ 2 Tguess

3
whereTguessgrows geometrically(e.g.,Tguessis dou-
bledwheneverthenumberT of playedroundsis larger
thanTguess). With this trick we obtaina rateboundof
order - 2 N lnN

3 + T thatholdsuniformly overthetime
horizonT .

We close this section with the proof of the main
theorem.

PROOF (of Theorem 1). ChooseT ) 1 and let
i1 � ����� � iT be an arbitrary sequenceof actionschosen
byExp3. LetWt � w1 � t �������I� wN � t . Wenow compute
upperandlowerboundson ln 2 WT 9 1 + W1

3
andthetake

expectationsoverthepolicy’srandomchoices.For the
upperbound,notethat pi � t ) γ + N implies 2 γ + N 3 6Xi � t %
1 for all i � t. Thusweget

Wt 9 1

Wt
� N

∑
i � 1

wi � t
Wt

exp > γ
N

6
Xi � t @

� N

∑
i � 1

pi � t � γ + N
1 � γ

exp > γ
N

6
Xi � t @

% N

∑
i � 1

pi � t � γ + N
1 � γ J 1 � γ

N

6
Xi � t � 2 e � 2

3 > γ
N

6
Xi � t @ 2 K

asez % 1
�

z
� 2 e � 2

3
z2 for z % 1% 1

� γ + N
1 � γ

xit � t � 2 e � 2
3 2 γ + N 3 2

1 � γ

N

∑
i � 1

6
Xi � t

wherein thelaststepweused

N

∑
i � 1

pi � t 6Xi � t � xit � t and p j � t 6X2
j � t % 6

X j � t
for each j � 1 � ����� � N. Taking logarithmsand using
ln 2 1 � x

3 % x gives

ln
Wt 9 1

Wt
% γ + N

1 � γ
xit � t � 2 e � 2

3 2 γ + N 3 2
1 � γ

N

∑
i � 1

6
Xi � t �

Summingover t wethenget

ln
WT 9 1

W1
% γ + N

1 � γ
G
� 2 e � 2

3 2 γ + N 3 2
1 � γ

T

∑
t � 1

N

∑
i � 1

6
Xi � t �

Ontheotherhand,for any action j,

ln
WT 9 1

W1
) ln

w j � T 9 1

W1
� γ

N

T

∑
t � 1

6
X j � t � lnN

�
Combiningthe upperand lower bounds,we get that
thereturnG on thesequencei1 � ����� � iT is at least2 1 � γ 3 T

∑
t � 1

6
X j � t � N lnN

γ
��2 e � 2

3 γ
N

T

∑
t � 1

N

∑
i � 1

6
Xi � t �

We now take expectationwith respectto i1 � ����� � iT .
Using(2), theexpectedreturnof Exp3 is at least2 1 � γ 3 T

∑
t � 1

x j � t � N lnN
γ

��2 e � 2
3 γ
N

T

∑
t � 1

N

∑
i � 1

xi � t �
where j is chosenarbitrarily. Using

T

∑
t � 1

N

∑
i � 1

xi � t % N Gmax

we getthestatementof thetheorem. H
4. CONFIDENCEBOUNDSON THE RETURN

In Section1 wehaveshown thattheexpectedregretof
algorithmExp3 after T playsin the N-armedbandit
problemis at mostorderof / TN lnN. In this section
we look more closely at the regret distribution. Fol-
lowing (Aueret al., 2002),wewould like to arguethat
theactualregretGmax � G is closeto its expectedvalue
Gmax �����G � with high probability. In this respect,
algorithmExp3 is not good.In fact, the varianceof
eachrandomvariable

6
Xi � t is about1 + pi � t � 1 + γ � T 1L 2

(ignoring the dependenceon N). Over T plays, the



varianceof the return is thus T 3L 2 which implies a
potentialregretof T 3L 4. To fix thisproblemwereplace
the estimator

6
Xi � t used in Exp3 with the corrected

estimator 6
Xi � t � 1

pi � t M ln 2 T N + δ 3
T N

�
Thetermaddedto

6
Xi � t playstherole of anuppercon-

fidenceboundsimilar to theupperconfidencebounds
usedby theallocationpoliciesfor thestochasticbandit
problem.Let

6
Gi be sum,over T plays,of thesecor-

rectedestimatesfor therewardsof arm i. Then,along
the lines of the proof of Corollary 2, we can prove
that for any sequencei1 � ����� � iT of plays,themodified
Exp3 algorithmachievesa returnof at least

max
1 � i � N

6
Gi � c - T N ln 2 T N + δ 3

for someconstantc  0. It can then be proven that
the return Gi is at most

6
Gi with probability at least

1 � δ simultaneouslyover all armsi. This shows that
the actual(as opposedto expected)regret Gmax � G
is at mostc - T N ln 2 T N + δ 3 with probability at least
1 � δ with respectto thepolicy’s randomization.

5. REGRETAGAINST OMNISCIENT POLICIES

So far we have boundedthe policy’s regret for not
alwayschoosingthesingleglobally bestarm, i.e. the
arm i maximizing ∑t xi � t . More generally, one could
also bound the regret for not choosinga particular
sequence of arms jT � 2 j1 � j2 � ����� � jT 3 .
Boundingthe regret andsimultaneouslywith respect
to all arm sequences,with no restrictions,is clearly
hopeless.Yet, we cangeta resultby allowing the re-
gretto scalewith aquantitymeasuringthe“hardness”
of the sequence.A gooddefinition for hardnessof a
sequencejT is 1

�
n, wheren is thenumberof times

thearmbeingplayedmustbechangedin orderto pull
thearmsin theordergivenby thesequencejT .

We startby analyzingtheperformanceof Exp3 with
respectto this new criterion.Let G

jT � x j1 � 1 � x j2 � 2 ������I�
x jT � T bethereturnathorizonT of anarbitraryse-

quencejT � 2 j1 � j2 � ����� � jT 3 . We wantto upperbound
G

jT
� G irrespective to theunderlyingrewardassign-

ment.If thehardnessof jT is S, thenwe canthink of
partitioning jT in S consecutive segmentsso that the
playedactiondoesnot changewithin eachsegment.
For example,if T � 6 and jT � 2 3 � 3 � 1 � 1 � 1 � 13 , then
the hardnessof jT is 2 and we partition it in seg-
ments 2 3 � 33 and 2 1 � 1 � 1 � 13 . Now we canmeasurethe
regret of Exp3 within eachsegment just as we did
in Theorem1 and then sum up the regretsover the
segments.Recall that the main trick in the proof of
Theorem1 wasto upperboundthelog-ratioof final to
initial weightsums.Here,this translatesto upperand

lower boundthe quantity ln 2 WTk N 1
+ WTk

3
, whereTk is

the play wherethe k-th segmentbegun.Whereasthe
upperboundis derived very muchalongthe lines of
Theorem1,wehavesometroublefor thelowerbound,
asthesumWTk

of theweightsat thebeginningof the
segmentis unknown. To fix this problem,we slightly
alter Exp3 by replacingthe weight updatestep(1)
with

w j � t 9 1 � w j � t exp 2 γ 6X j � t + N 3O� α
N

N

∑
i � 1

wi � t
whereα is a new input parameter. This amountsto
sharingamongall weightsa fractionα + N of thetotal
weight. Using this trick, we can prove that for each
1 % i % N

ln
WTk N 1

WTk

) ln
α
N
� γ

N
Gi 2 Tk

3
whereGi 2 Tk

3
is the return of arm i during the k-th

segment.

This argumentleadsusto provea regretboundof the
form

G
jT
���*�G � % O > S / T N lnN @

where S is the hardnessof jT . This bound holds
uniformly over all arm sequencesjT . If onewantsa
resultthatholdsfor asetof armsequencesof hardness
at mostS P , then,by tuningα in termsof S P , theabove
boundimprovesto

G
jT �5���G � % O > / S P T N lnN @ �

6. LINEAR EVALUATION FUNCTIONS

In theworst-casebanditproblem,thestrongestpossi-
blenotionof regretis

T

∑
t � 1

max
1 � i � N

xi � t ���*�G � � (3)

This is the regret for not having playedthe best pos-
sible arm sequence,that is the sequence2 j1 � ����� � jT 3
where jt � argmax1 � i � N xi � t for 1 % t % T . The re-
sultsof Section5 imply that a meaningfulboundon
this regret is achievable at horizon T whenever the
reward assignmentis such that the hardnessof the
bestpossiblesequenceis small comparedto T . We
now considera slight variantof theworst-casebandit
problem,called the linear evaluation function prob-
lem (Long, 1997), in which a boundon (3) can be
provenusingadifferentnotionof hardnessfor anarm
sequence.In thisvariant,at thebeginningof eachtime
t the policy observes a real feature vector zi � t ��� d

associatedto eacharm i, whered is a fixedparameter

and QQQ zi � t QQQ % 1 for all i � t. Thesefeaturevectorsprovide



additionalinformationthat canbe usedby the policy
to estimatethe rewards associatedto eacharm. In
particular, the policy can be thoughtof betting on a
linearrelationshipbetweena featurevectorzi � t andits
correspondingrewardxi � t . Accordingly, theboundon
theregret(3) will scalewith theapproximation error,
definedby

A � min
u1
� R R R � uN

N

∑
i � 1

T

∑
t � 1

; xi � t � ui S zi � t ; (4)

whereu1 � ����� � uN
�
� d andthe minimizationhasthe

additional constraints QQ ui QQ % 1 for 1 % i % N. The
approximationerror accounts,cumulatively over all
arms,for theamountof nonlinearityin therelationship
betweentherewardsxi � t andthefeaturevectorszi � t .
We now describea randomizedpolicy for this prob-
lem. The policy, which we call Lep (Linear Evalua-
tion Player),keepsa weight vectorwi

�
� d for each
arm i. Thesevectorsareusedto computelinear esti-
mates TXi � t � wi S zi � t for the rewardsassociatedto the

observed featurevectors.Let TX (t the largestof these
estimatesfor time t. Eacharm i is then drawn with
probabilitypi � t inverselyproportionalto thedifferenceTX (t �UTXi � t (with care for the casewhere i achievesTX (t ). After observingtherewardxk � t correspondingto
the actuallydrawn arm k, the weight wk � t is updated

by adding a term proportional to zk � t + pk � t if TXk � t #xk � t and by subtractingthe sameterm if TXk � t ) xk � t .
The purposeof this update,which is similar to the
weight updatesin the Perceptron(Rosenblatt,1958)
andWidrow-Hoff (Widrow andHoff, 1960) learning
rules,is to learnon-linethebestlinearapproximation
for the reward associatedto eacharm. However, the
weight updateis not carried out in those rounds t
where ; xk � t �"TXk � t ; % TX (t �"TXk � t . This helpsto trade-off
therandomchoiceof anarmk, whoserewardestimateTXk � t is significantlysmallerthanthebestestimateTX (t ,
with theinformationgainedby obervinga rewardxk � t
verydifferentfrom its estimateTXk � t .
For any assignmentof rewards,the regret boundfor
Lep is of theform

T

∑
t � 1

max
1 � i � N

xi � t ���V�G �% A
�

c1N / T
�

c2 2 AN2T
3 2L 3

whereA is theapproximationerror (4) andc1 andc2
arepositiveconstants.
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AppendixA. LOWERBOUND

Theorem 3. For any N  2 and for any T ) 1, con-
sider the N-armed bandit problem such that N �
1 arms have Bernoulli rewards with parameter1 + 2
and one arm has Bernoulli rewards with parameter2 1 + 23 A 1 � min	 / T N � 1 �W+ 2B . Then, the expectedre-
gretof any allocationpolicy for thisbanditproblemis
at least 2 1 + 20

3
min	 / T N � T � .

PROOF. Write the parameterof the best arm as
1+ 2 � ε, whereε � min 	 / T N � 1 �X+ 4, andassumethat
thebestarmis drawn at randomfrom theN arms.We
will useK to denotetherandomindex of thisbestarm.

Fix an arbitraryallocationpolicy. We will prove that
theexpectedregretof thepolicy after T pulls, taking
alsointo accountthe initial randomizedchoiceof the
bestarm, is at leastthe boundstatedin the theorem.
We use

�
and � to denoteprobabilitiesandexpecta-

tions with respectto the samplespaceincluding the
choiceof thebestarmin 	 1 � ����� � N � andthechoiceof
therewardsin 	 0 � 1 � T . Wealsowrite

�
i � � 2 SW; K � i

3
and � i � ��� SY; K � i � to denoteconditioningon K.

We will comparethe probability of certain events
computedaccordingto

�
with their probability com-

putedaccordingto
� P , which usesthesameparameter

1+ 2 for all arms.Expectationswith respectto
� P will

bedenotedwith � P .
Let Ti be the numberof times arm i was pulled by
the policy in the T rounds.The core of the proof
is the observation that a small increaseof ε in the
Bernoulli parameterof onearm, whenall armshave
initial parameter1+ 2, doesnot increasedramatically
theexpectednumberof timesthisarmis pulledby any
allocationstrategy. To prove this factnotethatTi % T
andtherefore

� i � Ti � �5� P � Ti � % T ∑
xT ZX[ 0 � 1 \ T A � i 2 xT 3 � � P 2 xT 3 B

% T ∑
xT ZX[ 0 � 1\ T A � i 2 xT 3 � � P 2 xT 3 B�]_^

i ` xT acb ^ed ` xT a
� T

2 ∑
xT ZX[ 0 � 1 \ T ff � i 2 xT 3 � � P 2 xT 3 ff� T

2 QQ � i � � P QQ 1 % T/ 2
- D 2 � Phg � i

3
wherein thelaststepweusedastandardinequalitybe-
tweenthevariationaldistanceg S g 1 andtheKullback-
Leibler distance

D A � P g � i B � ∑
xT ZX[ 0 � 1 \ T � P 2 xT 3 ln � P 2 xT 3�

i 2 xT 3 �
We now applythechainrule for theKullback-Leibler
distance — see, e.g., Theorem 2.5.3 (Cover and
Thomas,1991).As usual,let It the index of the arm

pulledat time t andXIt � t therewardobtained.Let also
X t � 2 XI1 � 1 � ����� � XIt � t 3 . We have

D A � P g � i B� T

∑
t � 1

D > � P 2 XIt � t ; X t 1 1 3 g � i 2 XIt � t ; X t 1 1 3 @
� T

∑
t � 1

� P 2 It i� i
3
D 2 1 + 2 g 1 + 23� T

∑
t � 1

� P 2 It � i
3
D 2 1+ 2 g 1+ 2 � ε 3

� T

∑
t � 1

� P 2 It � i
3 � 1

2
ln

1
1 � 4ε2 �

� � P � Ti � � 1
2

ln
1

1 � 4ε2 � �
Hence, � i � Ti � % � P � Ti � � T

2 M � P � Ti � ln 1
1 � 4ε2

�
Note also that, by definition of reward distributions,� i �G �O� T + 2 � ε � i � Ti � . We arenow readyto compute
an upperboundon the expectedreturn �j�G � of the
allocationpolicy,

���G �k� 1
N

N

∑
i � 1

� i �G �
% T

2
� ε

N

N

∑
i � 1

 � P � Ti � � T
2 M � P � Ti � ln 1

1 � 4ε2 $
% T

2
� ε

 T
N
� T

2 M T
N

ln
1

1 � 4ε2 $
whereweusedthefacts:

N

∑
i � 1

� P � Ti �O� T and
1
N

N

∑
i � 1

- � P � Ti � % M T
N
�

To geta lower boundon theexpectedregret it is now
enoughto observethat

max
1 � j � N

���G j �O� T
2
� ε T

and,therefore,

max
1 � j � N

���G j � ���V�G �
� ε

 
T � T

N
� T

2 M T
N

ln
1

1 � 4ε2 $ �
Replacingour choicefor ε and using � ln 2 1 � x

3 %
4x ln 2 4 + 33 for 0 % x % 1+ 4 yieldsthestatementof the
theorem.


