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Abstract: A strategy for controlling product quality properties, subject to batch-to-batch 
and within batch disturbances is presented. The methodology is based on readily available 
measurements, information extracted from existing databases and a few simple 
identification experiments. This approach extends the mid-course correction control 
strategies to overcome model error when the process is affected by constant, correlated 
and uncorrelated disturbances. Adaptive PLS (Partial Least Squares) methods are used to 
extract the information and to update the models used for prediction and control.  The 
methodology is illustrated with a few emulsion polymerisation examples. Copyright ©  
2002 IFAC 
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1. INTRODUCTION 
 
Batch/semibatch processes are commonly used to 
produce speciality chemicals, polymers and 
pharmaceuticals. In these processes, it is necessary to 
follow target quality trajectories and achieve tight 
final quality specifications. However, quality 
tracking is not easily achieved because processes are 
subject to variations in raw material properties and 
errors in initialisation. Moreover, disturbance 
compensation is difficult due to the non-linear 
behaviour of the properties and to the fact that robust 
on-line sensors for quality variable monitoring are 
rarely available.  
 
Large errors in initialisation and sequencing can be 
minimized through high degree of automation and 
feedback control of easily measured variables such 
as temperature, level and pressure. However, raw 
material variations, and process condition changes 
still may affect the quality trajectories and final 
product specifications.  
 
Several approaches have been presented to control 
quality properties in batch processes.  However, most 
of them are based on complex theoretical models and 

computationally intensive control strategies 
(Crowley, et al., 2000; Kozub, 1989). These 
strategies are difficult to implement in industrial 
settings because they require frequent and 
instantaneous on-line measurements as well as 
perfect model knowledge. On the other hand, 
empirical modelling has the advantage of using 
information routinely collected and easiness in model 
building (Flores-Cerrillo and MacGregor, 2002; 
Russell, et al., 1998). However, model error arising 
from low quality dataset or changing disturbances 
and process conditions may degrade model 
prediction and control.   
 
One way to reduce model error is by using past 
control errors in the incoming process; this is known 
as Iterative Learning Control (ILC) or batch-to-batch 
control (BBC) and has been recently used in the 
chemical community (Lee, et al., 2000). Under this 
perspective, a few authors have combined ILC with 
on-line control algorithms to reject correlated and 
uncorrelated disturbances. These approaches have 
been successful at some extent. However, they 
require large experimentation for model 
identification (Lee, et al., 2001).  

Copyright © 2002 IFAC
15th Triennial World Congress, Barcelona, Spain



     

The purpose of this study is to introduce a 
methodology that uses poor databases, easily 
obtained on-line process measurements and a few 
off-line delayed analysis to control batch and semi-
batch quality properties and trajectories when the 
process is subject to error initialisation, constant, 
correlated and uncorrelated disturbances. The 
contents of this paper are as follow: in section 2 the 
adaptive-learning mid-course correction 
methodology is introduced; in section 3, the 
methodology is illustrated with emulsion 
polymerisation case studies.  In section 4, 
conclusions and future work are drawn. 
 
 

2. ADAPTIVE-LEARNING CONTROL 
METHODOLOGY 

 
The proposed Methodology extends the Mid-course 
Correction (MCC) strategy (Yabuki and MacGregor, 
1997) to overcome model error and to control quality 
trajectory property. Model error and process 
changing conditions are overcome using adaptive-
learning schemes to take into account new 
information and the repetitive nature of the 
disturbances.   
 
In the MCC strategy, a mid-course corrective action 
is taken whenever the predicted final properties fall 
outside a defined control region. The prediction is 
done using a PLS model built from historical data. 
PLS regression technique is employed because in 
process data, high correlation among variables leads 
to ill-conditioned parameter estimation, and 
generally exist larger number of variables than 
observations.  PLS overcome these problems by 
projecting the original variables onto lower 
dimensional subspaces: 
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where T and Û  are new latent variables that captures 
most of the data variability, reducing the variance of 
the parameter estimates at expenses of a small bias 
(see Geladi, et al., 1986 for details). 
 
For control purposes, the PLS model is build by 
including in the X matrix, on-line (xon), off-line (xoff) 
process measurements and control actions (xc) 
(nominal model): 
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where ŷ are the predicted quality properties. 
 
When a new batch is being produced, process 
measurements xm are collected, and a prediction is 
performed: 
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where xsp are the set-points of the manipulated 
variables. 

If the prediction ŷ is outside a statistical defined 
control region (T2 Hostelling), it is necessary to 
perform control action to track on target the quality 
properties. This is accomplished by inverting (2) 
according to:   
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The T2 Hostelling is computed by performing 
principal component analysis (PCA) on the quality 
variables when the process is subject only to normal 
variation: 
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Mid-course correction strategy is developed for 
controlling final properties. However, it is 
straightforward to control full trajectories by simply 
dividing these trajectories into a few intervals and 
performing mid-course correction on each one of 
them. It worth to point out some of the possible 
alternatives for control: 1) Build a PLS model for 
each interval having as control region the end of such 
interval; 2) Build a PLS model for each interval but 
having as control region the end of the batch, and 3) 
Build a single PLS model using as control region the 
end of the batch (Russell, et al., 1998). Trajectory 
segmentation and control action is illustrated in 
Figure 1. 
 
No matter what of the PLS control strategies is 
chosen, it is generally assumed (Russell, et al., 1998; 
Yabuki and MacGregor, 1997; Flores-Cerrillo and 
MacGregor, 2002) that the training data set contains 
sufficient input movements and disturbance 
information to allow proper model identification; i.e. 
building of almost a perfect model and no change in 
disturbance type. This situation is not always 
possible, especially if the model is built from 
historical data. Model error leads to incorrect control 
action and then to undesired product qualities. To 
overcome this deficiency, an adaptive-learning mid-
course correction strategy is introduced. The idea is 
to update model parameters, in every interval, at the 
end of the batch by combining the new batch 
information with the previous data set. Several 
adaptive learning algorithms have been studied; 
however, for clarity in the exposition only two are 
presented. 
 

 
Fig. 1. Trajectory segmentation and control action. 



     

Adaptive model: This approach updates the PLS 
model at the end of the batch: 
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where (o) indicates original matrices, and tr training 
data set. 
 
Adaptive+Prediction error (PE) model: This 
approach first updates model parameters (6) followed 
by addition of a prediction error term: 
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The adaptive methodology is schematically 
illustrated in Figure 2. 
 
 

3. SIMULATION STUDIES 
 
To illustrate the main points of the methodology, two 
emulsion polymerisation case studies are presented: 
Case study I for controlling trajectories of number of 
particles (Np) and Conversion (X) in batch and semi-
batch process, and Case study II for controlling 
particle size distribution (PSD) in batch reactors. 
Emulsion polymerisation was selected because 
control of the latex quality specifications is not easily 
achieved due to the quality properties are extremely 
sensitivity to small changes in impurity 
concentrations, surfactant properties, feed flow rate 
and temperature. These studies try to resemble 
industrial process conditions in which only easily 
available on-line and a few off-line measurements 
are used. 
 
 
3.1 Case Study I. Control of Np and X 
 
A non-linear model to simulate styrene emulsion 
polymerisation was developed by Lynch and 
Kiparissides (1981), and used in this case study for 
data generation and model performance evaluation. 
This model has been lightly modified for use in both 
batch and semi-batch policies. For a complete 
description of the model, model parameters, process 
conditions and recipes the reader is referred to the 
original publication. 
 
Disturbances, manipulated and controlled variables. 
In emulsion polymerisation systems the major 

disturbances affecting the quality trajectories of 
number of particles (Np) and conversion (X) are the 
emulsifier particle size coverage (as) and initiator 
decomposition efficiency (f). In the following 
examples we restrict control actions to shots of 
emulsifier and monomer because they have fast 
dynamics on the controlled variables. Emulsifier 
shots will be performed when the process is affected 
by negative disturbances (low as and f) while shots of 
monomer will be introduced when raw characteristic 
materials are above normal conditions (as=5.62x10-5 
and f =0.6). 
 
 
3.1.1 Batch emulsion polymerisation example. 
 
 In this example, the control action is a shot of 
emulsifier and/or monomer at 55min (total reaction 
time 480 min). In order to predict Np and X, off-line 
measurements (sampled at 40min) in X and particle 
diameter (Dp) together with on-line measurements in 
the jacket (Tj) and reactor temperature (Tr) are 
considered available. The training data set has the 
normal random distributed measurement errors 
reported in Table 1. 
  
Data Generation: A PLS model was built from a 
data set consisting of 13 batch observations in which 
as and f were randomly varied: 11 under normal 
operating conditions and two in which mid-course 
correction was performed.  This model has large 
parameter mismatch and is used as nominal model 
(eq. 2, section 2) from which the learning control 
algorithms (eq. 6-7) are compared. 
 

 
Fig. 2. Adaptive mid-course correction Methodology. 
 

Table 1. Measurement noise and sampling 
 
                             Noise      Sampling time (min) 

Measurements σ% Batch Semi-batch 

Tja 0.1 10min Every 10min 
Tra 0.1 10min Every 10min 
Xb 0.5 40,480 40,110,185,300,480 
Dpa 0.576 40,480 40,110,185,300,480 
Npb 1.73 480 480 

aFlores-Cerrillo and MacGregor, (2002), b assumed 



     

To illustrate control performance some results are 
presented. In Figure 3, is shown the evolution of the 
final quality properties (scaled units) for the case in 
which a constant time-invariant negative disturbance 
affects the process (T2 Hostelling ellipse is obtained 
from the normal variations in as=1.5% and f=3% 
based on one standard deviation). In Figure 4 is 
shown the evolution of the controlled variables for a 
correlated disturbance (disturbance repeats every 5 
batches). In these Figures (.) represents control using 
nominal model; (.-) the adaptive PLS model; and (+-) 
the adaptive-prediction error model. It can be 
observed that the non-learning model cannot track on 
target bad batches, while the adaptive schemes are 
successful (these results are typical from others 
obtained using different types and magnitudes of 
disturbances). The results of these two adaptive 
methods are quite similar in most of the cases, 
indicating that any of them can be used.  
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Fig. 3. Control for constant disturbance. as=5.06x10-5 

and f =0.54. 
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Fig. 4. Control for correlated disturbance.  

3.1.2 Semi-batch polymerisation example 
 
In this example, X and Np trajectories in a semi-
batch processes are tracked on target. At difference 
from the batch studies, in semi-batch process, 
emulsifier and monomer are continuously added to 
the system. Therefore, disturbance of emulsifier as is 
time-variant. 
 
The Quality trajectories are divided in 4 intervals, 
every one with an end control quality target-region 
(X, Np). On-line (Tj, Tr) and off-line process 
measurements (X, Dp with analysis delay of 15min) 
corrupted with noise (Table 1) are used. The 
characteristics of these segments are reported in 
Table 2. A nominal PLS model, for each segment 
trajectory, was built from a training set consisting of 
13 observations: 9 under normal raw material 
variations in as and f, and 4 in which some MCC 
were performed.  
 
In Figure 5a and 5b is shown the performance of the 
adaptive control algorithm in tracking the trajectories 
of X and Np when constant disturbances (batch 1-10, 
as and f decrease by a factor of 0.9 and from batch 
11-20 by a factor 0.85) and initialisation errors in 
emulsifier, monomer and initiator affects the process. 
In these figures (-) represent the target, and (x--, *--) 
the tracked trajectories after 9 and 20 batches 
respectively. Run number 1 does not track on target 
the trajectories due to large model mismatch. 
However, after few runs, the trajectories are tracked 
on target; in batch 10 a higher disturbance affect the 
processes. However, the control performance is not 
decremented; after 20 batches, the tracking is 
satisfactory. Finally, it should be mention that this 
example is with illustrative purposes, since to 
achieve such tight control trajectory in Np, it is 
necessary to promote new nucleations, situation that 
may lead to high emulsifier concentration at the end 
of the process. 
 
Table 2. Trajectory segmentation in semi-batch case. 
 

Time (min) 
Segment Measurements Control Targets  

1 40 50-55 75 
2 110 125-140 160 
3 185 200-215 275 
4 300 315-325 480 
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Fig. 5a. Trajectory control with adaptive algorithm. 
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Fig. 5b. Trajectory control with adaptive algorithm. 
 
 
3.2 Case Study II. Control of PSD 
 
A detailed mechanistic model to simulate the PSD in 
emulsion polymerisation reactors was developed by 
Crowley et al. (2000). This simulator was used for 
data generation and control performance evaluation. 
For a description of the model and model parameters 
the reader is addressed to the original source, and for 
process conditions and recipes to Flores-Cerrillo and 
MacGregor (2002).  
 
Two examples are presented for the PSD control in 
batch reactors when the process is subject to random, 
constant disturbances and model mismatch. In these 
examples, the control actions are shots of emulsifier 
and inhibitor at 30 and 150min (total reaction time 
380min). A PSD off-line measurement (sampled at 
20min, with 10 min delay) is used to predict the end 
quality PSD. 
 
 
3.2.1. Example 1. 
 
In this example, PLS models are built from a data set 
consisting of 22 observations: 16 subject to random 
normal variations in as and f, 3 with off-specification 
product and 3 in which mid-course corrections were 
performed. The obtained model has large error in the 
regression coefficients (nominal model).  
 
To illustrate the performance of the learning control 
some results are presented. In Figure 6 is shown the 
evolution of the final PSD in the reduced and real 
space when a constant disturbance (batch to batch) 
affects the process. In this Figure, (o) is the control 
achieved using a PSD measurement. It can be seen in 
such Figure, that after 4 batches the control is almost 
perfect. 
 
One of the main differences between batch-to-batch 
control and the proposed methodology is that the 

latter is an on-line scheme (The learning is performed 
off-line, but the control action is on-line). Therefore, 
the methodology can reject uncorrelated within batch 
disturbances.  In Figure 7 is shown the control 
performance for uncorrelated disturbances using (*) 
Dp and (o) PSD measurements. It seems that the PSD 
is tracked on target in most of the batches. Learning 
between batches is also performed: There are 
disturbances that repeat after some batches; when 
they first appear, are farther from the target than 
when they reoccur. 
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Fig. 6. PSD control with adaptive algorithm. 
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Fig. 7. PSD control with adaptive algorithm. 
 
 
3.2.2. Example 2 
 
Crowley et al. (2001), have used batch-to-batch 
optimisation for controlling the PSD when the 
process is subject to constant disturbances and model 



     

parameter mismatch. The prediction is performed 
using the theoretical model but correcting it with an 
updated PLS model. The PLS model relates the 
manipulated variables with the error from the 
theoretical model prediction and the measured 
distribution. This hybrid model is then used in a 
successive quadratic program to design surfactant 
and initiator input trajectories to drive the process on 
target. In the present work, the simpler learning on-
line scheme is tested using only PLS models for on-
line control. In Table 3 is shown the magnitude of 
the disturbances and those used by Crowley et al.  
 

Table 3. Disturbance magnitudes 
 

 Example 
2* 

Crowley et al. 
(2001) 

Critical micelle con. 0.9 1.05 
Propagation rate 0.95 0.95 
Particle coverage 0.8 0.95 
Mon. part. droplet 0.9 0.95 
Chain transfer rate 1.05 1.05 
Diff. of mon. radical 0.95 1.05 
Aq. termination 0.95 1.05 
Initial surfactant -- σ=0.00025 
Particle coalescence -- σ=0.0005 
Coalescence Kernel -- c(1-θ)(r3+r’3) 
Buffer concentration 0.9 -- 
Diss. Constant 1.2 -- 

*Multiplicative factors in nominal conditions. 
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Fig. 8. PSD control with adaptive algorithm. 
 
In Figure 8 is shown the control performance for this 
example, where it can be observed that the control 
error decreases after few batches and that the 
tracking is adequate. 
 
 

4. CONCLUSIONS 
 
An incremental learning methodology for the control 
of quality properties and trajectories in batch and 
semi-batch processes has been introduced. Learning 
algorithms were tested in lumped and distributed 

quality emulsion polymerisation processes subject to 
error initialisation, constant, correlated and random 
disturbances. This methodology is especially suitable 
for repetitive processes where the available 
information is limited, and for processes in which 
only few samples subject to analysis delay are 
available.  
 
Important directions for this work include Monte 
Carlo simulations for testing the sensitivity of the 
control algorithms to different datasets and control 
including initial conditions (on-line-off-line scheme). 
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