
OPTIMAL LOCATION OF DISCRETE SCANNING

SENSORS FOR PARAMETER ESTIMATION OF

DISTRIBUTED SYSTEMS

Dariusz Uciński ∗,1 Maciej Patan ∗,1

∗ Institute of Control and Computation Engineering
University of Zielona Góra, ul. Podgórna 50

65–246 Zielona Góra, Poland
e-mail:

�
D.Ucinski,M.Patan � @issi.uz.zgora.pl

Abstract: We investigate possibilities of choosing an activation policy of discrete
scanning sensors in such a way as to maximize the accuracy of parameter estimation of
a distributed system defined in a given multidimensional domain. A general functional
defined on the Fisher information matrix is used as the design criterion. The setting
examined here corresponds to situations where one has many sensors and activates
only some of them during a given time interval, or alternatively, has several sensors
which are mobile. The proposed approach, which has been suggested by Fedorov’s idea
of directly constrained design measures, consists in imposing constraints on the sensor
density in a given spatial domain. As a result, an extremely fast iterative procedure is
obtained whose each step reduces to replacing less informative sensor locations with
points which furnish more informaton about the parameters. The performance of the
proposed algorithm is evaluated by numerical experiments.
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1. INTRODUCTION

The problem of estimating spatially-varying pa-
rameters in partial differential equations (PDE’s)
from noisy data arises in many areas of science
and engineering, e.g. in the study of air pollution,
meteorology, groundwater resources management
or emerging smart materials. Since measurements
at certain points may yield more information
about the parameters than the measurements at
other points, the accuracy of parameter estimates
depends on the number and locations of sensing
devices. As the number of sensors is generally gov-
erned by economic considerations, it is desirable to
locate the given number of measurement sensors
at points that lead to best parameter estimates.

1 This research was supported by the State Committee for

Scientific Research under Grant No. 7 T11A 023 20.

The sensor location problem was attacked from
various angles, but mainly in the context of sta-
tionary (or motionless) sensor placement (for re-
views, we refer the reader to (Uciński, 1999; Ucińs-
ki, 2000a; Uciński, 2000c; Kubrusly and Male-
branche, 1985)). On the other hand, the opti-
mal measurement problem for spatially movable
or scanning sensors seems to be very attractive
from the viewpoint of the degree of optimali-
ty. So far, this question has been addressed on-
ly in (Rafajłowicz, 1986; Uciński, 2000c; Ucińs-
ki, 2000b; Uciński, 2001; Uciński and Korbicz,
2001; Uciński, 1999) where some constructive so-
lution methods have been discussed for design
of moving sensor trajectories. In some situations,
however, the observation system comprises multi-
ple sensors whose positions are already specified
and it is desired to activate only a subset of them
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during a given time interval while the other sen-
sors remain dormant (Demetriou, 2000). A reason
for not using all the available sensors could be the
reduction of the observation system complexity
and the cost of operation and maintenance (van de
Wal and de Jager, 2001). Such a scanning strategy
of taking measurements can be also interpreted
in terms of several sensors which are mobile. To
the best of the authors’ knowledge, the problem
has received no attention yet (though some trials
have been conducted in a related context of state
estimation, see e.g. (Nakano and Sagara, 1988)),
and therefore the aim of this work is to outline
an approach to fill this gap. Our basic idea is to
extend the idea of replication-free designs which
have emerged relatively late in the context of spa-
tial statistics (see the monograph (Müller, 1998)).

2. OPTIMAL MEASUREMENT PROBLEM

We consider a distributed parameter system
(DPS) defined on a connected open spatial domain
Ω ⊂ � d , whose state at a spatial point x ∈ Ω and
time instant t ∈ T = [0, tf ], tf < ∞, is an s-
dimensional vector y(x, t; θ). Here θ represents an
unknown constant parameter vector which must
be estimated using observations of the system.

In what follows, we form an arbitrary partition
on the time interval T by choosing points 0 <
t1 < t2 < · · · < tK = tf defining subintervals
Tk = [tk−1, tk], k = 1, . . . ,K. We then consider N
moving sensors which possibly will be changing
their locations at the beginning of every time
subinterval but will be remaining stationary for
the duration of each of the subintervals. In other
words, the measurement process can be formally
represented as

zj(t) = h(y(xjk, t; θ), t) + ε
j(t), t ∈ Tk (1)

for j = 1, . . . , N and k = 1, . . . ,K, where h( · , · )
is a given function, zj(t) is an r-dimensional
output, xjk ∈ X stands for the location of the
j-th sensor on the subinterval Tk, X signifies
the part of Ω where the measurements can be
made, and εj( · ) denotes the measurement noise.
It is customary to assume that the noise is zero-
mean, Gaussian, uncorrelated in both time and
space (Fedorov and Hackl, 1997; Kubrusly and
Malebranche, 1985).

Sensor positions which guarantee the best accu-
racy of the least-squares estimates of θ are then
found by choosing xjk, j = 1, . . . , N , k = 1, . . . ,K
so as to minimize some scalar measure of perfor-
mance Ψ defined on the average Fisher Informa-
tion Matrix (FIM) given by (Rafajłowicz, 1986)

M =
1

N

K
∑

k=1

N
∑

j=1

Υk(x
j
k), (2)

where

Υk(x) =
1

tf

∫

Tk

FT(x, t)F (x, t) dt, (3)

F (x, t) =
∂h(y(x, t; θ), t)

∂y

∂y(x, t; θ)

∂θ

∣

∣

∣

θ=θ0
, (4)

θ0 being a prior estimate to the unknown pa-
rameter vector θ (Uciński, 2000b). Such a for-
mulation is generally accepted in optimum ex-
perimental design for DPS’s, since the inverse of
the FIM constitutes, up to a constant multiplier,
the Cramér-Rao lower bound on the covariance
matrix of any unbiased estimator of θ (Walter and
Pronzato, 1997).

As for Ψ, various choices exist for such a function
(Walter and Pronzato, 1997; Fedorov and Hackl,
1997), including e.g. the following:

• the D-optimality (determinant) criterion:

Ψ(M) = − log detM, (5)

• the A-optimality (trace) criterion:

Ψ(M) = traceM−1. (6)

The assumption of independent measurements
made by different sensors implies that we admit
of replicated measurements, i.e. some values xjk
may appear several times in the optimal solu-
tion (this is an unavoidable consequence of inde-
pendent measurements). Consequently, it is sen-
sible to distinguish only the components of the
sequence x1k, . . . , x

N
k which are different and, if

there are `(k) such components, to relabel them

as x1k , . . . , x
`(k)
k while introducing r1k , . . . , r

`(k)
k as

the corresponding numbers of replications. The
redefined xik’s are said to be the design or support
points. The collection of variables

ξNk =

{

x1k , x
2
k, . . . , x

`(k)
k

p1k, p
2
k, . . . , p

`(k)
k

}

, (7)

where pik = rik/N , N =
∑`(k)
i=1 r

i
k , is called the

exact design of the experiment on the subinterval
Tk. The proportion p

i
k of observations performed

at xik can be considered as the percentage of
experimental effort spent at that point.

On account of the above remarks, we rewrite the
FIM in the form

M =
K
∑

k=1

`(k)
∑

i=1

pikΥk(x
i
k). (8)

Here the pik’s are rational numbers, since both
rik’s and N are integers. Removing this constraint
by assuming that they can be any real numbers

of the interval [0, 1] such that
∑`(k)
i=1 p

i
k = 1, we

may think of the designs as discrete probability
distributions on X . But if so, we may attempt to
take one more step to widen the class of admissible
designs a bit further, i.e. to all probability mea-
sures ξk over X which are absolutely continuous



with respect to the Lebesgue measure and satisfy
by definition the condition

∫

X

ξk(dx) = 1, k = 1, . . . ,K. (9)

Such an extension of the design concept allows us
to replace (8) by

M(ξ) =

K
∑

k=1

∫

X

Υk(x) ξk(dx), (10)

where

ξ = (ξ1, . . . , ξK) (11)

and the integration in (9) and (10) is to be under-
stood in the Stieltjes-Lebesgue sense. This leads
to the so-called continuous designs which consti-
tute the basis of the modern theory of optimal
experiments (Fedorov and Hackl, 1997; Walter
and Pronzato, 1997). It turns out that, in spite
of its slightly abstract form, such an approach
drastically simplifies the design.

Then we may redefine an optimal design as a
solution to the optimization problem

ξ? = argmin
ξ∈Ξ
Ψ[M(ξ)], (12)

where Ξ denotes the set of all designs of the
form (11).

In the remainder of this paper we shall make the
following assumptions:

(A1) X is compact,
(A2) h( · , · ) and F ( · , · ) are continuous,
(A3) Ψ is convex,
(A4) If M1 ≤M2, then Ψ(M1) ≥ Ψ(M2),
(A5) There exists a finite real q such that

{

ξ : Ψ[M(ξ)] ≤ q <∞
}

= Ξ(q) 6= ∅,

(A6) For any ξ ∈ Ξ(q) and ξ̄ ∈ Ξ, we have

Ψ[M(ξ) + λ(M(ξ̄)−M(ξ))]

= Ψ[M(ξ)]

+ λ

K
∑

k=1

∫

X

ψk(x, ξ) ξ̄(dx)

+ o(λ; ξ, ξ̄),

(13)

where lim
λ↓0

o(λ; ξ, ξ̄)/λ = 0.

As regards the notation in (A4), we adopt that of
the Loewner ordering of symmetric matrices, i.e.
M1 ≤ M2 iff M2 −M1 is non-negative definite.
Note that (A6) simply amounts to the existence
of the directional derivative whose form must be
on one hand specific, but on the other hand, for
most practical criteria such a condition is not
particularly restrictive.

In fact, requiring Ψ to be differentiable with re-
spect to individual elements of its matrix argu-
ment, we obtain

ψk(x, ξ) = trace
[ ◦

Ψ(ξ)Υk(x)
]

(14)

−
1

K
trace
[ ◦

Ψ(ξ)M(ξ)
]

, (15)

where
◦

Ψ(ξ) =
∂Ψ(M)

∂M

∣

∣

∣

∣

M=M(ξ)

.

For particular criteria we have e.g.:

• the D-optimality criterion:
◦

Ψ(ξ) = −M−1(ξ),

• the A-optimality criterion:
◦

Ψ(ξ) = −M−2(ξ).

3. PROBLEM REFORMULATION AND
OPTIMALITY CONDITIONS

The assumption of independent observations is
advantageous from a theoretical point of view,
but it can hardly be justified when in an optimal
solution several sensors are to take measurements
near one another (this phenomenon is called sen-
sor clusterization). Indeed, in the spatial data
collection schemes there is usually no possibility
of replicated measurements, i.e. different sensors
cannot take measurements at one point without
influencing one another. Anyway, several sensors
situated in the close vicinity of one another usu-
ally do not give more information than a single
sensor.

In order to avoid such clustered sensor configu-
rations, we implement the idea of operating on
the density of sensors (i.e. the number of sensors
per unit area), rather than on the sensors’ lo-
cations, which is justified for a sufficiently large
total number of sensors N . In contrast to the
designs discussed in Section 2, however, we impose
the crucial restriction that the density of sensor
allocation must not exceed some prescribed level.
This amounts to the condition

ξk(dx) ≤ ω(dx), k = 1, . . . ,K, (16)

where ω(dx) signifies the maximal possible ‘num-
ber’ of sensors per dx (Fedorov and Hackl, 1997)
such that

∫

X

ω(dx) ≥ 1. (17)

Consequently, we are faced with the following
optimization problem: Find

ξ? = argmin
ξ∈Ξ
Ψ[M(ξ)] (18)

subject to

ξk(dx) ≤ ω(dx), k = 1, . . . ,K. (19)

The design ξ? above is then said to be a (Ψ, ω)-
optimal design on the analogy of the definition
introduced in (Fedorov and Hackl, 1997) in the
context of directly constrained design measures.



Apart from Assumptions (A1)–(A6), a proper
mathematical formulation calls for the following
proviso:

(A7) ω(dx) is atomless, i.e. for any ∆X ⊂ X there
exists a ∆X ′ ⊂ ∆X such that

∫

∆X′
ω(dx) <

∫

∆X

ω(dx). (20)

In what follows, we write Ξ̄ ⊂ Ξ for the collection
of all the design measures (11) which satisfy the
requirement

ξk(∆X) =

{

ω(∆X) for ∆X ⊂ supp ξk,

0 for ∆X ⊂ X \ supp ξk,

(21)
k = 1, . . . ,K. Given a design ξ, we will say that
the function ψk( · , ξ) defined by (14) separates
sets X1 and X2 with respect to ω(dx) if for any
two sets ∆X1 ⊂ X1 and ∆X2 ⊂ X2 with equal
non-zero measures we have
∫

∆X1

ψk(x, ξ)ω(dx) ≤

∫

∆X2

ψk(x, ξ)ω(dx).

(22)

We can now formulate the main result which pro-
vides a characterization of (Ψ, ω)-optimal designs.

Theorem 1. Let Assumptions (A1)–(A7) hold.
Then:

(i) There exists an optimal design ξ? ∈ Ξ̄, and
(ii) A necessary and sufficient condition for ξ? ∈
Ξ̄ to be (Ψ, ω)-optimal is that ψk( · , ξ

?) sep-
arates X?k = supp ξ

?
k and its complement

X \ X?k with respect to the measure ω(dx),
k = 1, . . . ,K.

This constitutes a fairly straightforward general-
ization of Theorem 4.3.1 of (Fedorov and Hackl,
1997, p. 63), also see (Cook and Fedorov, 1995),
and the main ideas of the proof given therein are
retained here.

4. SCANNING POLICY

From a practical point of view, Theorem 1 means
that at all the support points of an optimal design
component ξ?k the mapping ψk( · , ξ

?) should be
less than anywhere else, i.e. preferably supp ξ?k
should coincide with minimum points of ψk( · , ξ?),
which amounts to allocating observations to the
points at which we know least of all about the
system response.

If we were able to construct a design with this
property, then it would be qualified as an optimal
design. This conclusion forms a basis for numerical
algorithms of constructing solutions to the prob-
lem under consideration.

As regards the interpretation of the resultant opti-
mal designs (provided that we are in a position to
calculate at least their approximations), one pos-
sibility is to partition X into subdomains ∆Xi of
relatively small areas and then, on the subinterval
Tk, to allocate to each of them the number

N?k (∆Xi) =

⌈

N

∫

∆Xi

ξ?k(dx)

⌉

(23)

of sensors whose positions may coincide with
nodes of some uniform grid (here dζe is the small-
est integer greater than or equal to ζ). This grid
can consist e.g. of points at which scanning sensors
may be located, which will be exploited in what
follows.

Clearly, unless the considered design problem is
quite simple, we must employ a numerical algo-
rithm to make the outlined conceptions useful.
Since ξ?k(dx) should be non-zero in the areas where
ψk( · , ξ?) takes on a smaller value, the central idea
is to move some measure from areas with higher
values of ψk( · , ξn) to those with smaller values,
as we expect that such a procedure will improve
ξn. This is embodied by the iterative algorithm
presented below:
Algorithm for an optimal scanning policy

Step 1. Guess an initial design ξ0 ∈ Ξ̄. Set n = 0.
Step 2. For k = 1, . . . ,K separately set Xn1 (k) =
supp ξnk and X

n
2 (k) = X \X

n
1 (k). Determine

xn1 (k) = arg max
x∈Xn

1
(k)
ψk(x, ξ

n),

xn2 (k) = arg min
x∈Xn

2
(k)
ψk(x, ξ

n).

If ψk(x
n
1 (k), ξ

n) > ψk(x
n
2 (k), ξ

n) + η, where
η � 1, then find two sets Sn1 (k) ⊂ Xn1 (k)
and Sn2 (k) ⊂ Xn2 (k) such that x

n
1 (k) ∈ S

n
1 (k),

xn2 (k) ∈ S
n
2 (k) and

∫

Sn
1
(k)

ω(dx) =

∫

Sn
2
(k)

ω(dx) = αn

(i.e. the measures of Sn1 (k) and Sn2 (k) must
be identical) for some αn > 0. Otherwise,
set Sn1 (k) = Sn2 (k) = ∅. If ψk(x

n
1 (k), ξ

n) <
ψk(x

n
2 (k), ξ

n) + η for all k = 1, . . . ,K, then
STOP.
Step 3. Construct ξn+1 such that

supp ξn+1k = Xn+11 (k)

= (Xn1 (k) \ S
n
1 (k)) ∪ S

n
2 (k).

for k = 1, . . . ,K. Increment n and to go Step 2.

Convergence is guaranteed if the sequence
{

αn
}∞

n=0
satisfies the conditions

lim
n→∞

αn = 0,

∞
∑

n=0

αn =∞, (24)

which is established in much the same way as in
(Fedorov, 1989).



Within the framework of sensor placement, we
usually have ω(dx) = %(x)dx, where % is a den-
sity function. But in this situation we may re-
strict our attention to constant %’s (indeed, in
any case we can perform an appropriate change
of coordinates). Moreover, while implementing the
algorithm on a computer, all integrals are re-
placed by sums over some regular grid elements.
Analogously, the sets X , Xn1 (k), X

n
2 (k), S

n
1 (k)

and Sn2 (k) then simply consist of grid elements
(or potential sensor locations). Consequently, the
above iterative procedure may be considered as
an exchange-type algorithm with the addition-
al constraint that every grid element must not
contain more than one supporting point and the
weights of all supporting points are equal to 1/N .
In practice, αn is usually fixed and, what is more,
one-point exchanges are most often adopted, i.e.
Sn1 (k) =

{

xn1 (k)
}

and Sn2 (k) =
{

xn2 (k)
}

, which
substantially simplifies implementation. Let us
note, however, that convergence to an optimal de-
sign is assured only for decreasing αn’s and hence
some oscillations in Ψ[M(ξn)] may sometimes be
observed. A denser spatial grid usually constitutes
a remedy for this predicament (Müller, 1998).

5. ILLUSTRATIVE EXAMPLE

As an example, consider a vibrating T-shaped
membrane shown in Fig. 1. The membrane is fixed
on the top and bottom boundaries, and is free
elsewhere. The amplitude y(x, t) of the transverse
vibrations over a given time interval T = [0, 10] is
described by the hyperbolic equation

∂2y(x, t)

∂t2
= div

(

γ(x)∇y(x, t)
)

+ 20 exp
(

− 50[x2 − (0.2t− 1)]
2
)

in Ω, (25)

subject to the boundary and initial conditions






































y(x, t) = 0 on {Γ1 ∪ Γ2} × T,

∂y(x, t)

∂n
= 0 on {Γ3 ∪ Γ4 ∪ Γ5 ∪ Γ6} × T,

y(x, 0) = 0 in Ω,

∂y(x, 0)

∂t
= 0 in Ω,

(26)
where ∂y/∂n means the partial derivative of y
with respect to the outward normal of Γ. The
coefficient of transverse elasticity has distributed
form

γ(x) = θ1 + θ2x
2
1 + θ3x2, (27)

where parameter values θ1 = 100.0, θ2 = 5.0
and θ3 = 25.5 were assumed to be nominal and
known prior to the experiment. Our purpose is
to construct a D-optimal scanning strategy for
determining most accurate estimates of the true
parameters θ1, θ2 and θ3 when applying N = 40
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Fig. 1. Membrane and potential sites where the
sensors can be placed.

sensors and the partition of T defined by the
switching points tk = k/2, k = 0, . . . , 20. The re-
sulting optimal solution is shown in Fig. 2, where
open circles indicate the actual sensor positions.

The initial design was generated by randomly se-
lecting its support points. A simple one-point cor-
rection algorithm was employed (η = 10−2) which
produced the solution after only 53 iterations,
practically within 10 seconds on a low-cost PC
(Pentium II, 300 Mhz, using the Lahey/Fujitsu
Fortran 95 compiler v.5.6).

As regards the forcing term in our model, it
approximates the action of a line source whose
support is constantly oriented along the x1-axis
and moves with constant speed from the bottom
to the top boundary of Ω. This is reflected by
the consecutive configurations of scanning sensors
which also advance upwards.

6. CONCLUSIONS

In this work, we have proposed a computational-
ly attractive approach to the optimal placement
problem of scanning sensors in parameter estima-
tion of distributed systems. The results extend
some ideas employed for constructing replication-
free designs and proposed by Fedorov (Fedorov
and Hackl, 1997; Cook and Fedorov, 1995; Fe-
dorov, 1989) who restricted his attention, how-
ever, solely to static systems. Accordingly, much
more efficient scanning measurement policies can
be determined compared with the stationary sen-
sor strategies which have been considered in the
literature so far. In spite of its somewhat abstract
assumptions, the resulting algorithm of exchange
type is very easy to implement.

Bear in mind, however, that the delinated ap-
proach should in principle be used if the number
of sensors is relatively high. If this is not the case,
we can resort to standard discrete optimization
routines which ensure that the constraints on the
design measure and region are satisfied.
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Fig. 2. Consecutive sensor configurations for the D-optimality criterion.
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