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Abstract: The problem of fault detection and isolation (FDI) in cooperative manipu-
lators is addressed here. Four faults are considered: free-swinging joint faults, locked
joint faults, incorrect measured joint position, and incorrect measured joint velocity.
Free-swinging and locked joint faults are isolated via neural networks. For each arm,
a Multilayer Perceptron (MLP) is used to reproduce the dynamics of the fault-free
robot. The outputs of each MLP are compared to the real joint velocities in order to
generate a residual vector that is then classified by an RBF network. The sensor faults
are isolated based on the kinematic constraints imposed on the system. Simulations
and a real application are presented indicating the efectiveness of the FDI system.
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1. INTRODUCTION

Robots have been used to execute tasks in
medicine, outer space, deep sea, and other un-
structured or hazardous environments. Further-
more, robots will be usual inside homes as a
household or entertainment item (Dhillon and
Fashandi, 1997). In these environments, robots are
used to avoid the exposition of human beings to
danger or because of the reliability of robots in
executing repetitive tasks. However, faults can put
in risk the robot, its task, and its environment.

Faults in robots have been usual due to the
complexity of such systems. There are several
sources of faults in robots, such as electrical, me-
chanical, hydraulic, of software, etc. (Visinsky
et al., 1994). In fact, some researches indicate
that the mean-time-to-failure in industrial robots
are only between 500 and 2500 hours (Dhillon
and Fashandi, 1997). If this number is small in
structured environments, it is probably smaller in
unstructured and hazardous environments due to
external factors as extreme temperatures, obsta-

cles, radiation, etc. So, there are good reasons
to research fault detection and isolation (FDI)
systems for robots.

Robotic systems with kinematic or actuation re-
dundancy are interesting in applications where
the fault problem should be addressed because
the number of degrees of freedom (dof) in these
systems is greater than the dof required to ma-
nipulate the load. Actuation redundancy can be
found in only closed-link mechanisms as coop-
erative systems formed by two or more arms
(Nakamura, 1991). As in the human case, where
the use of two arms presents an advantage over the
use of only one arm in several cases, two or more
robots can execute tasks that are difficult or even
impossible for only one robot (Vukobratovic and
Tuneski, 1998). For example, cooperative robots
can be used in the manipulation of heavy, large or
flexible loads, assembly of structures, and manip-
ulation of objects that can slide from only one
robot. Actuation redundancy makes the use of
cooperative robots in unstructured or hazardous
environments very appealing. However, as cited
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before, FDI is crucial in these environments. Be-
cause of the dynamic coupling of the joints, iner-
tia, and gravitation, the faulty arms can quickly
accelerate into wild motions that can cause serious
damage (Visinsky et al., 1994). Furthermore, as
the controller is not projected to operate with
faults, the squeeze forces can increase causing
damage to the load and instability in the system.

In this work, an FDI scheme for cooperative sys-
tems is presented. The Section 2 describes the
kinematics and dynamics of cooperative manipu-
lators. The Section 3 describes the FDI system.
Four faults are considered: free-swinging joint
faults (FSJF), locked joint faults (LJF), incorrect
measured joint position faults (JPF), and incor-
rect measured joint velocity faults (JVF). FSJF
and LJF are detected by artificial neural networks
(ANN): Multilayer Perceptrons (MLP’s) are used
to reproduce the dynamics of the arms, and an
RBF network is utilized to classify the residual
vector. JPF and JVF are detected using the kine-
matic constraints imposed on the cooperative sys-
tem. The Section 4 presents the results of the FDI
system in simulations and in a real application.
The conclusions are presented in Section 5.

2. COOPERATIVE MANIPULATORS

Considering that m robotic arms are rigidly con-
nected to a solid object, the dynamics of arm i in
the cooperative system is given by

q̈i = Mi(qi)
−1[τi + Ji(qi)

Thi − bi(qi, q̇i)](1)

where qi is the vector of joint angles of arm i,
i = 1, . . . ,m, τi is the vector of the torques at
joints of arm i, Mi is the inertia matrix, bi is the
vector of cenfrifugal, Coriolis, and gravitational
terms, Ji is the Jacobian (from joint velocity to
end-effector velocity) of arm i, and hi is the force
vector at the end-effector of arm i. The dynamics
of all arms can be written as

q̈ = M(q)−1[τ + J(q)Th− b(q, q̇)] (2)

where q = [qT1 q
T
2 . . .q

T
m]T , τ = [τT1 τ

T
2 . . . τTm]T ,

h = [hT1 h
T
2 . . .h

T
m]T , M is formed by the inertia

matrices of the arms, b is formed by the centrifu-
gal, Coriolis, and gravitational terms of the arms,
and J is formed by the terms Ji for i = 1, . . . ,m.

The dynamics of the load is given by

αo = Mo
−1[−Jo(xo)

Th− bo(xo, νo)] (3)

where xo is a k-dimensional vector of the load
position and orientation at the center of gravity
(CG), αo is the spatial acceleration of load CG, νo
is the spatial velocity of load CG, bo is the vector

of centrifugal, Coriolis, and gravitational terms,
Mo is the inertia matrix, and

Jo(xo) =
[

Jo1(xo)
T . . . Jom(xo)

T
]T

where Joi converts velocities at the CG into veloc-
ities at the end-effector of arm i. As it is possible
to compute the position and orientation of the
object using the positions of the joints of any arm,
the following kinematic constraint appears

xo = ϕ1(q1) = ϕ2(q2) = . . . = ϕm(qm) (4)

where ϕi(qi) is a vector containing the position
and orientation of the load computed via the
joint positions of arm i. The following velocity
constraint is also present

νo = D1(q1)q̇1 = . . . = Dm(qm)q̇m (5)

where Di is the Jacobian relating joint velocities
of arm i and load velocities.

3. FDI SYSTEM

The FDI system is proposed take into account
four kinds of faults: FSJF, where an actuation
lost occurs in one arm’s joint; LJF, where one
arm’s joint is locked; JPF, where the readings of
the joint position are not correct, and JVF, where
the readings of the joint velocity are not correct.
A three step FDI system is applied here in each
sample time. First, JPF are detected by analyzing
the position constraints (eq. 4). Then, JVF are
detected by analyzing the velocity constraints (eq.
5). The last step is the detection of FSJF and JLF
via two ANN. By simplicity, the occurrence of only
one fault each time is considered.

3.1 Incorrect Measured Joint Position Faults

In (Notash, 2000), joint position sensor faults
are detected in parallel manipulators by using
the kinematic constraints imposed by the closed
kinematic chain. The forward displacement prob-
lem (knowing the joint displacements, identify the
end-effector pose) is not trivial in parallel manip-
ulators because they have one or more unsensed
joints. The forward displacement problem is easier
in cooperative manipulators with all joints sensed,
and it can be used to detect JPF.

As xo can be calculated using the joint positions
of any arm (eq. 4), if m > 2, it is possible to
identify the arm f with the wrong joint position
reading. The arm with the wrong reading gives
a wrong estimative of xo that is different from
the estimates of the other m − 1 arms. A JPF is
detected at arm f if



‖x̂of
(θf )− x̂oi

(θi)‖ > γx

for all i = 1, . . . ,m and i 6= f (6)

where x̂oi
is the estimative of xo using the mea-

sured positions of the joints (θi) at arm i, ‖a‖
is the Euclidean norm of the vector a, and the
threshold γx is a small number used to avoid that
false alarms appear due to the presence of noise in
the joint readings. It is interesting to choose γx as
a function of the variance of the noise in the joint
position readings. The next step is to estimate the
position of each joint j = 1, . . . , nf at arm f

q̂fj
= υj(θf , x̂o) (7)

where q̂fj
is the estimative of the position of the

joint j at arm f , υj is the kinematic function used
to estimate the position of the joint j, and

x̂o =
1

m− 1

m
∑

i=1,i6=f

x̂oi
(θi).

Calculating again the estimative of the vector xo
for arm f for each new estimative q̂fj

, the fault at
joint j of arm f is detected when

‖x̂o − x̂of
(θf , q̂fj

)‖ < γp (8)

where x̂of
(θf , q̂fj

) is the vector of the positions
and orientations of the load estimated for arm f

substituting the measured position of joint j by its
estimative q̂fj

and using the measured positions
of the other joints. The threshold γp is a small
number used to avoid that faults be hidden due
to the presence of noise in the joint readings.
It is interesting to choose γp as a function of
the variance of the noise in the joint position
readings. The procedure to detect and isolate JPF
when m > 2 can be summarized as: compare the
estimative of xo for all arms (eq. 6); if all values
are close, a JPF is not announced, otherwise,
calculate for all joints of the faulty arm the
estimative of the joint positions (eq. 7) and test
eq. (8) for all joints; if the test is satisfied for joint
j, announce a JPF at this joint.

If m = 2, the arm with the fault can not be
identified just looking at the estimates of xo
for each arm. In this case, the joint positions
estimation (eq. 6) should be done for the two
arms using, instead of the the value of x̂o, the
estimative obtained using the joint positions of
the other arm. The same should be done at eq.
(8), which can be used to detect the JPF.

3.2 Incorrect Measured Joint Velocity Faults

As it is possible to calculate the velocity of the
load by using the joint velocities of any arm
(eq. 5), JVF can be detected in a similar way

of JPF. The estimated velocities of the joints
can be calculated using eq. (5). Considering the
occurrence of only one fault, the JVF at joint j of
arm f is detected if m > 2 when

‖ν̂o − ν̂of
(θ̇f , ˆ̇qfj

)‖ < γv (9)

where ν̂of
(θ̇f , ˆ̇qfj

) is the velocity of the load es-
timated for arm f substituting the measured ve-
locity of joint j by its estimative ˆ̇qfj

and using

the measured velocities (θ̇f ) of the other joints,
ν̂o is the estimative of the load velocities using
the measured joint velocities of the other arms,
and the threshold γv is a small number that can
be chosen as a function of the variance of the
noise in the readings. When m = 2, νo should
be substituted by the estimated velocity obtained
using the joint velocities of the other arm.

3.3 Free-Swinging Joint and Locked Joint Faults

As FSJF and LJF present effects in the dynamics
of the cooperative system, the residual genera-
tion scheme can be used to detect these faults.
Generally, FDI systems for individual arms utilize
the mathematical model of the arm in the resid-
ual generation scheme (Visinsky et al., 1994).
The residual vector is generated comparing the
measured states of the arm with the estimative
of them. However, modelling errors can appear
generating false alarms or hiding the fault effects.
Robust technique (Dixon et al., 2000), fuzzy logic
(Schneider and Frank, 1996), and ANN (Vemuri
and Polycarpou, 1997) (Terra and Tinós, 2001)
have been used to avoid these problems.

To the best of the author’s knowledge, only in
(Tinós et al., 2001) an FDI system for cooperative
manipulators was presented. There, only one MLP
is trained to reproduce the dynamics of all arms
(eq. 2). As the end-effector forces are functions
of the joint variables, the inputs of the MLP
are the joint positions, velocities and torques in
the arms at instant t. The outputs of the MLP
are compared with the joint velocities at instant
t + ∆t in order to generate the residual vector.
The residual vector is then classified by a Radial
Basis Function Network (RBFN) that gives the
fault information. The use of only one MLP is
an interesting approach when the end-effector
forces are not measured. However, most of the
controllers for cooperative manipulators use force
sensors to minimize the squeeze forces on the load,
and these variables can be very useful to map the
system’s dynamics. Furthermore, the mapping of
the MLP in (Tinós et al., 2001) is dependent on
the load parameters. If the system manipulates
another object, the ANN have to be trained again.



Here, the dynamics of each arm is mapped by
a different MLP. This scheme is interesting be-
cause the mapping is not dependent on the load
parameters. A Multi-Input Single-Output scheme
could be used to reproduce the dynamics of the
system instead of the Multi-Input Multi-Output
scheme used here. The second approach is adopted
because of its smaller time processing.

The inputs of the MLP i are the joint positions,
velocities, torques, and end-effector forces of arm
i at instant t (figure 1). If the sample period ∆t
is sufficiently small, the dynamics of the fault-free
robot i (eq. 1) is

q̇i(t+∆t) = f(q̇i(t),qi(t),hi(t), τi(t)) (10)

where f(.) is a nonlinear function vector represent-
ing the dynamics of the fault-free arm i. If there
is a fault φ at the arm i

q̇i(t+∆t) = fφ(q̇i(t),qi(t),hi(t), τi(t)) (11)

where fφ(.) is a nonlinear function vector repre-
senting the dynamics of the arm i with the fault
φ. The function of the fault φ is defined as

ri(t+∆t) = fφ(q̇i(t),qi(t),hi(t), τi(t))

−f(q̇i(t),qi(t),hi(t), τi(t)). (12)

The outputs of the MLP i should reproduce the
joint velocities of the fault-free arm i at time t+∆t
and can be expressed as

ˆ̇qi(t+∆t) = f(q̇i(t),qi(t),hi(t), τi(t))

+e(q̇i(t),qi(t),hi(t), τi(t)) (13)

where e(.) is a vector of the mapping errors. The
residual vector of arm i is defined as

r̂i(t+∆t) = q̇i(t+∆t)− ˆ̇qi(t+∆t). (14)

By eq. (10-14), it can be observed that the residual
vector of arm i is equal to the mapping error
vector for the fault-free case. The mapping error
vector must be sufficiently small when compared
with the fault function vector in order to allow the
detection of the fault. The residual vector from all
arms (r̂) are then classified by an RBFN trained
by the Kohonen’s Self Organizing Map (Terra
and Tinós, 2001). As the residual vector of FSJF
and LJF occurring at the same joint can occupy
the same region in the input space of the RBFN,
an auxiliary input vector ζ that gives information
about the velocity of the joints is used (figure 2).
The use of ζ is motivated by the fact that the
velocity of the faulty joint is zero in LJF. In virtue
of noise in the measurement of the joint velocity,
the i − th (i = 1, . . . , n and n is the sum of the

number of joints of all arms) component of ζ is
defined as

ζi(t) =

{

1 if |q̇i(t)| < δi
0 otherwise

where the threshold δi is a small number. Here we
choose a value of δi proportional to the variance
of the joint velocity measurement noise. The fault
criteria, which is shown at figure 2, is employed to
avoid false alarms due to misclassified individual
patterns and it is defined as

{

fault i = 1 if ψi = max
q
j=1(ψj) for d samples

fault i = 0 otherwise

where ψi is the output i = 1, . . . , q−1 of the RBFN
(the output q refers to the normal operation). For
example, if the output 2 is higher than the other
outputs during d consecutive samples, fault 2 is
announced.

Fig. 1. Residual generation.

Fig. 2. Residual analysis.

4. RESULTS

First, the FDI system is applied in a simulation
of two three-dof planar cooperative arms manip-
ulating an object in a x-y plane. The arms are
equals and the gravity force is orthogonal to the
joint axes. The controller proposed in (Wen and
Kreutz-Delgado, 1992) is used to control the co-
operative arms. The sample period is 0.008s and
measurement noise is added to the joint positions
and velocities, and to the end-effector forces.



TwoMLP’s are utilized: each one has 12 inputs, 27
neurons at the hidden layer, and 3 outputs. The
MLP’s are trained with 7400 patterns obtained
in the simulation of 100 trajectories. The RBFN
has 12 inputs and 13 outputs (6 FSJF, 6 LJF,
and normal operation) and it is trained with 2691
patterns. The fault criteria uses d = 3 samples.
The parameters of the FDI system are γp = 0.05,
γv = 1.5, and δi = 5σi, where σi is the standard
deviation of the position measurement at joint i.
The FDI system are tested considering eight tra-
jectory sets. Each one of the sets 1-4 has 480 tra-
jectories with faults occurring in different joints
and 20 without faults. The first and the second
sets have the same initial and final points and
faults starting at 0.15 s. and 0.3 s. respectively.
The same occurs for the third and fourth sets. The
four faults previously presented are simulated. In
JPF and JVF for sets 1-4, the correct sensor
readings are changed by random numbers. In JPF
and JVF for sets 5-8, the correct sensor readings
are changed by zeros. The parameters of the sets
5-8 are equals to the sets 1-4, but with only 240
trajectories (for JPF and JVF). The results of the
FDI system can be viewed at table 1. The second
and third columns present the number of detected
faults and the number of correctly isolated faults
respectively. The fourth column shows the number
of false alarms in the fault-free trajectories. The
last column presents the Mean-Time-to-Detection
(MTD): the mean time that the FDI system takes
to isolate a fault after its occurrence.

Table 1. Results: simulation.

Set Det. Faults Is. Faults False Al. MTD(s)
1 479 (99.8%) 469 (97.7%) 0 (0%) 0.016
2 480 (100%) 461 (96.0%) 0 (0%) 0.017
3 479 (99.8%) 469 (97.7%) 0 (0%) 0.017
4 480 (100%) 459 (95.6%) 0 (0%) 0.019
5 449 (93.5%) 408 (85.0%) 0 (0%) 0.024
6 457 (95.2%) 408 (85.0%) 0 (0%) 0.018
7 450 (93.7%) 397 (82.7%) 0 (0%) 0.013
8 459 (95.6%) 409 (85.2%) 0 (0%) 0.021

The results for each fault are in table 2. The
number of correctly isolated JVF was smaller in
sets 5-8 because this fault was confused with LJF.
This occurred because the joint velocities readings
are changed by zeros. However, in these cases,
JVF generally do not present consequences in
the control of the trajectory (the load could be
controlled even with the joint velocity readings
changed to zero). This explain the small number
of detected JVF in sets 5-8 and it is a result
dependent of the choice of the controller.

The next step is the application of the FDI sys-
tem in a real cooperative system with two arms
UARMII (figure 3). Each UARMII is a 3-joint
planar manipulator that floats on a thin air film
on an “air table”. The two arms are equals and
the axis of each joint is parallel to the gravity
force. The cooperative system is controlled by a
PC running Matlab. Each joint of the UARMII

Table 2. Results (faults): simulation.

Set Fault Detected Faults Isolated Faults
1 FSJF 120 (100.0%) 118 (98.33%)
1 LJF 119 (99.17%) 114 (95.00%)
1 JPF 120 (100.0%) 118 (98.33%)
1 JVF 120 (100.0%) 118 (98.33%)
2 FSJF 120 (100.0%) 120 (100.0%)
2 LJF 120 (100.0%) 105 (87.50%)
2 JPF 120 (100.0%) 118 (98.33%)
2 JVF 120 (100.0%) 118 (98.33%)
3 FSJF 120 (100.0%) 118 (98.33%)
3 LJF 119 (99.17%) 114 (95.00%)
3 JPF 120 (100.0%) 117 (97.50%)
3 JVF 120 (100.0%) 120 (100.0%)
4 FSJF 120 (100.0%) 118 (98.33%)
4 LJF 120 (100.0%) 104 (86.67%)
4 JPF 120 (100.0%) 120 (100.0%)
4 JVF 120 (100.0%) 118 (98.33%)
5 JPF 120 (100.0%) 120 (100.0%)
5 JVF 89 (74.17%) 52 (43.33%)
6 JPF 120 (100.0%) 118 (98.33%)
6 JVF 97 (80.83%) 65 (54.17%)
7 JPF 120 (100.0%) 118 (98.33%)
7 JVF 91 (75.83%) 46 (38.33%)
8 JPF 120 (100.0%) 118 (98.33%)
8 JVF 99 (82.50%) 70 (58.33%)

contains a brushless DC direct-drive motor, en-
coder, and pneumatic brake. Each joint can be
actively driven by its motor, locked by its brake,
or allowed to move freely with nearly zero torque.
The controller proposed in (Wen and Kreutz-
Delgado, 1992) is used to control the arms (the
sample period is 0.06s). It is important to observe
that this system is difficult to be correctly mod-
elled because the flatness of the “air table” is ir-
regular (the gravitational torques change with the
position of the joints on the table). Other problem
is that the joint velocities are obtained by differ-
entiating the encoder readings, and force sensors
are not used (the end-effector forces are estimated
using the kinematic and dynamical models).

Two MLP’s are utilized: each one has 12 inputs,
37 neurons at the hidden layer, and 3 outputs. The
MLP’s are trained with 3250 patterns obtained in
the simulation of 50 trajectories. The RBFN has
12 inputs and 13 outputs (6 FSJF, 6 LJF, and
normal operation) and is trained with 2506 pat-
terns. The fault criteria uses d = 4 samples. The
FDI system is tested considering three trajectory
sets, each of them with 360 trajectories with faults
and 15 without faults. The second and third sets
have the same initial and final position but an
object of mass equal to 0.025 kg is manipulated
in the second set and an object of 0.45 kg in the
third set. The first set has different initial and
final positions, and mass of load equal to 0.45 kg.
The results of the FDI system considering the four
faults described here occurring in each joint can
be viewed at table 3. The figures 4 and 5 show the
torques of arm 1 and the outputs of the RBFN in
a trajectory with an FSJF.

The number of correctly isolated faults was
smaller in the real system mainly because FSJF
are sometimes confused with LJF. This occurs
because, as there are small gravitational torques
at the joints of the real system, sometimes the ve-



locities of the faulty joints are small. However, in
these cases, even with FSJF, the load converges to
the desired position and the fault does not present
significant effects in the system. This can occur,
for example, if it is not necessary to apply high
torques at the faulty joint in a given trajectory.

Table 3. Results: real system.

Set Det. Faults Is. Faults False Al. MTD(s)
1 337 (93.6%) 260 (72.2%) 1 (6.7%) 0.469
2 333 (92.5%) 247 (68.6%) 0 (0.0%) 0.419
3 325 (90.3%) 268 (74.3%) 0 (0.0%) 0.458

Fig. 3. Real system.

Fig. 4. Joint torques at arm 1 in a trajectory of the real
system with FSJF at joint 1 (arm 1) occurring at

t=1s.

Fig. 5. Outputs of the RBFN in the same trajectory

showed at fig. 4 (Output 1: FSJF at joint 1 of arm 1;
Output 13: normal operation).

5. CONCLUSIONS

This work presents a FDI system for cooperative
manipulators. Four faults were considered: FSJF,
LJF, JPF, and JVF. The first two are detected
by ANN: MLP’s to reproduce the dynamics of the
arms and an RBFN to classify the residual vector.
The other faults are detected using the kinematic
constraints of the system.
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