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Abstract:  Tracking of a square trajectory 12.6 m x 12.6 m by a two-link flexible robot 
manipulator is performed repetitively for both inverse dynamics control (IDC) and fuzzy 
logic control (FLC). Repetitive learning inverse dynamics control (RLIDC) achieves no 
improvement in tracking but repetitive learning fuzzy logic control (RLFLC) achieves 
greater precision where cyclic tracking enables the fuzzy inference system to self-adapt 
and further reduce tracking errors. Copyright ©2002 IFAC 
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1.  INTRODUCTION 

 
The strict requirement for minimal vibration and 
precision control of a two-link flexible robot 
manipulator in spacecraft operations is emphasized in 
previous work (Banerjee and Singhose, 1998; Green 
and Sasiadek, 2000a, b) for tracking a square 
trajectory. Banerjee and Singhose (1998) used an 
input shaped inverse kinematics technique while 
comparable results were obtained using various 
fuzzy control techniques (de Silva, 1995; Green and 
Sasiadek, 2000a, b). Green and Sasiadek (2000a, b) 
used two fuzzy controllers to substitute for the robot 
nonlinear dynamics equations and a single tracking 
cycle was obtained. In Banerjee and Singhose (1998) 
trajectory periodicity studies were included.  
 
Repetitive control (RC) occurs when periodic signals 
input to the system and is a natural control problem 
encountered in many engineering applications 
including space robotics.  A vast amount of literature 
exists on robot learning control of which iterative 
learning control (ILC) pioneered by Arimoto, et al. 
(1984), plays a significant part. Repetitive learning 
control (RLC) is ILC where initial states of the robot 
are not reset at the start of each iteration. Essentially 
RLC is a simple technique requiring less a priori 
knowledge of the controlled system and capable of 
modifying control input error signals automatically 
based on prior iterations. The aim is to track a 
trajectory as close as possible to that commanded by 
increasing the number of iterations. Principal works 
are (Goldsmith, 2000; Hara, Yamamoto, Omata and 
Nakano, 1988; Horowitz, 1993; Sison and Chong, 
1996; Weiss, 1997; Yamamoto, 1993). Typically, 

they include adaptive algorithms that successively 
improve performance to achieve asymptotic zero 
error tracking based on the betterment learning laws 
proposed by Arimoto, et al (1984). FLC studies were 
conducted (Bonarini, 1994; Layne and Passino, 
1992) on learn behaviours which include techniques 
to modify the relationship between inputs and 
outputs through control actions based on a reference 
model and reinforcement learning algorithms and, 
evolutionary learning techniques for populations of 
fuzzy rules (ELF) based on genetic algorithms.  
 
In this paper, the result of previous work by Green 
and Sasiadek (2000a, b) is extended to demonstrate 
the effects of repeated learning. Trajectories obtained 
for five iterations, given in Figs. 6, 7, 8 and 9, show a 
distinct advantage of RLFLC over RLIDC.   
 
 

2.  FLEXIBLE ROBOT MANIPULATOR 
 
The two-link flexible robot manipulator shown in 
Fig. 1 has a shoulder joint revolute 2π rad and an 
elbow joint oscillating ~3/2π rad. Robot motion and 
vibration modes are restricted to the x-y plane. Robot 
manipulator dynamics, physical constants and control 
parameters are those used in Banerjee and Singhose, 
(1998). The nonlinear robot dynamics equations are 
given in vector form as: 

 
                        ( ) ( , )                     (1)U M q q C q q&& &= + 
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Fig. 1. Two-Link Flexible Robot Manipulator 
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T, ]2[ 1 uu=U =  torque vector control law 

 L  = L1 = L2 = 4.5 meters = length of each link  
 m  = 1.5075  kg 
 qi   =  slew angle, i = 1, 2 
 q  =  slew angles vector 
 q  =  slew angular velocities vector  
 ζ  = 0.707, closed-loop damping ratio 
 ω = 8.21 Hz, first open-loop frequency mode 
 
 

3.  INVERSE DYNAMICS CONTROL 
 
Fig. 2 shows a block diagram of the general control 
scheme and Figs. 3a & b, show details of an IDC 
loop for the two-link flexible manipulator. Common 
to both IDC and FLC schemes is the control law of 
the input torque vector given by Eqn. (2). 
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J(q)     =    Jacobian of direct kinematics 
JT(q)    =   Jacobian transpose 

pK         =     =  proportional gain   2 2,diag ω ω


dK      =  di   = derivative gain [ag 2 2ζω, ζω
,x ye e  =    errors vector, i.e. xc – x, yc - y  

,x ye e& &  =    change of input errors vector 

xc,  yc    =   commanded end effector positions 
x,   y     =    actual end effector positions 

pK = and =  

are calculated from the manipulator parameters.  

[diag 67 4, 67.4. ] dK [ ]diag 11 61,11.61.

Commanded xc, yc positions are input from a 
Matlab™ matrix. The IDC scheme is typical for a 
robot and used in previous work (Green and 
Sasiadek, 2000a, b) while  and  are 

calculated from Banerjee and Singhose, (1998). 
Gravity and joint friction are neglected. 

pK dK

 
 

4.  FUZZY CONTROL 
 
The fuzzy control model shown in Fig. 5a utilizes the 
same servo parameters and control law as the IDC 
scheme to calculate torque but, two coupled fuzzy 
controllers substitute the nonlinear dynamics 
equations. Torque feeds to each FLC through 
normalizing gains where link 1 has a torque input, 
and link 2 has both acceleration and torque inputs 
shown in Figs. 5b & c. The fuzzy controllers have 
input and output variables each with nine Gaussian 
membership functions. Verbal descriptors Positive 
and Negative, High/Low, Very High/Low and Zero 
are denoted NVH, NH, NL, NVL, ZERO, PVL, PL, 
PH and PVH. Link 1 has nine fuzzy rules with torque 
universe of discourse -500 to 500 N-m. Link 2 has 
eighty-one fuzzy rules with acceleration and torque 
universes of discourse -2 to 2 rad/s2 and -200 to 200 
N-m respectively. Each link has acceleration output 
universe of discourse -5 to 5 rad/s2.  The torque input 
variable membership function (MF) universe of 
discourse shown in Fig. 4, is typical for all fuzzy 
variables in the Fuzzy Inference System (FIS). 
 
Table 1 is the fuzzy rule base of the form: 
 
IF torque(1) is NL THEN acceleration(1) is NL 
 
IF torque(1) is PH THEN acceleration(1) is PH 
 
Table 2 represents is the fuzzy rule base of the form: 
 
IF torque(2) is PL and acceleration(12) is PL 
THEN acceleration(2) is PH 
 
IF torque(2) is NVL and acceleration(12) is PVL 
THEN acceleration(2) is ZERO 
 
 

 
 
 



   

Fig. 2.  Robot Manipulator Control Block Diagram 
 

Fig. 3a. Inverse Dynamics Control Scheme 
 

Fig. 3b. Inverse Dynamics Robot Manipulator
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 Fig. 4.  Typical Input Membership Functions 
 
Accelerations are fed through output scaling gains, 
K1 and K2, which modify the membership function 
base widths and dampen flexural vibrations to obtain  
 

e best square trajectory. Numerous simulations 

                186405.8 <= K1 <= 193500 
4 

o ensure stability, K1 and K2 values were constant 

.  REPETITIVE LEARNING CONTROL 
 

he repetitive control technique aims to train a robot 

dexterity. For RLC there is a no-reset condition and 

th
were performed with values of K1 and  K2 initially 
low then increased until a final square trajectory 
emerged at values K1=192000 and K2=163954. 
Limits of stability constitute the ranges:  
 
  
                  163952.4 <= K2 <= 163955.8
 
T
during all repetitive learning control simulations. 

 
 
5

T
on the premise that it must execute periodic motions, 
such that, its performance improves after each 
iteration and asymptotically tracks a desired 
trajectory. For ILC, resetting the robot back to initial 
states for each iteration demands a high degree of 
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the control law is updated by previous iterations. 
Many proposed ILC systems (Arimoto, 1984; 

ally 

 

lso, using the concept of repetitive effort control 
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Horowitz, 1993; Sison and Chong, 1996)   typic
update the control law Eqn. (2) with a proportional or 
derivative error term and learning gain, KL, for 
algorithms in the form of  Eqns. (3) and (4). 
 
 
 
 

A
Goldsmith, (2000), derives an iterative control law, 
in which, KL is substituted by a control operator C
given as:
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g. 4a. Fuzzy Control Scheme 
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In this study, the control law for both RLIDC and 

     
          k  =  1,2,3,…….n  iterations 

 
 

RLFLC is preserved with simple updates of position 
and velocity feedback errors given by.  
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Table 1   Rule Base for Link 1 
___________________________________________________________ 
Torque (1)             NVH   NH   NL   NVL   ZERO   PVL   PL   PH   PVH 
Acceleration (1)    NVH   NH   NL   NVL   ZERO   PVL   PL   PH   PVH 

                              

Table 2   Rule ase for Link 2 

            

Table 2   Rule ase for Link 2 

  __________________________________________________________   __________________________________________________________ 
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    _______________________________________________________________________________________ 

   _______________________________________________________________________________________ 
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                                            Torque (2)         

                                                 NVH      NH        NL       NVL       ZERO      PVL       PL        PH         PVH 
       Acceleration (2) ______________________________________________________________________
                                     NVH     NVH      NVH     NH       NH         NH           NL          NL       NVL      ZERO 
                                     NH        NVH      NH        NH       NH         NL           NL          NVL    ZERO    PVL ) 

                                     NL        NH         NH        NH       NL         NL           NVL       ZERO   PVL       PL 12

                                     NVL     NH         NH        NL        NL         NVL        ZERO     PVL     PL          PL 

(

                                     ZERO   NH         NL        NVL     ZERO    ZERO      ZERO     PVL     PL          PH 
                                     PVL      NL         NL        NVL     ZERO    PVL         PL           PL        PH         PH 

A
cc

el
er

at
io

n

                                     PL         NL         NVL     ZERO   PVL       PL           PL           PH        PH         PH 
                                     PH        NVL       ZERO   PVL      PL          PL           PH          PH        PH         PVH
                                     PVH     ZERO     PVL      PL         PL         PH           PH          PH        PVH      PVH 
      ____________________________________________________________________________________

Fig. 6.  RLIDC - 1st Iteration                                                  Fig. 8.  RLIDC - 1st, 2nd, 3rd, 4th and 5th Iterations
      

    Fig. 9. RLFLC– 1st, 2nd, 3rd, 4th and 5th Iterations Fig. 7.  RLIDC – 1st and 2nd Iterations  



For RLIDC, Figs. 6, 7 and 8 show very large 

e 

6.  CONCLUSIONS 
  

evious work demonstrates the greater tracking 
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equations with FLCs over conventional control 
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