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Abstract: Stochastic control design techniques found in the chemical process control literature
generally focus on the reduction of state or output variance to improve process operation.
Most of these techniques address the problem of minimizing a quadratic cost function subject
to linear process dynamics. In these cases, a linear feedback control law results and the
disturbance, state and output PDF’s are Gaussian. In this paper, the problem of control
design for nonlinear stochastic processes and nonsymmetric, nonquadratic cost functions is
addressed. A control design technique is presented for first-order, discrete-time processes
with a single input and additive Gaussian white noise.
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1. MOTIVATIONS

The problem of regulatory control design for stochas-
tic processes is typically considered from the per-
spectives of stability and optimality with respect to a
cost function. Existing design techniques are mainly
concerned with linear processes and quadratic cost
functions. In this paper, a more general class of prob-
lems is reviewed and the main barrier impeding their
solution is identified. As a means of both investigat-
ing and circumventing this barrier, the focus of the
design problem is changed to consider the relation-
ship between the closed-loop (CL) process dynamics
and the probability density function (PDF) of the CL
process. This results in a PDF-shaping control design
technique that is useful both for control design and as
an intermediate step in understanding the original cost
function based problem.

The common approach to regulatory control design
for discrete-time stochastic processes is to attempt to
minimize an expectation type cost function:

J = E[ ˆ̀(xt ,ut)] (1)
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subject to the given process dynamics:

xt+1 = f̂ (xt ,ut ,wt) (2)

whereE[·] is the expectation operator,ˆ̀(·, ·) is a cost
functional,xt is the process state,ut is the manipulated
variable andwt is a random disturbance with probabil-
ity density functionpw(wt). A general solution to this
problem is not available; however, a number of spe-
cific solutions have been achieved. If the process (2) is
linear and the PDF,pw(wt), is Gaussian, then solutions
for the set of cost functionals,̀̂(xt ,ut) = xt

2 + λut
2,

λ ≥ 0, are available (Harris, 1985). In this case the
control law is linear and the CL process generates a
Gaussian PDF. Solutions for problems involving lin-
ear processes and with a general, nonsymmetric, non-
quadratic cost functional̀(xt) have also been devel-
oped (Harris, 1992). Again, the resulting control law
is linear, so that the PDF of the CL process may be
parameterized by mean and variance. A very different
case is addressed in (Lee, 1990) where results for the
general minimum variance cost functionalˆ̀(xt ,ut) =
xt

2 + λut
2 are extended to a class of nonlinear pro-

cesses. In this case, the control design procedure does
not cover general nonsymmetric, nonquadratic cost
functionals, nor does it consider the PDF of the CL
process.
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Fig. 1. An illustration of the type of nonsymmetric,
nonquadratic cost functional that may arise from
a quality specification.

While these three different control design techniques
provide solutions to a number of related control prob-
lems, they do not solve the important case of design
for a linear or nonlinear process with a nonsymmet-
ric cost functional which includes the cost of control
energy, ˆ̀(xt ,ut) = `(xt) + λut

2. This type of prob-
lem is relevant to a number of process industries, in
particular when there is a quality specification to be
met. Often a product must be of at least a certain
quality. If the process output is below the minimum
acceptable level, it may require reprocessing, be sold
for a lower profit or even discarded outright. In all of
these cases there is a large cost associated with the
off-spec product. Conversely, there may be significant
material, energy or time costs associated with a prod-
uct that consistently exceeds minimum specifications.
A representation of the type of cost functional that
may be associated with this type of process is given
in Figure 1. Of course, for many processes there may
be additional costs associated with the manipulated
variable(s). In this work, these additional costs are
taken to be quadratic.

In the development of the design techniques described
by (Harris, 1985), (Harris, 1992) and (Lee, 1990),
direct minimization of the cost function with respect
to the manipulated variable,ut , is performed. Unfor-
tunately when working with the more general cost
function:

J = E[`(xt)+λut
2] (3)

direct minimization is not possible. Sinceut is given
by a feedback control law and is thus a function of
the process state, it cannot be extracted from the ex-
pectation operator. Additionally, it is unlikely that the
CL process will be linear. In justifying this statement
there are two cases to consider. First, if the open-loop
process exhibits nonlinearities, there is no reason to
expect that the optimum control law will cause the CL
process to behave linearly. Second, even if the open-
loop process is linear, there is no reason to expect
the optimum control law (with respect to (3)) to be
linear. If a CL process is nonlinear its stationary PDF
will, in general, be non-Gaussian. Not only does this
complicate evaluation and manipulation of the cost

function (3) but it introduces an auxiliary equation to
relate the dynamics of the CL process to the PDF of
the CL process. For this reason, research presented
in this paper focusses on developing a control design
technique to shape the PDF of the CL process.

2. BACKGROUND

In this work, the type of process being consid-
ered is restricted to first-order, discrete-time nonlinear
stochastic processes with additive zero mean Gaussian
white noise and a single manipulated variable:

xt+1 = f (xt ,ut)+wt (4)

pw(wt) = N0,σw
(wt) (5)

The notationNµ,σ (·) refers to the Gaussian PDF pa-
rameterized by a mean ofµ and a variance ofσ2:

Nµ ,σ (·) =
1√

2πσ2
exp

(
− (·−µ)2

2σ2

)
(6)

Additionally, in developing the control design tech-
nique, only the static feedback control law,

ut = k(xt) (7)

is considered. Substituting this into the process (4)
yields:

xt+1 = f (xt ,k(xt))+wt

= f̃ (xt)+wt (8)

Throughout this paper, the closed-loop process feed-
back, f̃ (xt), will be referred to by the term CL feed-
back.

2.1 Expectation Cost Functions

As seen in (1) and (3) this work considers expecta-
tion type cost functions. For use of these types of
cost functions to be appropriate, it is necessary that
a stationary PDF exist for the CL process. It is in-
appropriate to discuss non-stationary processes within
this framework because the expected cost of operation
would be forever changing and this would necessitate
an adaptive control design. Assuming the CL process
is stationary, and that the feedback control strategy (7)
is to be implemented, the cost function (3) may be
further defined as:

J =
∞∫

−∞

(
`(xt)+λ (k(xt))

2
)

p(xt)dxt (9)

This is a difficult cost function to work with because
the stationary PDF,p(·), is unknown when the form of
the control law,k(·), is unknown.



2.2 Stationary PDF’s

For the process described by (8), if the CL process
is stationary, there is an associated PDF,p(·), deter-
mined by:

p(xt+1) =
∞∫

−∞

pw
(
xt+1− f̃ (xt)

)
p(xt)dxt (10)

A development of this equation is given in (Jazwinski,
1970). This is an integral equation for which there
is no general analytical solution. To fully appreciate
the barrier this presents to nonlinear control design,
even for a relatively simple process such as (4), it
is necessary to consider (5) and to expand the CL
feedback:

p(xt+1) (11)

=
∞∫

−∞

N0,σw

(
xt+1− f (xt ,k(xt))

)
p(xt)dxt

It can be seen that control design to optimize the
cost function (3) for the process (4) becomes the
problem of finding a functionk(·) to minimize (9)
subject to the unknown PDFp(·) described by (11).
In order to simplify this problem, a Gram-Charlier
parameterization ofp(·) will be introduced.

2.3 Gram-Charlier PDF’s

For PDF’s that are not too non-Gaussian, a Gram-
Charlier (GC) PDF can provide a good approximation.
Usually in the literature a specific GC approximation
is given that works best for PDF’s with zero mean
and unit variance (Cramer, 1946) and (Stuart and
Ord, 1994); however, when working with dynamic
processes it is not always convenient to centre and
normalize the variable in question. For that reason, a
general GC approximation is presented that tailors the
basis functions to work for PDF’s with any mean and
variance. The basis functions are:

φi(x) = (−1)i σ i
√

i!

diNµ,σ (x)
dxi (12)

whereNµ,σ (x) is as in (6). These GC basis functions
are orthonormal with respect to the inner product:

∞∫

−∞

φi (x)φ j (x)

Nµ,σ (x)
dx= δi j (13)

Thus, when using a finite series of GC functions to
approximate a PDF as:

p(x)≈ c0φ0(x)+c1φ1(x)+ . . .+cnφn(x)

≈ cTφφφ (x) (14)

the coefficients,{ci} , are found by:

ci =
∞∫

−∞

φi (x) p(x)
Nµ,σ (x)

dx (15)

x

φi(x)

φ0

φ1 φ2

Fig. 2. The first three Gram-Charlier functions based
on a mean of one and a variance of four.

It should be noted that each GC basis function is the
product of a Hermite polynomial and the Gaussian
PDF, i.e.,

φi (x) = hi (x)Nµ,σ (x) (16)

Therefore the PDF approximation (14) may be rewrit-
ten as:

p(x)≈ cTh(x)Nµ,σ (x) (17)

and the coefficients found by:

ci =
∞∫

−∞

hi (x) p(x)dx (18)

This corresponds to the expected value ofhi(x) with
respect to the PDFp(x). Sincehi(x) is a polynomial,
the expectation looks very much like the calculation of
a moment. For this reason the coefficients{ci}may be
referred to as quasi-moments (Kuznetsovet al., 1965).

The first three GC functions are:

φ0(x) = Nµ,σ (x)

φ1(x) =
x−µ

σ
Nµ,σ (x)

φ2(x) =
x2−2µx+ µ2−σ2

√
2σ2

Nµ,σ (x) (19)

These are plotted in Figure 2. Notice that for a distri-
bution p(x) with meanµ and varianceσ :

c1 =
∞∫

−∞

h1 (x) p(x)dx

=
∞∫

−∞

x
σ

p(x)dx−
∞∫

−∞

µ
σ

p(x)dx

=
µ
σ
− µ

σ
= 0 (20)

c2 also turns out to be zero, but not the higher quasi-
moments. This is because the zeroth-order approxima-
tion for any distribution is justφ0(x) = Nµ ,σ (x) which
takes into account the mean and variance ofp(x).
Thus, the quasi-mean,c1, and quasi-variance,c2, are



both zero. For non-Gaussian PDF’s, the higher quasi-
moments will in general be non-zero.

Most often the fourth-order GC approximation is
used:

p(x) =
(
1+c3h3(x)+c4h4(x)

)
Nµ,σ (x) (21)

c3 andc4 can be shown to be directly related, respec-
tively, to the skewness and the kurtosis of the distri-
bution. This particular approximation is thus accurate
to the fourth moment. (21) also illustrates that GC
approximations of all orders are a product of a polyno-
mial, g(x), and a Gaussian PDF. This means any PDF
that is a product of a polynomial and a Gaussian PDF
may be exactly parameterized by a GC PDF.

The GC PDF’s are used for approximation of uni-
modal PDF’s, although it is possible to get multimodal
behaviour. Additionally, there are limits on the val-
ues of the quasi-moments that may be chosen. For a
GC approximation to be a true PDF, it must be non-
negative everywhere. Therefore the quasi-moments
must be such that the polynomial part of the approx-
imation remains non-negative. Numerical techniques
to ensure that this constraint is satisfied are given by
(Jondeau and Rockinger, 1999).

3. PDF-SHAPING FEEDBACK CONTROL
DESIGN

As stated above, this research is focussed on design of
controllers to shape the PDF of the CL process. This
is one step towards solution of the broader control de-
sign problem discussed in§1. PDF-shaping feedback
control design refers to the solution of the integral
equation (10). In this case, an approximate solution
is made by parameterizing both the PDF and the CL
feedback.

For design of PDF-shaping control laws, first the de-
sired stationary PDF for the process must be selected.
A good choice of PDF will be based on engineer-
ing concerns or process economics. In this work it
is assumed that a GC PDF (17), is chosen. Control
design then proceeds by substitution of the PDF into
the stationary process equation (10):

cTh(xt+1)Nµ,σ (xt+1) (22)

=
∫ ∞

−∞
N0,σw

(xt+1− f̃ (xt))c
Th(xt)Nµ,σ (xt)dxt

In an attempt to simplify this expression the orthogo-
nality condition (13) is invoked:

c0 = 1

0 = c1 =
∞∫

−∞

f̃ (xt)−µ
σ

cTh(xt)Nµ,σ (xt)dxt

= E

[
f̃ (xt)−µ

σ

]

0 = c2 = E

[
f̃ 2 (xt)−2µ f̃ (xt)+σ2

w−σ2 + µ2
√

2σ2

]

c3 = E

[
f̃ 3 (xt)−3µ f̃ 2 (xt)+3µ

(
σ2−σw

2
)

√
6σ3

+3
(
σw

2−σ2 + µ2
)

f̃ (xt)−µ3

√
6σ3

]

... (23)

Even with the parameterization of the PDF and the
benefit of the GC orthogonality condition, the equa-
tions (23) cannot be solved for̃f (·). Therefore, the
CL feedback is parameterized with a series of basis
functions:

f̃ (xt) = a0θ0(xt)+a1θ1(xt)+ . . . (24)

Substituting this parameterization into equation (23)
and performing the indicated integration yields:

c0 = 1

0= q1(a,c,σ ,µ)

0= q2(a,c,σ ,µ)

c3 = q3(a,c,σ ,µ)

c4 = q4(a,c,σ ,µ)
... (25)

where eachqi(a,c,σ ,µ) is a different function of the
parameters. These equations may then be solved for
the CL feedback parameters,a.

If this method is to successfully produce the parame-
ters, there are a few key requirements. First, the basis
functions for the CL feedback parameterization must
be such that analytical solutions exist for the integrals
in (23). For this reason, a series of polynomials may be
a good choice as polynomials are integrable against
the Gaussian PDF. Second, once the integration has
been performed, it must be possible to find real-valued
solutions to the equations (25). This implies that there
must be at least as many parameters in the CL feed-
back parameterization as in the PDF parameterization.
Further, the possibility of multiple solutions to equa-
tion (25) exists and so some auxiliary conditions are
required to render a unique solution. Since this ap-
proximation is for a simple first-order process, which
of the solutions is correct may be ascertained by in-
spection.

Once the CL feedback has been approximated, the
feedback control law must be found by the back-
substitution:



f (xt ,ut) = aTθθθ(x) (26)

3.1 Accuracy of the Approximation

This control design technique is approximate for the
following reason. When a GC PDF of nth-order is
formed, the mean, variance and the firstn−2 higher
quasi-moments are selected; however, this implies that
all remaining quasi-moments are zero. When the set
of equations (25) is developed to design the CL feed-
back, only the selected GC parameters are considered.
Therefore, while the design may satisfy the mean,
variance and the chosen higher quasi-moments, there
is no guarantee that the resultant PDF will be exactly
as desired. Fortunately, the quasi-moments are some-
what like coefficients in a Taylor series; as they get
higher in order, they must be very large to have a large
impact on the PDF. For this reason, some post-design
analysis to check the higher quasi-moments as well as
simulation studies is recommended.

Alternatively there are two ways of reducing the like-
lihood of the higher quasi-moments causing difficul-
ties. One way is to make a careful choice of the CL
feedback parameterization. Ideally, a parameterization
would be selected to create a one-to-one correspon-
dence between CL feedback parameters and the quasi-
moments. However, no such set of basis functions is
currently known. A simpler way of eliminating the
higher quasi-moments is to include more terms in the
CL feedback parameterization. This allows for (25) to
be augmented with additional equations to force some
higher quasi-moments to zero.

3.2 Stability of the Closed-Loop Process

No control design technique may be considered com-
plete without some comments about the stability or
ergodicity of the resulting CL process. Following a
theorem in (Tong, 1990), if the deterministic part of
the CL process (8) can be shown to be globally stable
then, with some additional technical conditions, the
process can be shown to be ergodic. At this time it
cannot be shown that this technique produces CL pro-
cesses meeting the requirements of the theorem; how-
ever, there are reasons to believe that this technique
ensures stable processes, at least locally.

Since the design goal is a stationary PDF, an indirect
goal of creating a stable process is built into the
technique. A process cannot be stationary if it is not
stable. Similarly, as part of the PDF specification, the
variance that the CL process is to display is a specified
finite value. Again, a process cannot both be unstable
and display a finite variance. Therefore to achieve a
finite variance, stability must also be achieved.

As a last resort, the stability of the deterministic por-
tion of the process may be evaluated with a Lyapunov

Fig. 3. The desired GC PDF withµ = 45 , σ = 0.1 ,
c3 = 0.20andc4 = 0.15 .

analysis. Heuristically, if a large region of stability
(large relative to the variances of the process and noise
PDF’s) exists, the process should display a local type
of ergodicity.

4. ILLUSTRATIVE EXAMPLE

Consider liquid flowing through a well-mixed, heated
tank. The heater is designed to supply heat at a con-
stant rate ofQ = 120.0kW but due to a number of
problems the actual rate of heat delivery is scattered
about the set rate with a Gaussian PDF (standard devi-
ation of 9.4kW). For reasons relating to downstream
operations, the temperature of the liquid at the tank
outlet,Tt , is required to have the stationary PDF:

p(Tt) =
(
1+0.20h3(Tt)

+0.15h4(Tt)
)

N45,0.1(Tt) (27)

A plot of this PDF is given in Figure 3. To achieve this
goal, the flow rate at the outlet,Ft , is to be manipulated
in response to outlet temperature measurements. A
well-tuned feedforward control strategy keeps inlet
flow identical to outlet flow so that the volume of
fluid in the tank remains constant atV = 0.5m3. The
inlet temperature of the fluid is constant atTin = 15◦C
and the heat capacity and density of the fluid remain
constant atcp = 1.5kJ/kg◦C and ρ = 1250kg/m3

respectively. A discrete-time dynamic energy balance,
for a time step of∆t = 5s, may be developed as
follows. The heat in the tank at the next time step,
Ht+1, will be equal to the heat currently in the tank,
Ht , plus the sum of any additional heat additions and
losses. As is standard:

Ht = Vρcp(Tt −T∗) (28)

whereT∗ is a reference temperature. Heat is intro-
duced by the heater (HQ = Qt∆t), and the inlet and
outlet streams (Hin andHout) account for the addition
and loss of heat, respectively. Thus an overall energy
balance is written:

Ht+1 = Ht +HQ +Hin−Hout (29)



For the purposes of this example model, the heat
transfer for each stream during the5s control interval
is taken to be:

Hstream= Ftρcp(Tstream−T∗)∆t (30)

By applying the given assumptions and rearranging
the energy balance, the following first-order process
for outlet stream temperature is derived:

Tt+1 = Tt +
Ft

V
(Tin−Tt)∆t +

Qt∆t
Vρcp

(31)

Substituting in the parameter values and splitting Q
into a constant and a zero mean Gaussian random
variable gives:

Tt+1 = Tt +Ft(150−10Tt)+0.64+wt (32)

wherepw(wt) = N0,0.05(wt).

As discussed in§3, it is not possible to find an ex-
act control law to achieve the desired PDF (27). In-
stead, the CL feedback parameterizationf̃ (Tt) = a0 +
a1Tt +a2T2

t +a3T3
t is used. Taking advantage of equa-

tion (23) yields{a0 = 9.181× 104, a1 = −6.100×
103, a2 = 1.351×102, a3 =−9.979×10−1}. Making
use of equation (26) gives the feedback control law:

Ft =
(a0−0.64)+(a1−1)Tt +a2T2

t +a3T3
t

150−10Tt
(33)

An elementary Lyapunov-type stability analysis, based
on the Lyapunov functionV = (Tt −45)2, reveals that
the deterministic portion of the CL process is locally
asymptotically stable aroundTt = 45◦C. The region
of stability is at least[43.9◦C,46.6◦C]. This region of
stability should be compared to the disturbances that
may be encountered during operation. The controller
is stable within±10 standard deviations of the mean
temperature, equivalent to±20 times the standard de-
viation of the process noise.

Dynamic simulations of the process (32) under this
control strategy confirm that the realized PDF matches
the design goal. A histogram based on 10000 time
steps of simulation data is given in Figure 4. The
histogram takes a shape similar to that of Figure 3. In
particular, the tail behaviour of simulation histogram
shows the desired positive skewness.

5. CONCLUSIONS

One problem of optimal control design for nonlin-
ear stochastic processes has been carefully reviewed
and the main barrier towards its solution identified.
An approach to PDF-shaping feedback control design
has been introduced as one step towards solving the
more general regulatory control problem. The Gram-
Charlier PDF parameterization has been proposed as
a useful tool for control engineering. The GC param-
eterization is used to develop a PDF-shaping control
design technique. The technique approximately solves
the integral equation describing the stationary PDF
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Fig. 4. A histogram based on simulation of the exam-
ple process over 10000 time steps.

of a closed-loop discrete-time dynamic process. The
proposed technique allows for control design to cause
the stationary PDF of the closed-loop process to be
approximately a designer-selected GC PDF. The main
idea of the technique is to develop the relationship
between the control law parameters and the quasi-
moments of the PDF. A short example demonstrates
the mechanics of the technique. Additionally, analysis
from the example suggests controlled processes de-
signed with this technique have a good domain of local
stability.
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