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Abstract: State-dependent Riccati equation (SDRE) methods for designing control algorithms
and observers for nonlinear processes entail the use of algebraic Riccati equations. These
methods have yielded a number of impressive results, however, they can be computationally
quite intensive and thus far they have not yielded to those attempting to assess their stability.
This paper explores an alternative, the use of state dependentdifferential Riccati equations
and numerical integration to propagate their solutions forward in time. Stability is examined
and examples illustrating the use of these methods are given.
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1. INTRODUCTION

The design of practical observers and control al-
gorithms in many applications entails dealing with
nonlinear process dynamics. A number of methods
have been developed for handling such processes.
The state-dependent Riccati equation (SDRE) method,
developed over the past several years, is one such
method. The method is still not fully rigorous, but
it has been empirically demonstrated in a number of
applications. Moreover, attempts to find examples in
which the method fails have generally been unsuccess-
ful.

The method is based on “extended linearization”
(Friedland, 1996; Williams et al., 1987) of the process
dynamics. The dynamics are expressed by

ẋ = A(x)x + B(x)u (1)

with observations given by

y = C(x)x (2)
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The matricesA(x), B(x), and C(x) in (1) and (2)
are not unique. Efficient selection of these matrices
is known as the “parameterization problem” (Cloutier
et al., 1996) and may effect the performance of the
ensuing observer or control system.

The basic idea of the SDRE method is to design the
observer or control law by treating the matrices as if
they were constant and calculating the corresponding
linear filter or quadratic control “on-line”.

In the case of the controller, where all the components
of state vectorx are directly measured, the control law
is thus:

u = −G(x)x (3)

whereG(x) is given by

G = R−1B′(x)M(x) (4)

with M(x) being the solution of the “state-dependent
algebraic Riccati equation” (SDARE)

M(x)A(x) + A′(x)M(x)

−M(x)B(x)R−1B′(x)M(x) + Q(x) = 0 (5)
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The matricesQ(x) and R(x) are design matrices
selected, as in case of a linear system, to give weight
to the state and to the control, respectively. Because
the process is nonlinear, it would not be appropriate to
identify them with the integrand of a quadratic form
that the control law (3) minimizes.

If the statex is not measured directly, an estimatex̂
is used in its place in (3) through (5). The estimate is
obtained by use of an “extended” observer. For a full-
order observer, the estimated statex̂ is given by

˙̂x = A(x̂)x̂ + K(x̂)[y − C(x̂)x̂] (6)

where the observer gain matrixK(x̂) is given by the
solution of the SDARE:

K(x̂) = P (x̂)C ′(x̂)W−1(x̂) (7)

with

P (x̂)A′(x̂) + A(x̂)P (x̂)

−P (x̂)C ′(x̂)W−1(x̂)C(x̂)P (x) + V (x̂) = 0 (8)

Although empirical results using the SDARE method
have been quite favorable, determining the state-
dependent gain matricesG(x̂) and K(x̂) is compu-
tationally intensive. This may not be a major prob-
lem in certain applications, especially with the speed
and memory of computers continuing to increase. But
many projected applications may rely on imbedded
computers which may have the speed, but not the
memory required to support the on-line solution of the
relevant SDAREs.

Another problem is that algorithms for solution of the
SDARE are inherently iterative: the number of com-
putation steps cannot be predicted precisely and hence
the operations cannot be accurately timed. There may
be some reluctance on the part of system engineers to
employ such an algorithm in real time when conver-
gence within an allotted time is not guaranteed.

Furthermore, in some applications the use of the state-
dependentalgebraicRiccati equation can impose an
overly restrictive requirement on the observability
and controllability of the nonlinear system in ques-
tion. Consider the SDARE observer. For a solution
to the algebraic Riccati equation (8) to exist, the pair
[A(x̂(t)), C(x̂(t))] must be continuously observable
locally for all timet, (or at least at each discrete instant
tn at which the ARE is solved), i.e., the rank of the
observability test matrix

O = [C ′(x̂), . . . , (A′(x̂))n−1C ′(x̂)]

must ben (the plant order) at everŷx the observer
attains. This rank condition may not hold in some
systems that are nevertheless observable in the more
general sense.

The same restrictions apply in the case of the SDARE
controller. Here, the existence of a solution to (5) de-
mands that the pair[A(x(t)), B(x(t))] be controllable
locally at everyx that the plant attains, i.e.

rank[B(x), , . . . , (A(x))n−1B(x)] = n

a condition that may fail in some nonlinear systems
that are nonetheless controllable.

This paper offers an alternative to the SDRE methods
for control and estimation, an alternative which ad-
dresses the issues of high computational requirements
and the potentially overly restrictive observability and
controllability requirements. The key idea underlying
these new methods is the use ofdifferentialrather than
algebraic Riccati equations, and their real-time solu-
tion by numerical integration. Illustrative examples
comparing the SDARE and new methods are given,
and the stability of the new control algorithm is exam-
ined.

2. THE SDDRE METHOD

2.1 Estimation

The extended Kalman filter (EKF) method for state
estimation has been well established in countless theo-
retical studies and practical applications. The discrete-
time EKF method may be regarded as an equivalent to
the real-time numerical integration of the linearized
variance equation

Ṗ = P (x̂)J ′
x(x̂) + Jx(x̂)P (x̂)

−P (x̂)J ′
y(x̂)W−1Jy(x̂)P (x̂) + V (9)

whereJx andJy are the Jacobian matrices of the non-
linear dynamics and observation equations, respec-
tively. Although the theoretical stability of the EKF
method may not have been established rigorously (at
least to the knowledge of the authors) the question of
its utility is hardly questionable.

The linearized variance equation (9) is very similar
but not identical to the following proposed alternative,
which is heretofore referred to as the state-dependent
differential Riccati equation (SDDRE):

Ṗ = P (x̂)A′(x̂) + A(x̂)P (x̂)

−P (x̂)C ′(x̂)W−1C(x̂)P (x̂) + V (x̂) (10)

As with the SDARE approach, the solution of (10) is
used to generate the observer gain (7). Equation (10)
is very much like the equation for the “classical” ex-
tended Kalman filter (EKF). It differs from the latter in
that the latter uses the differential “variance equation”
and the Jacobian matrix of the dynamic nonlinear dy-
namics. For the EKF problem formulation



Jx = A(x) +
∑

i

xi
∂A(x)
∂xi

Jy = C(x) +
∑

i

xi
∂C(x)
∂xi

so the Jacobian matrices have terms not present in
A(x) andC(x) . The significance of differences be-
tween the EKF and the SDDRE have been studied in
(Haessig, 1999).

2.2 Control

In the finite horizon control problem, the correspond-
ing Riccati equation

−Ṁ = M(x)A(x) + A′(x)M(x)

−M(x)B(x)R−1B′(x)M(x) + Q(x) (11)

is intended for integrationbackward in time from
some terminal condition. It is well-known that it is
unstable when integrated forward in time, as would
be required for real-time implementation.

The practical solution to this problem of instability
is simply to reverse the direction of time and simply
integrate (11) with the sign beforėM reversed. When
this is done, the resulting Riccati differential equation:

Ṁ = M(x)A(x) + A′(x)M(x)

−M(x)B(x)R−1B′(x)M(x) + Q(x) (12)

is identical in form to (10). It is well known that
the variance equation (10) is stable in the forward
direction of time. Hence, since (12) is the same as
(10) with A′ in place of A and B′ in place of C,
any method of implementation (numerical integration)
that succeeds with (10) will succeed with (12).

2.3 Discussion

As noted above, the SDARE controller (observer) de-
mands the existence of local controllability (observ-
ability) at eachx (x̂). When conditions for local con-
trollability (observability) fail, even during brief peri-
ods of incomplete controllability (observability), nu-
merical solution of the SDARE method generally also
fails to produce a usable solution. Propagation of the
“Riccati” solution forward in time through use of the
SDDRE (10) or (12), however, does not require local
controllability or observability at each instant of time;
it can simply integrate through instants or periods of
local uncontrollability or unobservability.

This requirement for time-continuous controllability
(observability) has proven to be an issue that can pre-
clude application of the SDARE method in problems
to which the SDDRE method can be successfully ap-
plied. In (Haessig, 1999) both methods are applied

to the problem of simultaneous state and parameters
estimation in nonlinear systems. There the SDARE
method was shown to work well in problems involving
a few unknown parameters (i.e. less than 3); however,
the requirement for continuous observability became
an issue when estimating more than a few. Each con-
stant parameter to be estimated adds a state equation
of the form θ̇i = 0 to the system dynamics. When
there are two or more parameters, because the pa-
rameter dynamic equations are identical, the system is
locally unobservable for all time (Haessig, 1999). This
problem can be alleviated by replacingθ̇i = 0 with
θ̇i = −λiθi where eachλi is a small positive number
different for eachi. However, as the number of param-
eters grows, the observability test matrix tends to be-
come ill-conditioned, causing the SDARE method to
break down. This was studied by Haessig (1999) in an
example given originally in (Bodson, 1993), involv-
ing a permanent magnet stepper motor governed by a
fourth-order model with 5 unknown parameters. The
author was unable to successfully apply the SDARE
method due to the problem described above. On the
other hand, the SDDRE filtering method was demon-
strated through simulation to accurately estimate all 5
parameters as well as the process state.

3. STABILITY

Consider the nonlinear system (1) controlled by the
SDDRE control law as given by (3), (4), and (12).
In assessing the stability of the approach, one must
initially consider the stability of the proposed Riccati
equation (12), an equation identical in form to the
standard filter Riccati equation (10). By well-known
Kalman filter theory for linear time-varying systems,
the convergence of the filter Riccati equation is guar-
anteed if the pair[A(t), C(t)] is observable and the
pair [A(t), V 1/2] is controllable for allt. Thus, if con-
ditions of local controllability and observability hold
globally, i.e. if the pair[A′(x), B′(x)] is observable
and the pair[A′(x), Q1/2] is controllable for allx, then
the convergence of (10) is assured.

To investigate the stability of the controlled system,
consider a candidate Lyapunov function involving the
inverse of the ”Riccati” solution to (12):

V (x(t)) = x′(t)M−1x(t) (13)

having the time derivative,

V̇ (x) = ẋ′M−1x + x′M−1ẋ

−x′M−1ṀM−1x (14)

Into this is substituted the controlled system dynamics

ẋ = (A(x)−B(x)G)x = Ac(x)x (15)

and the matrix differential equation (12) rewritten here
in a more compact form



Ṁ = A′
cM + MAc + G′RG + Q (16)

This leads to the Lyapunov time derivative function:

V̇ (x) = x′M−1[MA′
c + AcM

−MAc −A′
cM − (G′RG + Q)]M−1x (17)

In this equation, the first two and next two terms to
the right of the opening bracket both individually sum
to form symmetric matrices, which are identified as
follows:

MA′
c + AcM = S (18)

MAc + A′
cM = T (19)

With these substitutions,

V̇ (x) = −x′M−1[T − S]

+(G′RG + Q)]M−1x (20)

Stability in this time varying system can be proved if
one can show there exists fixed (time-invariant) posi-
tive definite quadratic functions boundingV (x) from
above and below, and one other boundingV̇ (x) from
above. The following conceptual arguments suggest
their existence.

Although the system matrices given in (1) and (2)
are functions of the statex, because the state is a
known function of timet, it is possible to express
(1) and (2) as using time dependent system matri-
ces, i.e.A(x(t)), B(x(t)), C(x(t)). Consequently, it
seems reasonable to expect that control concepts and
properties applicable to linear time-varying systems
should also be applicable in this nonlinear context. In
particular, one needs to use the properties of Riccati
equation solutions that depend on the observability
and controllability of the system.

Consider first (13) involvingM−1, the inverse of the
Riccati solution. For stability the nonlinear system
must be both controllable through the input matrix
B(x) and observable though the state weighting ma-
trix Q1/2. The effect of system controllability is to
decrease or deflateM . This creates an upper bound on
M resulting in an lower bound onM−1, as required
for Lyapunov stability. If the system is observable then
the state weighting matrix essentially has the effect of
inflating theM matrix, placing a lower bound onM
and an upper bound onM−1, also required for Lya-
punov stability. Thus one can argue that the candidate
Lyapunov function (13) is bounded above and below
if the system is both observable and controllable.

Consider now the candidate Lyapunov function time
derivative (20). Standard linear quadratic control the-
ory indicates that the termG′RG is positive definite in
time-varying linear systems that are both observable
and controllable. Thus the term(G′RG + Q) in (20)
will be positive definite.

The matricesS and T may or may not be positive
definite. Whether their differenceT − S enhances or
detracts from the positive definiteness ofT − S +
(G′RG + Q) remains as a topic for future research.

Assessment of stability of the SDDRE observer is
complicated by the presence of bothx andx̂, and left
also for future research.

4. EXAMPLES

4.1 Example 1 – Inverted Pendulum

To illustrate the techniques discussed above a very
simple nonlinear control problem is considered, namely
the stabilization of an inverted pendulum, described by

θ̈ − sin θ = u (21)

In state-space form, withx1 = θ, x2 = θ̇, the matrices
describing the dynamics are

A(x) =
[

0 1
a(x) 0

]
, B =

[
0
1

]
(22)

where

a(x) = sin x1/x1 (23)

The performance matrices for this problem are taken
as

Q =
[

q 0
0 0

]
, R = 1 (24)

with q = 0.01.

The solution to the SDARE in this example is easily
calculated analytically:

M =
[

m1 m2

m2 m3

]
(25)

with

m2 = a +
√

a2 + q

m3 =
√

2m2, m1 = m3

√
m2 − a

The gain matrix is

G(x) =
[
m2(x) m3(x)

]
(26)

Since sinx1/x1 → 1 as x1 → 0, the reference
condition used in generation of the fixed gain linear
control aboutx1 = 0 is a = 1.

In Figure 1 the SDARE method is used to compute
the control gain in the upper plot, whereas linear
fixed gain control is used in the lower. Clearly system
performance with linear control is unacceptable as it is
virtually unstable, whereas that achieved with SDARE
control is much better.



Fig. 1.Simulated performance with linear and SDARE
control. With linear control, performance verges
on instability.

The result of numerical integration of the SDDRE
in this same example is shown in Figure 2. It is
observed that the transient response is quite similar
to the SDARE result of Figure 1 (if anything, slightly
better).

Fig. 2.Simulated performance with SDDRE control

4.2 Example 2

The computational advantage of the subject method
is illustrated through its application to an example

taken from (Cloutier et al., 1996), the second order
multivariable system:

ẋ1 = x1 − x3
1 + x2 + u1 (27)

ẋ2 = x1 + x2
1x2 − x2 + u2 (28)

Both the SDARE and SDDRE methods are applied to
this system and compared on the basis of the computa-
tional resources required to generate the Riccati solu-
tion and control gains, and the quality of the resulting
transient response.

Fig. 3. Comparison of the algebraic and differen-
tial Riccati based methods in Example 2, with
SDARE control on top and SDDRE control be-
low. With SDARE control the state variables are
equal and thus appear as a single curve.

In both cases the followingA matrix parameterization
is employed:

A =
[

1− x2
1 1

1 x2
1 − 1

]
(29)

and the state and control weighting matrices that ap-
pear in the performance index are set toQ = I2 and
R = 2I2, respectively.

The results achieved using the SDARE and SDDRE
methods are compared in Figure 3, with the SDARE
and SDDRE results in the upper and lower plots, re-
spectively. One notes that the transient solutions are
only slightly different and qualitatively similar – the



Ṁ term present in the Riccati differential equation
clearly alters the solution, but does not change the
transient response in any substantive way. (The SD-
DRE solution requires an initial condition, which was
set equal to the solution given by the SDARE att =
0.)

Computational load is compared on the basis of
FLOPS, the number of floating point operations re-
quired to compute a new “Riccati” solution and con-
troller gain. This was done using the Matlab FLOP
function. In the SDARE case, the number of FLOPS
consumed to compute a newG were measured. This
was done by querying the FLOPS function immedi-
ately before and after the Matlablqr function, which
returnedG. On average, 850 FLOPS were required
on each call tolqr. In the SDDRE case, the FLOP
effort was measured by assuming that Euler integra-
tion would propagate the Riccati solution one step
forward in time. Thus, the FLOP function was queried
before and after calculation of both thėM andG in
(12) and (4). This was measured to be 140 FLOPS. To
this another 8 FLOPS were added for the Euler prop-
agation of the solution(Mi = Mi−1 + ṀT ), which
brings the total to 148 FLOPS, or approximately a 1/6
of that consumed by thelqr function. No advantage
was taken of symmetry which would further reduce
the number of calculations. Clearly, even in this low
order example, the potential for significant reduction
in computational loading is evident.

5. CONCLUSION

A new approach for the design of controllers and
observers for nonlinear systems has been introduced.
These methods are similar to existing state-dependent
Riccati equation methods, but differ in thatdifferential
Riccati equations are used to generate controller and
observer gains. The stability of the resulting control
algorithm is evaluated.
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