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Abstract: An iterative feedback optimization methodology has been introduced as
a complementary approach to conventional real-time optimization (RTO) methods
to improve plant operation without requiring repetitive model updating. In this
paper, the results analysis component that is an integral part of an RTO system
is developed for use with iterative feedback optimization to evaluate the inherent
variability of the optimization results transmitted from the plant measurements.
Only optimization results that represent meaningful changes are implemented as
the new setpoints, thus reducing unnecessary and profitless corrective actions.
The effectiveness of the proposed results analysis method is tested on a simulated
CSTR process. Copyright c©2002 IFAC
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1. INTRODUCTION

During the operation of a chemical plant, the
results of the higher level repetitive on-line op-
timization are used to improve process opera-
tions by determining the setpoints for the lower
level feedback control systems. Results analysis
evaluates the optimization results (calculated set-
points) before they are implemented in the plant
via the control system, because the calculated op-
timization variables are subject to inherent vari-
ability caused by the variability in the plant data
and transmitted through the optimization system
components (Miletic and Marlin, 1998; Forbes and
Marlin, 1996). The results analysis is used to dis-
tinguish the common cause variability due to mea-
surement noise from the special cause variability
caused by significant disturbances. Only optimiza-
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tion results that represent meaningful changes are
implemented. Miletic and Marlin (1998) proposed
an on-line results analysis method in real-time op-
timization (RTO) through the application of two
fundamental techniques: sensitivity analysis and
statistical process/quality control. In this paper,
a statistical method based on a similar approach
is proposed for on-line results analysis of the itera-
tive feedback optimization methodology presented
by Cheng and Zafiriou (2000). This is a comple-
mentary optimization approach to conventional
RTO. It is based on an analogy between steady-
state operation periods in process operation and
iterations in numerical optimization. The process
measurements are utilized to correct the gradient
information directly without requiring model pa-
rameter updating.

The application of sensitivity analysis in evalu-
ating a conventional RTO system has been ad-
dressed by Koninckx (1988) and Forbes and Mar-
lin (1996). The common cause variability of the
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calculated independent variables (inputs) can be
characterized by a covariance matrix and it can be
calculated through sensitivity analysis (linear ap-
proximation) of the RTO system. Thus, the esti-
mation of the covariance matrix involves two sen-
sitivity matrices that represent the linear trans-
formations of the plant variability through two
RTO components (parameter updater and eco-
nomic optimizer). In the case of the iterative feed-
back optimization approach (Cheng and Zafiriou,
2000), which does not require model updating,
the covariance matrix estimation only involves a
single sensitivity matrix which is evaluated lo-
cally at each optimization period with the model
derivatives. MacGregor and Kourti (1995) applied
a hypothesis test to evaluate the multivariate de-
viation for multivariate process or quality control.
This multivariate statistical process/quality con-
trol method is used to judge whether the iterative
feedback optimization has produced newly calcu-
lated input values that are significantly different
from the currently implemented input policy. The
goal of the on-line results analysis is to decrease
the frequency of unnecessary setpoint changes and
increase the operating profit.

2. METHODOLOGY

2.1 Iterative Feedback Optimization

The iterative feedback optimization methodology
was designed to not require repetitive model up-
dating by directly utilizing plant measurements to
improve plant operation. This methodology is de-
veloped based on an analogy between iterations in
numerical optimization and steady-state periods
in plant operation as described in Table 1. The nu-
merical optimization method used in the analogy
(left column) may be any search direction algo-
rithm that utilizes a gradient to compute a search
direction and perform a line search along the di-
rection. The plant operation is an integral part of
the optimization, as shown on the right column,
with each iterate during the line search therefore
representing a steady-state operation period. To
maximize the profit when utilizing a minimiza-
tion standard, the objective function, Φ, can be
defined as the negative of the profit. The goal is
to compute and maintain the optimal operating
policy, consisting of the inputs u, which have eco-
nomic impact on the plant operation directly and
through the plant outputs they affect. Although
the gradient equations are constructed based on
the model, the model error can be compensated
for by explicitly incorporating the measured plant
outputs (y), instead of the model predictions (ỹ),
to update the approximate gradient for the objec-
tive function (gapp). It is noted that if constraints

Table 1. Iterative feedback optimiza-
tion.

Numerical Plant
Optimization Operation

minu Φ(u, y) minu Φ(u, y)
ul ≤ u ≤ uu ul ≤ u ≤ uu

|ui − ui−1| ≤ ∆umax

and and

F̃ (u, y) = 0 (model) F (u, y) = 0 (plant)

ist iteration ist s.s. period

1. Solve the model 1. Operate the plant
ui → Model → ỹi ui → P lant → yi

(Model predictions) (Plant measurements)

2. Compute gradient 2. Compute gradient
g̃(ui, ỹi) gapp(ui, yi)

3. Search direction 3. Search direction
g̃ → Algorithm → d gapp → Algorithm → d

4. Line search 4. Line search (ns tries)
ui+1 = ui + αd ui+1 = ui + αd
α1 = 1 (1st trial value) α1 = 1 (1st trial value)

exist then the corresponding gradients should be
provided too.

For optimizing an existing process, two tuning pa-
rameters should be provided by the users: ∆umax

is used to specify the maximum allowed policy
changes between successive steady-state periods
during operation to prevent aggressive changes
that may not be acceptable from a practical point
of view; ns is used to specify the maximum num-
ber of a line search to save operation cost by
avoiding meaningless corrective actions that may
only result in extremely small improvement. To
further compensate for model error that may on
occasion be too large, recomputing of the search
direction is introduced if an improvement direc-
tion cannot be found after ns tries in a line search.
Resetting the Hessian to identity (H = I) is first
performed to compute a new direction and, if nec-
essary, this newly computed direction is reversed
to seek further improvement opportunity. The de-
tails of the approach can be found in Cheng and
Zafiriou (2000). Therefore, iterative feedback op-
timization pursues the rather conservative goal of
improving operation gradually and this enhances
its robustness with respect to significant struc-
tural model error with which conventional RTO
may not be able to deal by parameter updating
only. In this paper, the on-line statistical results
analysis method used in RTO is extended to it-
erative feedback optimization with the necessary
modifications.

2.2 Variability Transformation

Statistical results analysis techniques depend on
an estimation of the common cause variability of
the calculated independent optimization variables
(setpoints). The results analysis component is in-
troduced into an optimization system to check the



variability of independent variables. Thus the sys-
tem is made “open-loop” first by results analysis
to evaluate the optimization results and is back to
closed-loop mode if the change between calculated
values and current values is significant (special
cause variability). Figure 1 illustrates the open-
loop optimization system where ν represents the
high frequency noise (common cause variability).
The feedback optimizer incorporates the current
input policy, ui, and the current plant measure-
ments, yi, to compute the new input policy ui+1

through evaluating the objective function, Φ, the
model equations, F̃ , and the gradient information,
g. The lower frequency and nonstationary dis-
turbances (special cause variability), which really
affect the operation significantly, can be reflected
in the model-plant mismatch (F represents the
true plant equation).

The variability in the calculated independent op-
timization variables can be characterized by a
covariance matrix Q. This can be approximately
computed with the linear approximation of the
open-loop optimization system which conveys the
variability of plant measurement through the feed-
back optimization component. Thus, the open-
loop approximation of Q can be computed by
applying a linear transformations to the estimated
covariance matrix of the plant measurements U .
This covariance matrix U describes only the com-
mon cause variability arising from measurement
noise (high-frequency disturbances) and can be
obtained by collecting plant data between opti-
mization periods and by estimating the covariance
matrix with statistical methods. As a result, the
covariance matrix Q can be evaluated by multi-
plying U by the sensitivity matrix of the feedback
optimizer (du/dy):

Q =
(du

dy

)

U
(du

dy

)T

(1)

For computational convenience, the inverse ma-
trix of Q is calculated instead:

Q−1 =
(dy

du

)T

U−1

(dy

du

)

(2)

where the sensitivity matrix (dy/du) describes the
differential change in the plant measurements in
response to a differential change in the inputs. It
can be calculated in light of the reduced gradient
method (Edgar and Himmelblau, 1988), which is
used to construct gradient equations used by iter-
ative feedback optimization for algebraic equation
models:

dy

du
= −

(∂F̃

∂y

)

−1(∂F̃

∂u

)

(3)
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Fig. 1. Open-loop optimization system.

The model derivatives are evaluated locally at
each iteration with plant measurements and cor-
responding inputs.

2.3 Hypothesis Test

Statistical process or quality control (SPC/SQC)
is a fundamental approach to results analysis
to determine if the calculated optimization re-
sults represent meaningful change in plant opera-
tion (Miletic and Marlin, 1998). MacGregor and
Kourti (1995) applied a hypothesis test based on
the Hotelling T 2 statistic to the multivariate sta-
tistical process or quality control methods which
take into account the interactions among process
variables. Miletic and Marlin (1998) have success-
fully implemented these SPC/SQC methods on-
line to the RTO system. In this paper, a similar
approach is applied to the iterative feedback opti-
mization system to evaluate the calculated input
policy. First, the multivariate deviation between
the currently applied input policy (ui) and the
calculated input policy (ui+1) is estimated by the
Hotelling T 2 statistic:

T 2 = (ui+1 − ui)
T Q−1(ui+1 − ui) (4)

The hypothesis test is stated as follows:
{

H0 : ui+1 = ui

H1 : ui+1 6= ui
(5)

By evaluating the test (5), one can determine
if the calculated input policy is statistically the
same as the current input policy at a specified sig-
nificance level. The null hypothesis, H0, assumes
that the calculated input policy is the same as
the current input policy. On the other hand, the
alternative hypothesis, H1 assumes that the cal-
culated input policy is different from the current
input policy. The upper control limit (UCL) for
the hypothesis test (5) can be set to be:

UCL =
m(N + 1)(N − 1)

N(N −m)
Fα(m, N −m) (6)



where N is the number of data points collected
for estimating U at each period, m is the row
dimension of u, and Fα is the tabulated F statistic
at significance level α with m and N −m degrees
of freedom. (Miletic and Marlin, 1998)

The hypothesis test (5) can be evaluated by com-
paring the T 2 statistic (4) to the control limit
value (6). If the statistical multivariate deviation
is larger than the control limit value, the test
is triggered (H0 is rejected in favor of H1) and
calculated input policy is applied to the plant.
Otherwise, the input policy is not altered (H0

is accepted) and the operating conditions of the
plant remain the same. The hypothesis test is
evaluated at every optimization iteration to dis-
tinguish the common cause variability and the
special cause variability. However, it is not neces-
sary to estimate the covariance matrix Q at each
iteration until the process change is significant
(special cause variability).

3. ILLUSTRATION

The effectiveness of the proposed results analysis
method is demonstrated through a simulated case
study on a typical CSTR process, which was
originally studied by Zhang and Roberts (1991)
for on-line steady-state optimization. A single
reversible reaction is considered to be taking place
in the CSTR as:

A + 2B
k+

⇀↽
k−

2E + P (7)

where

k+ = β+

1 e−β+

2
/TR+273.15

k− = β−1 e−β−
2

/TR+273.15
(8)

The reactants A and B are raw materials and
E and P are the reaction products. There are
two input streams of mass flow rates FA (kg/s)
and FB (kg/s) containing pure raw materials A
and B, respectively, and one product stream of
mass flow rate FA + FB (kg/s) containing all
four components with mass fractions of XA, XB ,
XE and XP . TR (◦C) is the reaction tempera-
ture and β+

1 (s−1), β+

2 (K), β−1 (s−1) and β−2
(K) are the reaction rate parameters. Following
Zhang and Roberts (1991), several assumptions
and definitions are made: (1) The inlet flow of
reactant A, FA, is fixed at 0.88 kg/s. (2) The
reactor capacity (V ) is fixed at 2104.7 kg. (3)
The inlet flow of reactant B, FB (kg/s), and the
reactor temperature, TR (◦C), are considered as
the independent optimization variables (operat-
ing policy), i.e., u=[FB TR]. (4) All component
concentrations are the corresponding dependent

Table 2. Plant and model parameters.

Parameter Plant Model

β+
1 (1/s) 0.61× 1024 0.5× 1024

β+
2 (K) 21600 21800

β−1 (1/s) 2.55× 1031 1.9× 1031

β−2 (K) 27000 27200

variables (outputs), i.e., y = [XA XB XE XP ].
(5) Model error is introduced in the reaction rate
parameters, as listed in Table 2, to emulate model-
plant mismatch. (6) The instantaneous profit to
be maximized is based on the difference between
the sales of products E and P and the costs of
raw materials A and B:

Profit = (FA + FB)(66.0XP + 1.5XE)
− (4.4FA + 6.6FB)

(9)

The performance of the iterative feedback opti-
mization system without results analysis is simu-
lated first on this case study. The initial input is
u1 = [1.0 85] and the optimization parameters
are selected as ns = 4 and ∆umax=[0.1 1.0].
Measurement noise under Gaussian distribution is
introduced into the outputs with 1.2% magnitude.
Figures 2 and 3 show the profit and input profiles,
respectively. The solid line represents the true
value and the dotted line the optimal value. In
Fig. 2, the dashed line represents the measured
profit value which is evaluated with process mea-
surements rather than true inputs and outputs.
The profit contours for the true process and the
corresponding feedback optimization trajectory in
the input space are illustrated in Fig. 4, with the
true optimum indicated by an × at the center.
Each optimization iteration (steady-state period)
is marked by a small circle (◦) along the tra-
jectory. These results show that the robust iter-
ative feedback optimization can compensate for
the model-plant mismatch iteratively towards the
true optimum within the first 22 periods, where
the disturbances or process changes (contributing
to model-plant mismatch) dominate the measure-
ment noise. But the computed input variables
keep fluctuating around the true optimum in the
remaining periods, where the measurement noise
dominates the disturbances, until the optimiza-
tion is stopped when further improvement is not
possible with direction reversing. A pair of reset-
ting and reversing actions are triggered to deter-
mine an improvement direction after the regular
computation is performed, resulting in the cross-
shaped paths left of the true optimum in Fig. 4.
The fluctuation in the input profile after the 22nd
period represents unnecessary corrective actions
which can cause profit loss in the true profile.
Note that the noise can result in a much more
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Fig. 2. Profit profile without results analysis. Solid
line: true value. Dashed line: measured value.
Dotted line: optimal value.
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Fig. 3. Input profile without results analysis. Solid
line: true value. Dotted line: optimal value.
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Fig. 4. Profit contours and feedback optimization
trajectory without results analysis.

significant fluctuation in the measured profit than
in the true profit. Although the true profit loss
is not significant in this case due to the profit
formulation, the unnecessary corrective actions
themselves may cause extra operating costs.
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Fig. 5. Profit profile with results analysis. Solid
line: true value. Dashed line: measured value.
Dotted line: optimal value.

The proposed results analysis method is tested
on this case study with m = 2 and N = 50 at
99% level of significance (α = 0.99). Thus, the
corresponding F statistic is F0.99(2, 48) = 5.06
and the control limit (6) for the optimization
variables (setpoints) is UCL = 10.53. At each
steady-state period, the covariance matrix U is
estimated by using 50 plant data points and the
covariance matrix Q for the optimization variables
is also obtained through variability analysis. Then
the newly computed optimization results are an-
alyzed by comparing the T 2 statistic to the UCL
value to check if the new inputs make signifi-
cant changes or not. Figures 5 - 7 illustrate the
simulations with results analysis, corresponding
to the simulations in Figs. 2 - 4 without results
analysis, respectively. These results show that the
proposed method can successfully distinguish the
common cause variability (due to measurement
noise) from the special cause disturbances. During
the first 22 special cause periods, the computed
input variables are implemented on the process
to improve the operation since they are evaluated
as significant changes by results analysis. On the
contrary, the computed input variables are not im-
plemented on the process in the remaining periods
where the special cause signals are not triggered
by the method. Thus the proposed method can
successfully reduce the unnecessary corrective ac-
tions and increase the operating profit. A special
cause signal is missed (H0 is wrongly accepted)
at the 14th period where the process is indeed
subject to small disturbance domination (model-
plant mismatch is not completely compensated
for), but it does not affect the performance of the
method.

4. CONCLUSION

A statistical method is proposed in this paper
for on-line results analysis of iterative feedback
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Fig. 6. Input profile with results analysis. Solid
line: true value. Dotted line: optimal value.
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Fig. 7. Profit contours and feedback optimization
trajectory with results analysis.

optimization before the optimization results (set-
points) are transmitted to the plant via the pro-
cess control system. This approach is based on
an extension of the RTO results analysis method
which involves sensitivity analysis and multi-
variate statistical process/quality control. Results
analysis evaluates the variability of the calculated
independent variables and determine whether the
variability is common cause or special cause. Only
the optimization results that represent meaning-
ful change (special cause variability) are imple-
mented. The effectiveness of the method is tested
on a CSTR process which is optimized by it-
erative feedback optimization. Both model-plant
mismatch and measurement noise are introduced
into the optimization system in simulations. The
model-plant mismatch can be viewed as the result
of the external disturbances (or process changes).
The simulation results show that the proposed re-
sult analysis method can successfully distinguish
the special cause variability from the common
cause variability of the computed inputs for al-
most all optimization periods. During the peri-
ods where the operating conditions are far from

the true optimum, the special cause signals are
triggered and the optimization results are imple-
mented in the plant to further correct for the
effect of model-plant mismatch. When the oper-
ating conditions approach the optimal values, the
common cause variability is detected immediately
and the operating conditions remain the same.
Therefore, the method allows iterative feedback
optimization to effectively improve the process op-
eration and also avoids unnecessary and profitless
corrective actions.
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