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Abstract: A supervisory hybrid system may be modeled from two levels: logic level
(upper) and continuous level (lower). In this paper, adaptive fuzzy Petri nets and
neural networks are combined together for supervisory hybrid system modeling.
Adaptive Fuzzy Petri Net is adopted to model the supervisory logic parts, and
dynamic neural networks are applied to continuous parts. Two hybrid system
examples are illustrated to show the effective of the method
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1. INTRODUCTION

One of the most recent and the most intense
efforts in control theory deals with handing hybrid
dynamic systems that include not only the con-
tinuous process but its supervisory mechanism as
well. Hybrid systems have been intensively studied
in the past few years both for their mathematical
foundations (Lygeros el al., 1999) and engineering
design (Koo and Sastry, 1998).

For our purposes, supervisory hybrid systems are
considered to be the combination of continuous
plants and discrete-event plants. For modeling dis-
crete event plants, Petri nets are widely adopted.
Petri nets have been developed original to rep-
resent and analyze in an easy way the informa-
tion processing systems that are characterized as
being concurrent, asynchronous, distributed, par-
allel, non-deterministic, and/or stochastic (David
and Alla, 1994). PNs have an inherent quality
in representing logic in intuitive and visual way.
Furthermore, PN approach can be easily com-
bined with other techniques and theories such as
programming, fuzzy theory, neural networks, etc.

These modiÞed PNs are widely used in computer,
manufacturing, robotic, knowledge based systems,
process control, as well as other kinds of engi-
neering applications. For example, the reasoning
path of expert systems can be reduced to simple
sprouting trees if fuzzy Petri nets(FPN)-based al-
gorithms are applied as an inference engine.(Chen
el al., 1990), (Yeung and Tsang, 1998).

On the other hand, many results show that neural
network techniques seem to be very effective to
identify a wide class of continuous plants when
we have no complete model information, or even
when we consider the controlled plant as a black
box (Hunt el al., 1992).

In this paper, hybrid systems can be modeled from
two aspects: logic level (supervisory) and contin-
uous process. For example, a chemical process
with process-related logic, the logic part can be
modeled by fuzzy Petri net and the continuous
part may be modeled by neural networks. Two
examples will show the effective of our research.
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2. MODELING PRODUCTION RULES WITH
ADAPTIVE FUZZY PETRI NET

In order to properly describe the real world, fuzzy
production rules have been used for knowledge
representation (Chen el al., 1990). A fuzzy pro-
duction rule (FPR) is a rule which describes the
fuzzy relation between two propositions. When
the antecedent portion of a fuzzy production
rule contains AND or OR connectors, a com-
posite fuzzy production rule is introduced. If
the relative degree of importance of each an-
tecedents contributing to the consequent is con-
sidered, weighted fuzzy production rules (WFPR)
may be introduced (Yeung and Tsang, 1998). So,
WFPR is the most general case of production
rules. Without loss of generality, we use WFPRs
to represent logic information of a hybrid system.

Let R be a set of weighted fuzzy production rules
R = {R1, R2, · · ·Rn}. The general formulation
of the ith weighted fuzzy production rule is as
follows:

Ri : IF a THEN c (CF = µ), Th, w

where a =< a1, a2, · · · , an > is the antecedent
portion which comprises of one or more propo-
sitions connected by either AND or OR, c is the
consequent proposition, µ is the certainty factor
of the rule, Th is the threshold, w is the weight. In
general, WFPRs are categorized into three types
which are deÞned as follows (Li el al., 2000):

Type 1: A Simple Fuzzy Production Rule

R: IF a THEN c (CF = µ), λ, w

Type 2: A Composite Conjunctive Rule

R: IF a1 AND a2 AND · · · AND an THEN c
(CF = µ), λ, w1, w2, · · · , wn
Type 3: A Composite Disjunctive Rule

R: IF a1 OR a2 OR · · · OR an THEN c (CF = µ),
λ1,λ2, · · · ,λn, w1, w2, · · · , wn
A fuzzy Petri net with learning ability in (Li el
al., 2000), which is called adaptive fuzzy Petri net,
is used here as the model of the logic information
in a hybrid system. An adaptive fuzzy Petri net
(AFPN) is a 9-tuple

AFPN = (P,T,D, I,O,α,β, Th,W)

where

P = {p1, p2, · · · , pn} denotes a set of places;
T = {t1, t2, · · · , tm} is a set of transitions;
D = {d1, d2, · · · , dn} is a set of propositions;
I(O) : T → P∞ is the input (output) function
which deÞnes a mapping from transitions to bags
of places;
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Fig. 2. AFPN of Type 2

α : P → [0, 1] is an association function which
assigns a real value between zero to one to each
place;

β : P → D is a bijective mapping between the
proposition and place label for each node. P ∩T ∩
D = φ, |P | = |D| ;
Th : T → [0, 1] is the function which assigns a
threshold value λi from zero to one to transition
ti.

W = WI ∪WO. WI : I → [̈0, 1] and WO : O →
[0, 1], are sets of input weights and output weights
which assign weights to all the arcs of a net.

The mappings of the three types of weighted fuzzy
production rules into adaptive fuzzy Petri net
are shown as Fig.1, Fig.2 and Fig.3 respectively.
The three types of WFPR may be represented as
follows:

Type 1: A Simple Fuzzy Production Rule

R: IF a THEN c Th(t) = λ, WO(t, pj) = µ,
WI(pi, t) = w

Type 2: A Composite Conjunctive Rule

R: IF a1 AND a2 AND · · · AND an THEN c,
Th(t) = λ, WO(t, pj) = µ, WI(pi, t) = wi, i =
1, · · · , n
Type 3: A Composite Disjunctive Rule

R: IF a1 OR a2 OR · · · OR an THEN c, Th(ti) =
λi, WO(ti, pj) = µ, WI(pj , ti) = wi, i = 1, · · · , n
The mapping may be understood as each tran-
sition corresponds to a simple rule, composite
conjunctive rule or a disjunctive branch of a com-
posite disjunctive rule; each place corresponds to
a proposition (antecedent or consequent).

Fuzzy Reasoning Algorithm

(1) Build the set of user input places PUI .
(2) Build the set of initially enabled transitions

Tp.
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Fig. 3. AFPN of Type 3

(3) Find current enabled transitions Tf = {t ∈
Tp | for ∀pi ∈· t, α(pi) ≥ λi}.

(4) Fire all current enabled transitions and calcu-
late new certainty factors which are produced
by Þred transitions according to DeÞnition 2.

(5) Make token transmission. Assume p is one of
the output places of a Þred transition
� If |·p| = 1, then add a token to p with the
certainty factor which is produced by its
input transition;

� If |·p| > 1 and more than one of its input
transitions Þred, then select the transi-
tion with the maximum output weight,
and add a token to p with the certainty
factor produced by this transition .

(6) Let T = T − Tf , P = P −· Tf
(7) Go to Step2 and repeat, until Tf = ∅
Before training an Adaptive Fuzzy Petri Net
(AFPN), we should be clear what are the system
output and input. Assume that a system is de-
scribed by WFPRs�, we deÞne all the right hands
of the rules as system output. If we have enough
training data, the parameters can be adjusted well
enough.

Given a WFPR R, we suppose that the thresholds
of all its antecedent propositions λ1, λ2, · · · , λn
and its certainty factor µ are known. However, we
are not sure about the input weights wI1, wI2,
· · · , wIn. These weights can be learned in the
situations which there are enabled transitions. For
Type 1 WFPR�s, the input weights are meaning-
less, only Type 2 and 3 WFPR�s weights need to
be studied.

We take Type 2 WFPR as an illustration. Type
2 FPR�s can be translated into a standard neural
network:

y(k) =W [(k)T P (k) + b]

where k is time, input vector

P (k) = [α(p1)(k)− λ1,α(p2)(k)− λ2]T

the weight vector W (k) = [wI1(k), wI2(k)]
T , bias

b = min(λ1,λ2), the output y(k) is the certainty
factor of the consequence. So the Widrow-Hoff

learning law (Least Mean Square) can be applied
as

W (k + 1) =W (k) + 2 δ e(k) P (k)
e(k) = t(k)− y(k) (1)

where t(k) is the goal output (teacher) and the
weight vector W (k) is calculated recursively. It is
known that for a small enough positive constant
δ, the updating law (1) converges to real values
(Yu and Li, 2001).

For Type 3WFPR, the learning law is similar. Ac-
cording to DeÞnition 2, by comparing the weights
of the input arcs of a place, it is not difficult to
know which transition is the dominating one to it,
so if the data are available, then training can be
implemented.

3. MODELING CONTINUOUS DYNAMIC
WITH NEURAL NETWORKS

Consider a dynamic process given by
·
xt= f(xt, ut) (2)

where xt ∈ <n is the state, ut ∈ <m is the input
vector . f : <n×<m → <n is locally Lipschitz. Let
us consider the following dynamic neural network
to identify the chemical process (2)

·bxt= Axt +W1,tσ(bxt) +W2,tφ(bxt)ut (3)

here bxt ∈ <n is the state of the neural network,
A ∈ <n×n is a stable matrix . W1,t ∈ <n×n and
W2,t ∈ <n×n are weight matrices. The vector
Þeld σ(xt) : <n → <m is assumed to have the
elements increasing monotonically. The function
φ(·) is the transformation from <n to <m×m.
The typical presentation of the elements σi(·) and
φij(.) are as sigmoid functions

σi(bxi,t) = ai/³1 + e−bibxi,t´− ci.
The structure of the dynamic neural networks
(3) is shown in Fig.4. This kind of dynamic neu-
ral networks have been discussed by many au-
thors, for example (Yu and Li, 2001), (Rovithakis
and Christodoulou, 1994) and (Yu and Poznyak,
1999). Generally, dynamic neural network (3) can-
not follow the nonlinear system (2) exactly, the
nonlinear system may be written as

·
xt= Axt +W

∗
1 σ(xt) +W

∗
2 φ(xt)π (ut)− eft(4)

where W ∗
1 and W ∗

2 are optimal matrix which
may minimize the modelling error eft. They are
bounded as

W ∗
1Λ

−1
1 W

∗T
1 ≤W 1,

W ∗
2Λ

−1
2 W

∗T
2 ≤W 2

(5)
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Fig. 4. The structure of the dynamic neural net-
work.

Because σ(·) and φ(·) are chosen as sigmoid func-
tions, clearly they satisfy Lipschitz. condition,

eσTt Λ1eσt ≤ ∆Tt Λσ∆t,eφtTΛ2eφt ≤ u∆Tt Λφ∆t (6)

where eσt := σ(bxt)−σ(xt), eφt := φ(bxt)ut−φ(xt)ut,
Λ1, Λ2, Λσ and Λφ are positive deÞne matrices.
Let us deÞne identiÞcation error as

∆t := bxt − xt
, its dynamic is obtained from (3) and (4)

·
∆t= A∆t +fW1,tσ(bxt)+fW2,tφ(bxt)ut +W ∗

1 eσt +W ∗
2
eφt + eft (7)

wherefW1,t :=W1,t−W ∗
1 ,
fW2,t :=W2,t−W ∗

2 .Next
Theorem states the learning procedure of neuro
identiÞer.

Theorem 1. If the modelling error eft is bounded
( efTt Λ−1f eft ≤ η) and the weights W1,t and W2,t of
the dynamic neural networks deÞned by (3) are
updated as

·
W 1,t= −K1σ(bxt)∆Tt ,·
W2,t= −K2φ(bxt)ut∆Tt (8)

where K1 and K2 are positive matrices, then the
identiÞcation error is bounded and satisÞes

lim sup
T→∞

1

T

TZ
0

k∆tk2Q0
dt ≤ η, Q0 = Q

T
0 > 0(9)

The proof may be found in (Yu and X. Li, 2001).
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Fig. 5. Structure for hybrid modeling

4. MODELING SUPERVISORY HYBRID
SYSTEM

The structure of the supervisory hybrid system
and hybrid Petri net is showed in Fig.5.

We deÞne a hybrid Petri net as

H = (AFPN,NNσ)

where σ ∈ M = {1, 2, ...,m} is the set of con-
tinuous processes, the multiple dynamic neural
networks are

·bxt= Aσbxt +Wσ
1,tσσ(bxt) +Wσ

2,tφσ(bxt)ut (10)
(10) may be rewritten as following dynamic sys-
tem

úx = fσ(x, u), x(0) = x0 (11)

Each proposition in AFPN may correspond to
a neural network. So the three types of WFPR
describing hybrid systems may be represented as
follows (see Fig.6-Fig-8):

Type 1: A Simple Fuzzy Production Rule

R: IF a THEN process c1 Th(t) = λ, WO(t, pj) =
µ, WI(pi, t) = w

Type 2: A Composite Conjunctive Rule

R: IF a1 AND a2 AND · · · AND an THEN process
c2, Th(t) = λ, WO(t, pj) = µ, WI(pi, t) = wi,
i = 1, · · · , n
Type 3: A Composite Disjunctive Rule

R: IF a1 OR a2 OR · · · OR an THEN process
c2, Th(ti) = λi, WO(ti, pj) = µ, WI(pj , ti) = wi,
i = 1, · · · , n

5. CASES STUDY

Example 1. {A,B,C,D,E, F,G} are related propo-
sitions of a knowledge based system Γ. Between
them there exist the following rules

R1: If A and B Then E, λA,λB, wA, wB (CF=µ1)
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R2: If C Then F, λC (CF=µ2)

R3: If F Then G, λF (CF=µ3)

R4: If D and E Then G, λD,λE, wD, wE
(CF=µ4).

Based on above translation principle, we map this
system Γ into an AFPN which is shown as Fig. 9.
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Assume we know the following real data

λA =0.5, λB = 0.8, λC = 0.3,

λD =0.8, λE = 0.1, λF = 0.4,

µ1 =0.8, µ2 = 0.9, µ3 = 0.6, µ4 = 0.7
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Fig. 10. Weights learning

As the desired weights

w∗A = 0.73, w
∗
B = 0.27, w

∗
D = 0.1, w

∗
E = 0.9(12)

are unknown, we will use neural networks tech-
nique to learn these weights from actual data.
Given any inputΥ = {α(pA),α(pB),α(pC),α(pD)} ,
the human expert can give the corresponding
output Ψ = {α(pE),α(pF ),α(pG)} . For example
suppose that for Υ1 = {0.7, 0.9, 0.5, 0.9}, the de-
sired output is Ψ = {0.5148, 0.45, 0.3406} ; and for
Υ2 = {0.4, 0.2, 0.9, 0.7}, the desired output is Ψ =
{0, 0.81, 0.648} . Let the initial a priori weights be:

wA(0) = 0.5;wB(0) = 0.5;wD(0) = 0.2;wE(0) = 0.8

To apply Widrow-Hoff learning law, we make
t(k) the desired outputs tα(pE)(k) = [0.5148, 0],
tα(pG)(k) = [0.3406, 0.648], y(k) = [α(pE),α(pG)] ,
P1(k) = [α(pA),α(pB)] , P2(k) = [α(pD),α(pE)] ,
δ = 1.7. The learning results are shown in Fig.
10. One can see that after 20 steps, the weights
converge to their real values, i.e., AFPN mathe-
matically models the knowledge based system Γ.

Example 2. A typical batch process cell shown
schematically in Fig.11. The cell consists of two
reactors and one mixing tank.

The reactor P4 is controlled by the command P1 :
IF P1 THEN P4(λ1,µ1).

The reactor P5 is controlled by the command P2
and also reactor P4 is Þnished

IF P2 AND P4 THEN P5(w2, w4,λ3, µ3)

The mixing tank P6 is started if reactor P5 is
Þnished, or there is input from another batch cell
P3

IF P3 AND P5 THEN P6(λ2, µ2,λ4, µ4)First,
based on the translation principle, we map the
logic system into an AFPN as follows (shown as
Fig.12).

FPN = {P, T,D, I,O,α,β, Th,W}
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where P = {p1, p2, p3, p4, p5, p6}, T = {t1, t2,
t3, t4}, D = {P1, P2, P3, P4, P5, P6}, Th = {λ1,
λ2, λ3, λ4}, WI = {w2, w4}, WO = {µ1, µ2, µ3,
µ4}.

The two reactors and one mixing tank are mod-
eled by three dynamic neural networks NN1-NN3.
We may see that the combination of Petri net
and neural networks can model logic-based hybrid
systems easily.

6. CONCLUSION

This paper introduce a new method for hybrid
system modeling. Since a lot of hybrid systems
may be described by two aspects: knowledge parts
which is easily represented by production rules,
and continuous process which can be easily mod-
eled by neural networks. We use fuzzy Petri net
to model the knowledge part, and neural networks
to model the detailed continuous processes. Two
hybrid example show that the method proposed
by us is very easy to be implemented.
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