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Abstract: This paper presents an investigation into classifying myoelectric signals using 
a new fuzzy clustering neural network architecture for control of multifunction 
prostheses. Moreover, a comparative study of the classification accuracy of myoelectric 
signals using multi-layer perceptron with back-propagation algorithm, and the new fuzzy 
clustering neural network (FCNN) is presented. The myoelectric signals considered are 
used to classify four upper-limb movements, which are elbow flexion, elbow extension, 
wrist pronation and wrist supination, grasp, and resting. The results suggest that FCNN 
can generalise better than the multi-layer perceptron without requiring extra 
computational effort. The proposed neural network algorithm allows the user to learn 
better and faster. Copyright © 2002 IFAC 
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1. INTRODUCTION 

In prosthesis control applications, the identification 
of various myoelectric signals is used to control the 
movement of prostheses. The control strategy of 
prostheses is based on generating a set of repeatable 
muscle contraction patterns and classifying these 
patterns in a suitable manner. In conventional 
methods, this strategy is slow and not reliable when 
the muscle contraction is different from the ordinary 
arm function.  The information extracted from the 
myoelectric signal, represented in a feature vector, is 
chosen to minimise the control error. To achieve this 
a feature set, which maximally separates the desired 
output classes must be chosen. The need for fast 
response of the prosthesis limits the period over 
which these features can be extracted. The 
recognition of the signal characteristics can be 
accomplished with various soft-computing 
approaches, such as neural networks and fuzzy logic. 

For example, Chaiyaratana et al. (1996) used two 
different types of radial basis function (RBF) neural 
networks, Kelly et al. (1990), Ito et al. (1991), and 
Karlik et al. (1994) have used different multi-layer 
perceptron (MLP) neural network structures, 
Hudgins et al. (1993) have used Hopfield and ART, 
and later FIRNN, Englehart et al. (1995), Del Boca 
and Park (1994), and Seker (1995) have used 
different kinds of fuzzy classification techniques. 
Most of the research has been carried out with using 
MLP neural networks (NNs) containing one hidden 
layer in conjunction with the back-propagation 
algorithm. However, the work reported by Costa and 
Gander (1993), incorporates an MLP NN with two 
hidden layers. 

Myoelectric signals can be drawn from various 
locations on a subject’s body. This is an application 
dependent criterion. For example, the signals from 
flexor digitorium superficialis are used in the 
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classification of finger movements (Hiraiwa et al., 
1989), and the signals from biceps and triceps 
branchii are used to determine the arm movements 
(Hudgins et al., 1993; Ito et al., 1991; Kuruganti et 
al., 1995). The control signal can be derived from a 
single myoelectric channel (Costa and Gander, 1993; 
Hudgins et al., 1993; Karlik et al., 1994; Kelly et al., 
1990), or from multi channels, such as two channels 
(Kuruganti et al., 1995; Yeh et al., 1993), four 
channels (Ito et al., 1991), or five channels 
(Doerschuk et al., 1983). Using a single channel 
myoelectric signal would result in less complexity in 
the NN structure. However, the positions of 
electrodes can become less critical and the 
classification accuracy can be increased with multi-
channel signals (Kuruganti et al., 1995). 

Most of the previous research is concerned with the 
classification task of arm movements. The 
experiments are usually carried out in two possible 
ways: by exposing the subject’s arm movements to a 
weight constraint (Costa and Gander, 1993) or by 
allowing the subject to perform the movement 
naturally (Hudgins et al., 1993; Kuruganti et al., 
1995). The control schemes, on the other hand, have 
been based almost entirely upon a discriminate 
approach to pattern recognition, in which each 
pattern is described by a set of features. Feature sets 
can be obtained using various methods. For example, 
the parameters of some stochastic models such as an 
autoregressive (AR) model or autoregressive moving 
average (ARMA) model can be used as a feature set. 
A number of researches have accordingly utilised AR 
models (Doerschuk et al., 1983; Graupe et al., 1985; 
Karlik et al., 1994; Kelly et al., 1990; Kiryu et al., 
1994; Merletti and Lo Conte, 1995; Zardoshti-
Kermani et al., 1995, Chaiyaratana et al., 1996). All 
these have been based upon the research work of 
Graupe and Kline (1975), which involves modelling 
myoelectric signals as ARMA models. Later research 
has shown that an AR model is sufficient for 
modelling myoelectric signals. Graupe et al. (1985) 
has proved that a myoelectric signal within a period 
of 0.2-0.3 seconds can be modelled as a 4th order AR 
model. Different arm movements are considered in 
studying the muscle contraction. AR parameters of 
myoelectric signals received from the muscles for 
these different movements are used as features to 
classify the signals with an NN model (Kelly et al., 
1990; Karlik and Ozbay, 1996; Karlik et al., 1994). 

The classification problem may be divided into the 
stages of feature extraction, dimensionality 
reduction, and pattern recognition. Englehart et al. 
(2001) have solved this problem using a wavelet 
packet based feature set, which is shown to 
outperform all other forms of signal representation 
except that reported by Karlik (1999). 

In the study reported in this paper the AR model 
parameters and their signal power are used as 
features using PARCOR methods for the feature sets. 

The feature sets are clustered for different arm 
movements using the fuzzy C-means algorithm, and 
the cluster sets are used as input to an NN. Moreover, 
the paper presents a comparative study of the 
classification accuracy of myoelectric signals using 
MLP NN using the back-propagation algorithm and a 
fuzzy clustering neural network. The results of 
classification accuracy are shown to be better than 
that reported by other researchers. 

2. DETERMINATION ON MLP STRUCTURE 

In this study a three-layered feed-forward neural 
network is used and trained with the error back-
propagation algorithm. Figure 1 shows a general 
structure of the neural network.  The back 
propagation training through generalised delta rule of 
learning is an iterative gradient algorithm designed to 
minimise the root mean square error between the 
actual output of the multi-layer feed-forward NN and 
the desired output. Each layer is fully connected to 
the previous layer, and has no other connection. The 
cost function of the MLP is given as 
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where ε( )n  is the instantaneous cost function at 
iteration n, e nk ( )  is the error from output node k at 
iteration n and  No is the number of output nodes. 

The error from each output node can be defined as 

 e n d n y nk k k( ) ( ) ( )= −  (2) 

where ( )ndk  is the desired response of output 
node k  at iteration n  and ( )nyk  is the output of 
the output node k  at iteration n . 
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Fig. 1. General structure of MLP neural network. 



Haykin (1994) gives a summary of the back-
propagation algorithm as follows: 

1. Initialisation. Set all the weights and threshold 
levels of the network to small random numbers 
that are uniformly distributed. 

2. Forward computation. Let a training example be 
denoted by [x(n), d(n)], with the input vector 
x(n) applied to the input layer and the desired 
response vector d(n) presented to the output 
layer. The net internal activity level vj

(l)(n) for 
neurone j in layer l is given by 
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where yi
(l-1)(n) is the signal from neurone i in the 

previous layer l-1 at iteration n and wji
(l)(n) is the 

weight of neurone j in layer l that is connected to 
neurone i in layer l-1 at iteration n. For i = 0 
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where θj
(l)(n) is the threshold applied to neurone 

j in layer l. With the use of a logistic function for the 
sigmoidal non-linearity, the output of neurone j in 
layer l is given by 
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If neuron j is in the first hidden layer (i.e., l = 1), set 

 y n x nj j
( ) ( ) ( )0 =  (7) 

where xj(n) is the jth element of input vector 
x(n). If neurone j is in the output layer (i.e., l = L), set 

 y n o nj
L

j
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The error can be computed as 

 e n d n o nj j j( ) ( ) ( )= −  (9) 

where dj(n) is the jth element of the desired 
response vector d(n). 

3. Backward computation. Compute the local 
gradients (δ) of the network by progressing 
backward, layer-by-layer. For neurone j in 
output layer L, the local gradient is given by 
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For neurone j in hidden layer l, the local gradient is 
given by 
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The weight of the network in layer l can be adjusted 
according to the generalised delta rule as, 
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where η is the learning rate parameter and α is the 
momentum constant. In this study, the learning rate 
parameter is chosen to be 0.95. The number of 
hidden nodes is determined experimentally. 
Experimental results show that the optimum number 
of hidden nodes is 7 with the highest classification 
accuracy of 97% for 2000 iterations. 

3. DETERMINATION OF THE FUZZY 
CLUSTERING NEURAL NETWORK 

STRUCTURE 

Structure identification of fuzzy systems is possible 
by constructing enough rules with the appropriate 
input and output membership functions. The 
identified model can accordingly be used to describe 
the behaviour of the target system as well as for 
prediction and control purposes.  

The idea of fuzzy clustering is to divide the data into 
fuzzy partitions, which overlap with each other. 
Therefore, the containment of each data to each 
cluster is defined by a membership grade in [0,1]. In 
formal words, clustering in unlabeled data X={x1, x2, 
…, xN} ℜ⊂ h, where N is the number of data 
networks and h is the dimension of each data vector, 
is the assignment of c number of partition labels to 
the vectors in X. c-Partition of X are sets of (c.N) 
membership values {uik} that can be conveniently 
arrayed as a (cxN) matrix U=[uik]. The problem of 
fuzzy clustering is to find the optimum membership 
matrix U. The most widely used objective function 
for fuzzy clustering in X is the weighted within-
groups sum of squared errors objective function Jm 
which is used to define the following constrained 
optimisation problem (Bezdek, 1993): 
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where, 
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V={v1,v2,…,vc} is a vector of (unknown) cluster 

centres, and Axxx T
A =  is an inner product 

norm. A is an hxh positive definite matrix, which 
specifies the shape of the clusters. The matrix A 
commonly selected as the identity matrix, leading to 
the definition of Euclidean distance, and 
consequently to spherical clusters. Fuzzy partitions 
are carried out by the fuzzy C-means (FCM) 
algorithm through an iterative optimisation of 
equation (16) according to the following steps 
(Emami et al. 1996): 

Step-1: Choose the number of clusters (c), weighting 
exponent (m), iteration limit (iter), termination 
criterion ( ε >0), and the norm for error = 1−− tt VV . 

Step-2: Guess initial position of the cluster centres: 
V0 ={v1,0, v2,0,…, vc,0} ℜ⊂ ch. 

Step-3: Iterate for t = 1 iter; Calculate 
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IF error = 1−− tt VV ε≤ , THEN stop, and put (Uf, 
Vf) = (Ut, Vt) NEXT t. 

In this paper, a clustering-based approach is adopted 
for four AR parameters and their signal power used 
as input to the NN. Six clusters with a total data size 
of 6x5 for each movement is used. This corresponds 
to half the size of the real data, which is 6x12 for 
each movement. Table 1 shows the recognition rates 
for the six arm movements achieved after 2000 
iterations. As noted the recognition rates vary 
between 93% and 100%, with average recognition 
accuracy of 98 %. 

For example, 6 test patterns belonging to elbow 
flexion were recognized successively. Recognition 
rates 97% were found for one of them, 98% for both 
of them, and 99% for the others. 

 

Table 1. Recognition rates for the six arm 
movements 

 93
% 

95
% 

96
% 

97
% 

98
% 

99
% 

100
% 

Resting     2 2 2 
Wrist Sup. 1  1 1 2 1  

Grasp  1   2 3  
Wrist Pro.    1  1 4 

Elbow 
Ext. 

 1  2 1 1 1 

Elbow 
Flex 

   1 2 3  

Total 1 2 1 5 9 11 7 

4. RESULTS AND DISCUSSION 

Two different training and test sets were used. All 
samples were trained and tested using MLP and 
fuzzy clustering neural network (FCNN). The results 
for the generalised case in terms of different 
convergence rates for the six arm movements are 
given in Table 2. 

Figure 2 shows the classification rate of both 
methods as a function of number of iterations. As can 
be seen, with both methods, the classification rate 
decreased with an increase in the number of 
iterations. 

The results show that the FCNN converges to a 
determined error goal at lower training epochs than 
the MLP. Moreover, The FCNN gives much better 
results than the MLP in most cases with respect to 
correct classification rate, which was found as 
98.3%. This is the best result compared to those 
reported previously; Karlik (1999) found 96.1% 
classification rate, and Englehart et. al. (1999) found  
93.7% classification rate. 

Table 2. Comparing two methods 

 MLP FCNN 
Classification rate 97 % 98 % 

Iteration Number 2000 2000 
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Fig. 2. Classification rate of MLP and CFNN. 



5. CONCLUSION 

A new technique based on fuzzy clustering neural 
networks has been proposed for classification of 
myoelectric signals. A comparative study of the 
proposed technique has been carried out with the 
MLP neural networks and it has been demonstrated 
that the FCNN method outperforms the MLP NN. 
Moreover, it has been shown that the FCNN method 
gives better classification rates than other previously 
reported techniques. 
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