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Abstract: The algorithmic analysis of control systems for large and distributed hybrid
systems is considerably restricted by its computational complexity. In order to enable
the verification of discrete controllers for such hybrid systems, this contribution
proposes an approach that combines decomposition, model checking and deduction.
The system under examination is first decomposed into a set of modules represented
by communicating linear hybrid automata. The Assumption/Commitment method
is used to to prove properties of coupled modules and to derive conclusions about
the behavior of the entire system. The individual Assumption/Commitment-pairs are
proven using established methods for model checking. Copyright c©2002 IFAC
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1. INTRODUCTION

To ensure the proper operation of a discrete con-
troller in connection with a hybrid system, a for-
mal investigation, also referred to as verification,
can be used to obtain conservative and correct
results. First, formal models of both the controller
and the plant are developed, then the criteria for
a proper operation are described as safety or live-
ness properties of the models. Various techniques
to formally verify such properties for discrete
event systems as well as timed and hybrid systems
have been developed within the last decade. These
techniques can roughly be divided into theorem
proving and model checking. While theorem prov-
ing aims at inferring properties by deduction in
a mostly manual procedure, the latter performs
an algorithmic search through the state space of
a transition system in order to detect whether
states are reachable, in which a required property

is violated. Model checking plays a dominant role
in particular for the analysis of hybrid systems,
and successful applications have been reported
for systems with complex (nonlinear) continuous
dynamics, see e. g. (Lynch and Krogh, 2000).
However, these applications are restricted to sys-
tems with a small number of components and
continuous variables due to an inherently large
computational effort.

If a large hybrid system exhibits a distributed
structure, verification techniques can still be ap-
plied using a modular approach as shown in Fig. 1.
The system is first decomposed into a set of
modules (M1, . . . ,Mn) that represent physical or
functional units. The size of the modules is chosen
such that model checking is possible for the com-
position of a small number of modules, and their
behavior is modelled by linear hybrid automata
(S1, . . . , Sn). The idea is then to show local prop-
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erties for each module by model checking and to
combine the local results by deduction in order
to derive a global property of the complete sys-
tem. The crucial step of this approach is to verify
local properties for each module individually us-
ing justified assumptions about its environment
– here the Assumption/Commitment method is
employed, as introduced in (Clarke and Emer-
son, 1982; Queille and Sifakis, 1982). A required
property of a single module Mj is first verified by
model checking for a likely (or desired) behavior
of the module’s environment. Hence, the automa-
ton Sj commits itself to the required property
(the commitment cj) if the environment behaves
according to reasonable restrictions (the assump-
tions aj). In a second step, it has to be checked
whether the environment indeed behaves as as-
sumed, taking into account that the considered
module Sj reacts according to the commitment.
This step is performed by deductively combining
the Assumption/Commitment pairs for all mod-
ules. The result is a statement about the global
property of the complete system: S |= (a, c).

Different approaches to a decompositional analy-
sis based on the principle of Assumption/Commit-
ment can be found in literature. Depending
on the underlying formalism they are called
Rely/Guarantee, Assumption/Commitment orAs-
sume/Guarantee (Misra and Chandy, 1981; Jones,
1981; Pnueli, 1984; Abadi and Lamport, 1995).
However, most of them were applied to dis-
crete systems and still few applications to real
time and hybrid systems have been reported
(Hooman, 1997; Chang et al., 1994; Alur and
Henzinger, 1997; Henzinger et al., 1998; Henzinger
et al., 2000). In difference to those approaches,
this contribution aims at developing an analy-
sis strategy that can be used within the design
procedure for discrete controllers of distributed
hybrid systems. Particularly, manufacturing and
processing systems are characterized by a number
of interacting processing units with hybrid behav-
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Fig. 1. Analysis Procedure

ior. Control systems for such processes usually
comprise a number of local discrete controllers but
also supervisory controllers that coordinate the
interaction of different process parts on a more
abstract level. The analysis of a controller design
for these processes based on the proposed decom-
positional approach seems promising for two rea-
sons: First, the structure of the control systems as
well as the process usually has a modular nature
such that the decomposition is obvious. Second, a
module often interacts only with a small number
of other modules, and thus its environment can be
described using a sufficiently small model. Both
criteria are essential for a successful application
of the proposed approach.

2. MODELING WITH COMMUNICATING
LINEAR HYBRID AUTOMATA

Given a decomposition of the controlled process,
an important step is to model the modules such
that (i) the communication between the individ-
ual modules can be represented, and (ii) that
the model can be analyzed by model checking.
In (Alur et al., 1995), Linear Hybrid Automata
(LHA) are defined as a model for linear hybrid sys-
tems for which implementations of model check-
ing algorithms are available. A LHA combines a
state transition structure with continuous dynam-
ics defined by differential inclusions. The com-
munication between different LHA is modelled
by synchronization on common synchronization
labels. For our purposes, the LHA model lacks
two important features: The communication is not
directed, i.e. it is not possible to distinguish be-
tween sending and receiving automata. Secondly,
all continuous variables are shared, so there is no
possibility to specify explicitly that one LHA can
assign new variable values which others can only
read.

2.1 The Definition of CLHA

Therefore Communicating Linear Hybrid Au-
tomata (CLHA) are defined as an extension of
LHA with input and output variables, and labels
which distinguish between directed, i.e. sending
or receiving, and undirected, i.e. synchronizing,
communication: A CLHA is a 6-tuple

A = (Loc,Var ,Lab,Edg ,Act , Inv)

with:

• a finite set of locations Loc = {q1, . . . , qp}.
• a finite set of real variables Var = Var in ∪
Var int comprising two disjoint sets of input and
internal variables. A subset Varout ⊆ Var int

defines the output variables. A valuation ν

(contained in a valuation set V ) is a function



which assigns a real value to each variable x ∈
Var , i.e., ν(x) ∈ R. A state of A is a pair (q, ν)
of a location and a valuation.

• a finite set Lab = Labrec ∪ Labsend ∪ Labsync

that consists of three disjoint sets of symbolic
labels, called receive labels, send labels and syn-
chronization labels.

• a finite set Edg of discrete transitions. Each
transition e = (q, l, ρ, q′) between two locations
q, q′ ∈ Loc depends on a label l ∈ Lab ∪
{τ}, with τ denoting an internal transition,
and an enabling transition relation ρ ⊆ V ×
V . The transition e is enabled in state (q, ν)
iff a valuation ν ′ with (ν, ν′) ∈ ρ exists. ν′

denotes the evaluation that results from the
transition taken in state (q, v). It is required
that ν(x) = ν ′(x) for all x ∈ Var in , since
input variables cannot be changed by discrete
transitions. For any location q ∈ Loc there must
be a special internal transition (q, τ, {(ν, ν)|ν ∈
V }, q) ∈ Edg , called “stutter transition”.

• A labeling function Act : Loc×Var int → R that
denotes the rate of change of the int. variable x
in location q: Act(q, x) ∈ [k1, k2], k1, k2 ∈ R.

• a labeling function Inv : Loc → 2V assigning an
invariant Inv(q) ⊆ V to each location q ∈ Loc.

Informally, the behavior of A can be understood
as follows: Starting from an initial state (q0, v0)
the automaton remains in the current location un-
til a transition is taken. The continuous evolution
within a location is determined by the activities
assigned to the internal variables. A transition
must be taken before the invariant is evaluated
to be false. The transitions depend on the current
values of the input and internal variables, and on
the synchronizatin labels in Labrec and Labsync :
A run of A starting at state (q0, ν0) is a finite or
infinite sequence

(q0, ν0)
l0−→t0 (q1, ν1)

l1−→t1 (q2, ν2)
l2−→t2 . . .

of states (qi, νi) with li ∈ Lab ∪ {τ}, ti ∈ R≥0, if
the following conditions apply:

(1) For all 0 ≤ t ≤ ti there exists a ν ∈ Inv(qi)
such that for all x ∈ Var int , νi(x)+Act(qi, x) ·
t = ν(x).

(2) There exists a valuation ν∗ ∈ Inv(qi) with
ν∗(x) = ν(x)+Act(qi, x) · ti for all x ∈ Var int

such that (qi, li, (ν
∗, νi+1), qi+1) ∈ Edg .

2.2 The Composition of CLHAs

Given two CLHA (i ∈ {1, 2})

Ai = (Loci,Var i,Labi,Edg i,Act i, Inv i)

with variable sets Var i
in , Var

i
int , Var

i
out and label

sets Labi
rec , Lab

i
send , Lab

i
sync , and provided that

Var1
int ∩ Var2

int = ∅, and Labi
send ∩ (Lab

j
send ∪

Labj
sync) = ∅, Labi

rec ∩ Labj
sync = ∅, for {i, j} =

{1, 2}, the parallel composition of A1 and A2

A1||A2 = (Loc,Var ,Lab,Edg ,Act , Inv)

is a CLHA with:

• locations Loc = Loc1 × Loc2,
• variable sets Var in = (Var

1
in \Var

2
out )∪(Var

2
in \

Var1
out ), Varout = Var1

out ∪ Var2
out , Var int =

Var1
int ∪Var

2
int ,

• labeling sets Labrec = (Lab1

rec \ Lab2

send ) ∪
(Lab2

rec \Lab
1

send ), Labsend = Lab1

send ∪Lab
2

send ,
Labsync = Lab1

sync ∪ Lab
2

sync ,
• an activity function
Act((q1, q2), x) = Act i(qi, x) if x ∈ Var i

int ,
• an invariant assignment Inv : Loc → 2V with
Inv((q1, q2)) = {ν ∈ V |∃ν1 ∈ Inv1(q1), ν2 ∈
Inv2(q2) : ν = ν1 ∪ ν2 ∧ ∀x ∈ Var1 ∩ Var2 :
ν1(x) = ν2(x)}, and

• ((q1, q2), l, ρ, (q
′
1, q

′
2)) ∈ Edg iff there exist l1 ∈

Lab1 and l2 ∈ Lab2 such that:
(1) (qi, li, ρi, q

′
i) ∈ Edg i, where ρi is the pro-

jection of ρ on the variables of Ai, for
i ∈ {1, 2}, and

(2) the labels l1, l2, and l are one of the
following combinations with {i, j} = {1, 2}:
· l = l1 = l2 = τ ,
· l = li ∈ Labi

rec \ Lab
j
send , lj = τ ,

· l = l1 = l2 ∈ Labrec ,
· l = li ∈ Labi

send , lj = τ ,
· l = li = lj ∈ Labi

send ∩ Lab
j
rec ,

· l = li ∈ Labi
sync \ Lab

j
sync , lj = τ ,

· l = l1 = l2 ∈ Labsync .

3. MODULAR ANALYSIS BASED ON THE
ASSUMPTION/COMMITMENT METHOD

Consider the behavior of a module Si. Let

Si |= (ai, ci), (1)

denote that Si commits itself to fulfilling the
commitment ci under the assumption ai. The
pair (ai, ci) is called an assumption/commitment-
pair (a/c-pair). A/c-pairs must be found for all
modules such that their deductive combination
guarantees the fulfillment of a global pair (a, c):

S1 |= (a1, c1)
...

Sn |= (an, cn)
B(a1, . . . , an, c1, . . . , cn, a, c)

S1||S2|| . . . ||Sn |= (a, c)
. (2)

In addition to the a/c-pairs, logical conditions B

are needed in order to connect assumptions and
commitments and to break circularity. While for
autonomous systems a is usually required to be



true, many technical systems depend on outside
resources or human interaction which can be rep-
resented by an appropriate assumption a. The
main difficulty is to find appropriate a/c-pairs for
all modules such that their deductive combination
guarantees the fulfillment of the global pair (a, c).
Choosing the assumption/commitment pairs is
the creative work of the modeler and can only
partially be automated.

3.1 Application Using Automata

The proof of relation (1) can be automated using
model checking (Grumberg and Long, 1991). The
assumptions ai are modeled by automata Ai and
the commitments ci are expressed by temporal
specifications, e.g., CTL formulae. Alternatively,
a test automaton CT

i can be constructed which
includes a fail state that is reachable if and only
if ci is not fulfilled. All automata are specified as
communicating linear hybrid automata. Then, the
reachability of the fail state is checked to show
that:

Si||Ai||C
T
i |= ¬reach(fail)⇒ Si |= (ai, ci).(3)

The following two sections propose a/c-pairs on
the basis of established proof rules. Both rules
are presented on the basis of abstractions, where
the desired behavior of a module Si is specified
by an abstraction automaton Ŝi. The formula
Si ¹ Ŝi denotes that Si meets the specification,
with ¹ denoting simulation. This means that any
behavior of Si can be matched by a corresponding
behavior of Ŝi (but not vice versa). The a/c
pair from (3) can be expressed as the following
abstraction:

Si||Ai ¹ Ci||Ai, (4)

where Ci contains all behaviors of Si fulfilling ci.

3.2 Circular Assumption/Commitment

The following proof rule, also referred to as
Assume/Guarantee rule, has successfully been
applied to small real-time and hybrid systems
(Henzinger et al., 1998). In order to verify that
Si|| . . . ||Sn meets the specifications Ŝi|| . . . ||Ŝn

the following proof is carried out:

S1||Ŝ2|| . . . ||Ŝn−1||Ŝn ¹ Ŝ1||Ŝ2|| . . . ||Ŝn

Ŝ1||S2|| . . . ||Ŝn−1||Ŝn ¹ Ŝ1||Ŝ2|| . . . ||Ŝn

...

Ŝ1||Ŝ2|| . . . ||Ŝn−1||Sn ¹ Ŝ1||Ŝ2|| . . . ||Ŝn

B(S1, . . . , Sn, Ŝ1, . . . , Ŝn)

S1||S2|| . . . ||Sn−1||Sn ¹ Ŝ1||Ŝ2|| . . . ||Ŝn

. (5)

Again, additional conditions B are needed to
avoid that the composition of the original modules

shows a behavior that can’t be met by more than
one of the abstractions, in which case the proof
would fail. With the following definition for Ai

and Ci, the constituents of (5) can be obtained
from (4):

Ai = Ŝ1|| . . . ||Ŝi−1||Ŝi+1|| . . . ||Ŝn, Ci ¹ Ŝi.(6)

3.3 Chain Rule Assumption/Commitment

In a chain rule form, the Assumption/Commitment
proof becomes simple and requires no further ad-
ditional logical conditions or explicit deduction:

S1 ¹ Ŝ1

Ŝ1||S2 ¹ Ŝ1||Ŝ2

...

Ŝ1||Ŝ2|| . . . ||Ŝn−1||Sn ¹ Ŝ1||Ŝ2|| . . . ||Ŝn

S1||S2|| . . . ||Sn−1||Sn ¹ Ŝ1||Ŝ2|| . . . ||Ŝn

. (7)

It can be interpreted in the following way: Ŝ1

has to capture the behavior of S1 for all possible
inputs. Ŝ2 has to simulate S2 with the inputs
from Ŝ1, which is easier than with all possible
inputs. For the last module Ŝn, only the behavior
occurring under the influence of Ŝ1|| . . . ||Ŝn has
to be taken into account. The proof of (7) is
straightforward and can be done by iteratively
applying the equations to their successors. This
rule is simple, but in the following sense, it can’t
be improved:

• Adding a term Ŝi to both sides of one of
the equations will destroy the soundness unless
further conditions are included.

• Removing a term Ŝi+1 will lead to a wider range
of inputs that Si will have to cooperate with.

Let A denote an automaton modeling a global
assumption as part of the initial conditions. The
automata Ai and Ci become for i > 1:

A1 = A, Ai = Ŝ1|| . . . ||Ŝi−1, Ci ¹ Ŝi. (8)

In order to reduce the complexity of the proof
steps, the assumption can be widened, i.e. for
j < i any Ŝj can be dropped from both sides of
(8) at any step. This however might lead to an
abstraction that is too wide and violates one of
the proof steps. If the proof fails because the inter-
actions of the modules cannot be captured by the
abstractions in a chain sequence, the assumption
should be made more restrictive by adding any
Sj , j > i, to both sides of (8) at any step. This in
turn will increase the complexity.

4. ANALYSIS OF A BUFFER TANK

Consider a tank with an inlet valve and a constant
outflow. A controller is responsible for opening the



inlet valve while ensuring that the buffer tank
neither overflows nor empties completely. The
verification task is to check whether the level stays
within the limits:

0 < x < xmax (9)

busy1
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<s tC

busy2
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Fig. 2. Automata for controller, valve and tank

Fig. 2 shows the models for the tank, its inlet
valve and the controller in the form of CLHA. The
graphical representation is as follows: The vertices
are labelled with the invariant and the rates of the
continuous variables. The transitions are labelled
with receive (‘?’), send (‘!’) or synchronization
labels (no additional marking), and with assign-
ments for the continuous variables. Due to the
constant outflow, the tank level can be modelled
with a rate of r1 = 3 m min

−1 if the inlet valve
is open and r2 = −2 m min−1 if it is closed.
The inlet valve synchronizes with the tank on the
labels drain and fill , and it opens or closes with a
delay of tV after receiving a corresponding signal
from the controller. The controller acts when the
level is within a distance of xD to one of the limits.
After each action, the controller interacts with a
high level controller for at most tC seconds. This
is modelled by including busy states.

Model checking was carried out using the tool
HyTech (Henzinger et al., 1997). The CLHA were
converted to LHA by adding appropriate loops to
represent the behavior of sending and receiving
labels. The first step starts with the controller S1.
The expected behavior is modelled as the commit-
ment automaton CT

1 , as shown in Fig. 3. Since the
continuous variable x is needed for the analysis, a
generator automaton X1 has been included that
comprises all possible rates of x. It changes its
sign when the controller sends the open! and close!
commands according to the commitment. If it
doesn’t, the commitment automaton can reach
the fail state. The validity of the generator can

closeopen

filling
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Fig. 3. Assumption and commitment automata

be considered as the global assumption A. Model
checking gives the result that the commitment is
fulfilled if

r1tV ≤ xD < xmax − r1tC . (10)

The second step combines the valve automaton S2

with the assumption A2 = C1. The commitment
of the valve must be to provide the fill and drain

labels in time. Again, the generator automaton
for x is needed to provide the possible behaviors
of x. Model checking leads to the result that
with (10) the commitment is fulfilled. The third
step combines the tank automaton S3 with the
assumption A3 = C2. The commitment is to fulfill
(9), which can be tested using the automaton
CT

3 or by directly specifying the formula in the
model checker. Again, model checking validates
the commitment. Finally, it can be deduced in a
chain rule fashion as follows:

S1 |= (a, c1),
S2 |= (a2, c2)
S3 |= (a3, c3),

a2 = c1 ∧ a3 = c2

S1||S2||S3 |= (a, c3)
. (11)

The tank level will remain within the limits if the
parameters comply with (10).



5. CONCLUSIONS

This contribution presents an approach to verify
properties of distributed hybrid systems by ap-
plying the Assumption/Commitment method. In-
stead of performing a single analysis for the com-
plete system, the system is partitioned into small
modules, local properties are analyzed by model
checking, and global properties are derived by
deduction. As demonstrated for an example, the
method reduces the costly step of model checking
to the composition of relatively simple systems.
The successful application of the approach de-
pends on two factors: (i) The system must be
decomposed into small modules, preferably such
that each module is only affected by a small num-
ber of other components. (ii) Appropriate abstrac-
tions of each module have to be found. It seems
that these requirements can often be met when
discrete controllers for processing or manufactur-
ing systems are considered.

The class of CLHA was found to be appropri-
ate to model the behavior of many modules of
such systems. The extension of ordinary LHA by
different types of variables and synchronization
labels facilitates modelling and helps to prevent
modelling errors. However, the CLHA are so far
mapped into LHA to allow the analysis with exist-
ing model checking tools. If the behavior of a mod-
ule cannot be modelled with sufficient accuracy
by CLHA, hybrid automata with more complex
continuous dynamics should be used. Techniques
to approximate them by LHA are available, see
e.g. (Stursberg, 2000). An application to a chem-
ical process has shown promising results (Frehse
et al., 2001).
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