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Abstract. This paper deals with the design of robust observers for uncertain models, with

application to the activated sludge process. We assume that the model is such that the bacterial

growth rate is unknown, and the measurements and influent flow rates are disturbed. However

we suppose that the upper and lower bounds of the uncertainties are known. Under appropriate

hypotheses, we are able to build interval observers giving dynamic bounds containing the variables

to estimate. Besides, if we know a priori the probability density of each uncertain parameter,

we can synthesize interval observers with guaranteed confidence levels and provide a confidence

density for the state. We apply this approach to the sludge process and compare the results to the

probability density estimation obtained with Monte-Carlo simulations.
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1. INTRODUCTION

One of the main limitations to the improvement of
monitoring and optimization of bioreactors is probably
due to the difficulty to measure chemical and biologi-
cal variables. Indeed there are very few sensors which
are at the same time cheap and reliable and that can be
on-line used. The measurement of some biological va-
riables (biomass, cellular quota, etc) is sometimes very
difficult and can necessitate complicated and sophisti-
cated operations.

The development of observers addresses this issue
by estimating the internal state of a bioreactor. It relies
both on a model of the system and on the available on-
line measurements [1]. Nevertheless these methods are
often disappointing when dealing with bioprocesses
since observers are based on models which are often
rough approximations and also because the used mea-
surements are often corrupted by a high level of noise.
As a consequence, it can be difficult to interpret the
observer predictions.

To cope with the uncertainties which characterize
the biological systems, a first class of observers was
proposed by [2] on the principle of unknown input ob-
servers [3, 4]. The biological kinetics was considered
as an unknown input and the observer construction did
not use it. This approach provided more robustness to

the observers, but managed less easily the uncertainty
on the mass inputs or on the yield coefficients.

A complementary approach called “interval obser-
vers” was then proposed [5, 6, 7], based on the prin-
ciple of cooperative systems [8]. This approach as-
sumes a bounded uncertainty and provides tools to de-
termine the bounds in which the state must lie. It is the-
refore a very robust approach, but it can be too conser-
vative. In this paper, we use this approach to try to de-
termine a more precise information related to the pro-
bability density of the state. The idea is to use statis-
tical models on the probability densities of the unk-
nowns (initial conditions, parameters, inputs, measu-
rements) in order to estimate the probability density of
the state. In general, this is a very difficult problem,
and we propose therefore to approximate this probabi-
lity density by a confidence level approach where we
can give an upper bound for the probability of the state
to lie in a given interval.

The paper is organized as follows. We fist recall the
principles of the interval observers. Then we define
the notion of confidence levels and we explain how to
compute the intervals associated to a confidence level.
We illustrate the method on a bioprocess used to pro-
cess the wastewater: the activated sludge. We compare
then the results with a Monte-Carlo approach and we
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show that the intervals associated to confidence levels
provide a good estimate of the probability density of
the state.

2. THE ACTIVATED SLUDGE PROCESS

The activated sludge process used for biological was-
tewater treatment consists of two tanks (FIG. 1). The
main plant component, the aerator, is an aerobic bio-
logical reactor in which the substrate is biodegraded
by suspended micro-organisms. This bioreactor is sup-
posed to be continuously stirred, so that the substrate
concentration is homogeneous. This substrate (organic
matter) is consumed by a biomass which agglomerates
into flocks: the activated sludge. We assume that the
total solid part is separated by sedimentation of these
flocks in the settler linked to the aerator. A fraction of
the sludge collected in the settler is recycled to the ae-
ration tank, whereas the remaining sludge is wasted to
other sludge treatment units. The recycling increases
the biomass concentration in the aeration tank, and ex-
tends the mean sludge residence time for the adapta-
tion of micro-organisms to the available nutrients.
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FIG. 1 – Functional diagram of the activated sludge pro-
cess.

In the aerator, we consider that a single bacterial po-
pulationx is growing on one limiting organic substrate
s. We assume that it is the only biological reaction of
the process. We also suppose that the organic matter
does not settle in the sedimentation tank. The mass ba-
lance of the various constituents leads to the simplified
model of activated sludge process [2, 5]:

ẋ = µ(·)x−
(
1 + qr

)
D(t)x + qrD(t)xr

ṡ = −µ(·)x
Ys

−
(
1 + qr

)
D(t)s + D(t)sin(t)

ẋr = w
(
1 + qr

)
D(t)x− w

(
qw + qr

)
D(t)xr

(1)

with the following notations:

D(t) =
Qin

Va
; qr =

Qr

Qin
; qw =

Qw

Qin
;w =

Va

Vs

wherex, sandxr are the model state variables repre-
senting respectively the biomass, the substrate and the
recycled biomass concentrations.Qin, Qout, Qr, Qw

are respectively the influent, effluent, recycle and waste
flow rates.Va andVs are the constant aerator and set-
tler volumes.sin represents the influent substrate concen-
tration.Ys corresponds to the yield coefficient of the

growth of biomass on substrate. The initial conditions
are respectivelyx0, s0, xr0.

3. INTERVAL OBSERVERS

3.1. Recall on the interval observers [6]

We assume here that the disturbances and uncertain-
ties are bounded, and that these bounds are known. We
derive the dynamic bounds on the state variables from
the bounds on the uncertainties. Thus, we compute two
estimates bounding the state variables: an upper bound
and a lower bound. Here, we limit our study to a very
specific case of a linear system with uncertain input: it
will suffice for our application to the sludge process.
For a far more general setting, see [9].

We consider the system:

S
{

ẋ = Ax + Bφ(t); x(t0) = x0

with x ∈ X ⊂ Rn, A ∈ Mn×n(R) (n ≥ 2) and
B ∈ Mn×p(R). Indeed, this system will correspond
in the sequel to a reduced order observer, andφ ∈ Rp

will be the measured output of the whole system.
We suppose that the input is uncertain with known

boundsφ−, φ+ such that:

φ−(t) ≤ φ(t) ≤ φ+(t), ∀t ∈ R+

Remark:The inequalities applied to vectors must be
considered term by term.

Under this assumption, we build two asymptotic ob-
servers, using the detectability of the system [1, 2].

Definition 1 Let us consider the system(S). The pair
of systems(S−,S+) with:

S−
{

ẋ− = Ax− + B−(φ−(t),φ+(t))
x−(t0) = x−0

S+

{
ẋ+ = Ax+ + B+(φ−(t),φ+(t))
x+(t0) = x+

0

is an interval estimator for the system(S) if for any
compact setX0 ⊂ X , the coupled system
(S,S−,S+) verifies for any initial condition
x(t0) ∈ X0:
∀t ≥ t0, x−(t) ≤ x(t) ≤ x+(t)

FunctionB+ (respectivelyB−) is such that:

B−(φ−(t),φ+(t)) ≤ Bφ(t) ≤ B+(φ−(t),φ+(t))

We remark that we need an estimate ofx0 andxr0

at initial timet0, but this estimate can be very loose.
Let us define the upper errorE+ = x̂+ − x and the

lower errorE− = x− x̂−.

Lemma 1 If the matrixA is cooperative (i.e. has po-
sitive off-diagonal elements), then:

E+(t0) ≥ 0 ⇒ E+(t) ≥ 0, ∀t ≥ t0.



We prove this lemma using the comparison theorem
for cooperative systems [8]. More intuitively, it can be
noticed that the vector field is repulsive on the boun-
daries. We have similar properties for the lower error,
and consequently for the total errorE(t) = E+(t) +
E−(t). The following theorem is a particular case of a
theorem in [6].

Theorem 1 If A is stable and cooperative, and if we
have an initial estimation:x−0 ≤ x(t0) ≤ x+

0 , then
system(S−,S+) is an interval estimator for the model
(S).
Moreover, if the total error is bounded by a positive
vector M:

B+(φ−(t),φ+(t))−B−(φ−(t),φ+(t)) ≤ M

then the total errorE(t) is asymptotically lower (term
by term) than the non-negative vector:

Emax = −A−1M (2)

The proof of this theorem is a consequence of Lemma
1, and (2) follows from the differential vector inequa-
lity betweenĖ andĖmax.

3.2. Application to the sludge process

We assume the following hypotheses for model (1):

– the specific growth rateµ(·) is unknown.

– the substrate concentrations is the only measu-
rable state variable, and the measurement is noisy:
y(t) = s(t) + b(t).

– we know the bounds on the uncertainty of mea-
surement:

∀ t ≥ t0, b− ≤ b(t) ≤ b+

which implies:

s−(t) = y(t)−b+ ≤ s(t) ≤ s+(t) = y(t)−b−

– the bounds on the inflowsin(t) = s?
in(t) + δsin

are known:

s−in(t) ≤ sin(t) ≤ s+
in(t)

– bounds on initial valuesx0 andxr0 are known.

A similar case has already been discussed in [10]
without any noise on measurements. We apply now
the results presented in , with a slight difference due
to the additional scalar termD(t): it is easy to see that
it does not change anything since this term is always
positive.

Firstly, we build an asymptotic observer [2, 11] for
the set of equations (1) in order to eliminate the unk-
nown functionµ(·) by the following change of va-
riable:

Z = X +
[

Ys

0

]
s with Z =

[
z1

z2

]
, X =

[
x
xr

]
(3)

and we obtain the reduced system:

Ż = D(t)[AZ + B(s,t)], Z0 =
[

x0 + Ys.s0

xr0

]
(4)

A =
[
−(1 + qr) qr

w(1 + qr) −w(qw + qr)

]
;

B(s,t) =
[

Ys.sin(t)
−Ys.w(1 + qr).s

]
We build the two estimators for system (4):

˙̂
Z+ =D(t)[AẐ++B+(s−,s+

in)]; Ẑ+
0 = X+

0 +
[

Ys

0

]
s+
0

˙̂
Z−=D(t)[AẐ−+B−(s+,s−in)]; Ẑ−0 = X−

0 +
[

Ys

0

]
s−0

X+ = Z+ −
[

Ys

0

]
s−

X− = Z− −
[

Ys

0

]
s+ (3)

with

B+(s−,t) =
[

s+
in(t)
−w(1 + qr).s−(t)

]
.Ys

B−(s+,t) =
[

s−in(t)
−w(1 + qr).s+(t)

]
.Ys

Matrix A is stable and cooperative, therefore hypo-
theses of Theorem 1 are fulfilled. As a result the esti-
mators (5) define an interval observer for the system
(1). On Figure 2 we obtain estimations for the unmea-
sured state variablesx andxr (FIG. 2).

The specific growth rateµ(·) chosen for the simula-
tion purpose follows the Monod law [12]:
µ(s) = µmax

s
kM + s

.

Besides, the numerical values used in the simulation
are presented in (TAB. 1). We noteN(m, σ2) the Gaus-
sian distribution law with a meanm and a standard
deviationσ.

4. INTERVAL OBSERVERS WITH GUARANTEED

CONFIDENCE LEVELS

4.1. Confidence levels

Now, we assume that we know the probability den-
sity of the uncertainties and disturbances. Here, we
consider that the probability densities for each para-
meter are independent. More precisely we assume that
we know the probability density of the following quan-
tities:

– The model parameters,
– The input disturbances,
– The disturbances associated to the measurements,
– The probability density associated to the initial

condition.

For sake of brevity, we will talk about parameter un-
certainties for these four types of uncertainties and dis-
turbances.
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FIG. 2 –Interval observer: bounds on the input, on the
measurement and bound estimates ofx andxr.

Param. Units Values

µmax h−1 0.15
kM mg.l−1 15
Ys - 0.65
w - 1.00
qr - 0.60
qw - 0.20
D mg.l−1 0.1

s?
in(t) mg.l−1 250 + 50 sin( 2πt

100 )
δsin mg.l−1 N̄(0,10)
s+

in(t) mg.l−1 s?
in(t) + 20

s−in(t) mg.l−1 s?
in(t)− 20

b mg.l−1 N̄(0,5)
b+ mg.l−1 10
b− mg.l−1 −10
x0 mg.l−1 500
x+

0 mg.l−1 1000
x−0 mg.l−1 0
xr0 mg.l−1 700
x+

r0 mg.l−1 1400
x−r0 mg.l−1 0
s0 mg.l−1 40

TAB . 1 – Parameters of the interval observer simula-
tion. N̄(m,σ2) denotes a normal distribution trunca-
ted between−2σ and+2σ.

Note however that the experimental determination
of the probability distribution of the uncertainties is
often a difficult task requiring a high number of experi-

ments. For illustration purpose we will consider Gaus-
sian distributions, but the proposed algorithm can be
used for any (unimodal) probability density function.

Assumption 1 We assume that the uncertain parame-
ters pj , j ∈ [1; k] have independent unimodal pro-
bability densitiesfpj

on k intervalsIJ . Let us note
Pj = P (pj ∈ [p−j ; p+

j ]) the probability for each para-

meter to be in a given interval[p−j ; p+
j ].

Now we will index the intervals[p−; p+] by a confi-
dence levelχ corresponding to the probability forp to
be in this interval. This confidence level is thus defined
as follows:

χ =
k∏

j=1

Pj = P (p ∈ [p−; p+])

We will see thatχ is a lower bound for the pro-
bability of the statex to lie in an interval [x− ;x+].
As a consequence,χ will be referred as a “guaranteed
confidence level”. We will consider the particular in-
terval [x− ;x+] provided by the interval observer, and
we will therefore estimate the probabilityP (x(t) ∈
[x−(p−, p+, t); x+(p−, p+, t)]). This computation is com-
plicated; and we will only provide a lower bound of
this probability. Indeed, if the uncertaintiespj are in
the interval[p−j ; p+

j ], then the previous section ensures
that:

x(t) ∈ [x−(p−,p+,t);x+(p−,p+,t)]

It follows that we have the following property:

P (x(t) ∈ [x−(p−,p+,t); x+(p−,p+,t)]) ≥ χ

We will thus propose a way to choose a set of bounds
p− andp+, associated to a confidence levelχ. Of course,
the choice of the bounds associated to a confidence le-
vel is not unique and other bounds could be conside-
red.

Definition 2 Under Assumption 1, we can choose the
(finite) boundspj

−(χ) andpj
+(χ) of the interval as-

sociated to the confidence levelχ as follows:
i)

k
√

χ =
∫ p1

+

p1−
fp1(p1).dp1 = · · · =

∫ pk
+

pk
−

fpk
(pk).dpk

ii)
∀j ∈ [1; k], fpj

(pj
−) = fpj

(pj
+)

Definition 3 Under these assumptions and those in-
herent to the synthesis of interval observers, we can
define a new class of observers: the interval observers
with guaranteed confidence levelχ.

Choosing a confidence levelχ gives usk fixed bounds
pj
−(χ) andpj

+(χ) associated with thek parameters
pj . We will now consider several possible valuesχi of
χ, and for each of theser values we will build an inter-
val observer[x−(p−(χi),p

+(χi),t); x
+(p−(χi),p

+(χi),t)]



based on the bounds[p−(χi); p+(χi)]. The probability
to havep in [p−; p+] isχ, and therefore, the probability
thatx(t) is in [x−(p−(χi),p

+(χi),t); x
+(p−(χi),p

+(χi),t)]

is larger thanχi.
If r is large enough, we usex−(p−(χi),p+(χi),t)

and x+(p−(χi),p+(χi),t)] to estimate the so called
confidence density function.

We will see in the next section that (after a renor-
malization to ensure that the total probability is 1) the
confidence density function can be interpreted as a pro-
bability density function.

4.2. Application to the activated sludge process

We apply these interval observers with guaranteed
confidence levels to the activated sludge process under
the same operating conditions as before. Besides, we
suppose that uncertainty on the model is mainly due to
four parameters: an offsetδsin on the inputsin, a noise
b(t) on the measurement of substrates and the initial
conditions on biomasses:x0 andxr0. We assume that
the uncertainties are characterized by Gaussian distri-
butions (TAB. 2).
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FIG. 3 – Ther = 21 interval observers with guaran-
teed confidence levels.

We run the simulation forr = 21 values ofχ, from
χ = 0 to χ = 0.99, with a step of0.05. Thus we build
r = 21 interval observers with guaranteed confidence
levels (FIG. 4). Then we interpolate the results of these
r interval observers with confidence levels to obtain
the estimations of the biomasses bounds with various
guaranteed confidence levels (FIG. 5).

Thus, at any time, we get the confidence density for
the unmeasured variablesx andxr.

The parameters used in these simulations are pre-
sented in (TAB. 2).

5. COMPARISON

In order to compare the confidence density compu-
ted from the interval observers to the actual probability
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FIG. 4 – Interval bounds on estimated biomassesx
and xr at different times, with respect to ther confi-
dence levels.

Param. Units Values

b mg.l−1 N(0,1)
x0 mg.l−1 N(500,150)
xr0 mg.l−1 N(700,200)
δsin mg.l−1 N(0,20)
s?

in(t) mg.l−1 250 + 50 sin( 2πt
100 )

TAB . 2 – Parameter distribution used to build the in-
terval observers with guaranteed confidence levels.

density, we perform a Monte Carlo analysis. Thus, we
run 30000 simulations associated to30000 different
values for the set of parametersδsin, x0 andxr0, ac-
cording to their distribution (TAB. 2). Note that the dis-
turbance on the output does not intervene here.

Thus we can compare the results of the two compu-
tations: on (FIG. 6) for the Monte Carlo computation,
on (FIG. 7) for the interval observers with guaranteed
confidence levels.
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FIG. 5 –Probability density estimated by Monte Carlo
computation.
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FIG. 6 – Unmeasured variables estimated by interval
observers with guaranteed confidence levels (conti-
nuous) and directly computed with Monte Carlo (da-
shed).

The comparison between the average value and stan-
dard deviations issued from the Monte Carlo analysis
and from the interval observers with guaranteed confi-
dence levels computation shows that the results are
very close (same average, but different standard de-
viations). It ensures us that the two computations lead
roughly to the same results: the interval observers with
confidence levels give a good approximation of the
probability densities for the variables to estimate. The
computation of the set of interval observers is much
faster.

However, the interval observers with guaranteed confi-
dence levels computation provide a distribution which
is more spread, because it is based on a worst case ap-
proach.

6. CONCLUSION

We have used a set of interval observers, which are
based upon the deterministic bounds on uncertain pa-
rameters, by using the knowledge of their probability
density to build confidence levels. Let us emphasize
the following points:

– It is necessary to provide a probability density
for each unknown parameter. They are supposed
to result from an experimental analysis. Here we
have assumed Gaussian distributions, but any kind
of distribution law could be chosen.

– These observers cope with measurements noise,
even if the noise distribution is not Gaussian.

– In this paper, we guarantee only an asymptotic
rate of observer convergence, but in some cases,
it is possible to tune this rate [9].

– These observers could improve monitoring of bio-
reactors since they characterize the spread of the
state estimate.
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