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Abstract: As chemical plants are becoming more and more tightly integrated, with
extensive material and energy recycling, the need for improving their dynamic properties
through process design modifications is increasing. However, this is not a trivial task since
process integration usually also introduces a relatively complex relationship between
properties of the individual units and the overall plant. In this paper, with designing buffer
tanks for disturbance attenuation in tightly integrated plants as an example, we show that
the structural location where the design modification is made in an integrated plant is a
crucial decision with respect to their disturbance attenuation properties. A simple model
based tool is derived which can be used to determine the optimal location and minimum
buffer size for a given level of disturbance attenuation in an integrated plant. Copyright
©2002 IFAC
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1. INTRODUCTION

Material and energy recycling is becoming a standard
part of most chemical plants. The recycling usually
imposes a positive feedback effect, thereby increas-
ing the disturbance sensitivity at low frequencies as
compared to the process without recycle (Gilliland
et al., 1964; Denn and Lavie, 1982). Ideally, a con-
trol system should be used to attenuate the effect of
disturbances to an acceptable level. Morud and Sko-
gestad (1994) note that the choice of controlled vari-
ables has a significant influence on the plant behavior.
Yi and Luyben (1997), illustrate this interdependency
through some case studies. However, recycling can in
many cases also introduce fundamental control limita-
tions, such as non-minimum phase behavior and input
constraints (Jacobsen, 1999; Cui, 2000). This implies
a less effective feedback control system and hence
possibly unacceptable controllability. If the controlla-
bility can not be improved by modifying the control

structure, then it is necessary to modify the process
design to improve the dynamic properties.

In this paper we consider design modifications for
a given level of disturbance attenuation in integrated
plants. One simple and traditional design modification
with the aim of reducing the disturbance sensitivity is
the addition of buffer tanks. Skogestad and Postleth-
waite (1996) and Faanes and Skogestad (2000) have
developed systematic tools, based on linear control-
lability analysis, for buffer design in traditional cas-
caded plants, i.e. units connected in series and parallel.
Here, optimal design of buffers in strongly integrated
plants with respect to minimum required buffer size
is considered in particular, as an example for process
design modification in integrated plants.

While the effect of a buffer in a cascaded system is
quite straightforward to derive, the presence of ma-
terial and energy recycling makes the relationship
between the properties of process units, including
buffers, and the overall plant much more complex. We

Copyright © 2002 IFAC
15th Triennial World Congress, Barcelona, Spain



will here show how linear systems analysis may serve
to relate unit properties to the overall plant controlla-
bility, and hence support design modifications at the
process unit level with the aim of achieving certain
dynamic properties of the overall system. We start
the paper by briefly reviewing some principles and
results on controllability analysis and buffer design in
cascaded processes.

2. BUFFER DESIGN FOR IMPROVED
CONTROLLABILITY OF CASCADED

PROCESSES

2.1 Controllability Analysis

With controllability is here understood input-output
controllability, i.e. the ability to achieve acceptable
control performance using feedback control (Skogestad,
1996). We restrict ourselves to consider linearized
models only and employ frequency domain analysis.
The linear model is written

y(s) = g(s)u(s)+gd(s)d(s) (1)

Here y is the output to be controlled, d is the distur-
bance and u is the control (manipulated) input. We
assume all signals to be scalar, but extensions to mul-
tivariable systems is quite straightforward. In order
to simplify the analysis, we assume the system has
been scaled such that |d|= 1 corresponds to the maxi-
mum expected disturbance, |u| = 1 to the maximum
allowed control input while acceptable performance
corresponds to keeping |y| ≤ 1.

Define ωd as the frequency where the scaled distur-
bance gain is unity, i.e.

|gd( jωd)| = 1 (2)

and assume that this frequency is unique. For ω < ωd ,
we then have |y|/|d| > 1 and hence the disturbance
sensitivity needs to be reduced in this frequency range.
This can be achieved either through feedback control,
through a modification of the process design, e.g. by
adding buffers, or a combination of the two. Usually,
feedback control is the least expensive solution and
a modification of the process design should therefore
only be considered when acceptable performance can
not be achieved through feedback control alone.

Applying the feedback control law u(s) = −c(s)y(s),
the system is described by

y(s) = S(s)gd(s)d(s) (3)

where

S(s) =
1

1+g(s)c(s)
(4)

is the closed-loop sensitivity function. Acceptable dis-
turbance sensitivity then corresponds to |Sgd( jω)| <

1, ∀ω. Define the bandwidth ωB as the frequency for
which |S( jωB)| = 1 and |S( jω)| < 1,ω < ωB. Then,
for acceptable disturbance rejection, we get the band-
width requirement ωB > ωd , i.e. the control must be
effective at least up to the frequency ωd .

Unfortunately, a plant always has fundamental limi-
tations which restrict the highest bandwidth ωB that
the feedback control system can achieve, even with
the best possible controller. Fundamental limitations
include time delays θ and right half plane (RHP) ze-
ros z. In addition, the phase lag of a plant imposes a
limitation when low order controllers, such as PID-
controllers, are employed. Assume the plant model
can be written on the form

g(s) =
ke−θs(s− z)

(τ1s+1)(τ2s+1) · · ·(τns+1)
(5)

where τ1 > τ2 > ... > τn. Then the upper bound on the
bandwidth ωB is approximately determined as

ωB < ωB∗ = 1/θe (6)

where θe is the effective delay defined as (Skogestad,
1999)

θe = θ+1/z+ τ2/2+∑
i≥3

τi (7)

In addition, constraints on the control input u imposes
a limitation. In particular, with |y|= |d|= 1 we require
|u| = |g−1|(|gd | − 1) ≤ 1. Thus, effective feedback
control can only be achieved at frequencies for which
(Skogestad and Postlethwaite, 1996)

|g| > |gd|−1 (8)

For frequencies where this is not satisfied, acceptable
disturbance attenuation can not be achieved using
feedback control alone. The smallest frequency for
which (8) is not satisfied is denoted ωBu.

If ωB = min(ωB∗,ωBu) is smaller than ωd , then accept-
able disturbance sensitivity can not be achieved using
feedback control alone, and some modification of the
process design is required in order to reduce the distur-
bance sensitivity of the process in the frequency range
ω ∈ [ωB,ωd ]. A simple process modification, which is
commonly employed in the process industries, is the
addition of buffer tanks.

2.2 Required Buffer Size

For quality (e.g. composition and temperature) dis-
turbances, the transfer function of a perfectly mixed
buffer tank, with incompressible content, has the stan-
dard form

gB(s) =
1

τBs+1
(9)



where the residence time τB = V/q is given by the
ratio between the nominal buffer volume V and the
volumetric flow q. Note that gB(0) = 1, and hence
the buffer has no effect on the system at steady state.
At higher frequencies, however, |gB( jω)| < 1, and
it is this nature which can be exploited to attenuate
disturbances by cascading a buffer next to the process.

In order to minimize the buffer size, the main task
should be to reduce the disturbance sensitivity to be
less than 1 where the feedback control system can not
be made effective, i.e. such that |SgdgB( jω)| ≤ 1,∀ω.
If we assume |S( jω)| = 1,ω > ωB, i.e. the control
system has no effect above the bandwidth ωB, and
that gd(s) has low-pass characteristics, then the buffer
design problem simply corresponds to solving the
equation

|gdgB( jωB)| = 1 (10)

Solution of this equation gives the required residence
time (Skogestad and Postlethwaite, 1996)

τB =

√

k2
d −1

ωB
(11)

where

kd = |gd( jωB)| (12)

Sometimes the disturbance sensitivity is so large that
the required buffer volume becomes impractical. To
achieve more efficient attenuation, several buffers in
series may be employed (Skogestad and Postlethwaite,
1996), i.e.

gB(s) =
1

( τh
n s+1)n

(13)

where τh, the required total residence time of the
buffer tanks, is then given by Skogestad and Postleth-
waite (1996)

τh =
n
√

k2/n
d −1

ωB
(14)

The optimal number of tanks is derived, in terms of
minimizing the total residence time, by Cui (2000)

n =
log10(kd)

0.356
(15)

In practice, fewer tanks may be favorable in order to
lower the investment and maintenance cost.

3. BUFFER DESIGN FOR PROCESSES WITH
RECYCLE

The procedure for buffer design as outlined for cas-
caded process in the previous section could of course

be applied also to a plant with recycle, i.e. by cas-
cading a buffer with the plant. However, for plants
with recycle, there exists an extra degree of freedom
represented by the placement of the buffer within the
process flow sheet structure. Below we discuss how
this extra degree of freedom can be used to further re-
duce the required size of buffers in plants with recycle.

3.1 Location of Buffer

As an example of a process with recycle, we consider
a reactor-separator system as shown in Figure 1. The
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Fig. 1. Reactor-separator system.

recycling tends to increase the disturbance sensitivity,
and a buffer may be needed to reduce this sensitivity.
By considering the structure of the process in Figure 1,
we see that the buffer could be placed in either location
1, 2 or 3. However, it is not obvious what represents
the best location in terms of required buffer size for
a given level of disturbance attenuation. Intuitively,
one might expect that location 2 is optimal, since it
attenuates not only external disturbances coming in
with the feed flow, but also those returning with the
recycle flow. However, as we show below, this is not
necessarily correct.

To ease the analysis, especially for cases with the
buffer placed inside the recycle loop, we decompose
the plant by tearing the process at the recycle loop and
analyze the system using linear systems theory. This
allows us to relate the behavior of the overall plant to
the properties of the individual units.

A block diagram for a typical recycle process is shown
in Figure 2, where ĝ0 is the transfer function for
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Fig. 2. Block diagram for recycle system structure.

the process with the recycle loop teared, 0 < f <



1 represents the degree of recycling, and s1, s2 are
scaling factors so that |d| ≤ 1 and |y| ≤ 1 corresponds
to acceptable performance. The transfer function for
the overall scaled system becomes

gd(s) =
y(s)
d(s)

= k
g0(s)

1−g0(s)
(16)

with k = s1s2/ f and g0(s) = f ĝ0(s) is the loop transfer
function of the recycle loop.

Assume that the bandwidth limitation for the control
system is ωB, e.g. due to measurement delays, and
that the disturbance sensitivity exceeds one at this
frequency, i.e. |gd( jωB)| = kd > 1. Hence a buffer
system is required to further attenuate the effect of
disturbances. To determine the best location of the
buffer in terms of required buffer size, we examine all
three possibilities and compare them with the original
recycle system gd . In all cases we assume stability of
the overall system. The transfer-function from distur-
bance d to output y, for different cases, becomes

• structure 0: gd = kg0
1−g0

• structure 1: g1 = kg0gB
1−g0

= gdgB

• structure 2: g2 = kg0gB
1−g0gB

= g3gB

• structure 3: g3 = kg0
1−g0gB

The numbering of the structures corresponds to the
locations in Figure 1 and 2. ğIndex 0 refers to the
case without a buffer. From the transfer functions for
the different structures above, we see that g2 = g3gB.
Since |gB( jω)| ≤ 1, we get |g2| ≤ |g3|, i.e. better dis-
turbance attenuation with structure 2 than with struc-
ture 3 if buffers with the same residence time are
applied for both structures. However, recall that the
required buffer volume Vi is equal to τBiqi where qi

is the volumetric flow rate. For the case of energy
recycling (heat integration) the flow rates will gener-
ally be the same in all locations, and hence location
3 will always be less effective than location 2, for a
given buffer volume, and can therefore be excluded
for further considerations. However, for material re-
cycling, the flow rates are typically different in each
location. Since the flow rate q2 in this case is always
larger than q1 and q3, the minimum holdup may thus
in principle be achieved with any structure. In the fol-
lowing, we derive the required buffer residence time
for each location. The optimal location can then easily
be determined, for a given process, by computing the
corresponding buffer volume.

3.2 Required Residence Time

We consider here the required buffer residence time
for a given level of disturbance attenuation kd =
|gd( jωB)| at the frequency ωB, using n equal-sized
buffer tanks in series.

Structure 1: As shown for a cascaded system, the
total residence time of n buffer tanks is (Skogestad and
Postlethwaite, 1996)

τh1 = n
√

k2/n
d −1/ωB (17)

Structure 2: The goal of the buffer design for struc-
ture 2 is to find buffers, which satisfy

|g2( jωB)| = |
kg0gB2

1−g0gB2
( jωB)| = 1 (18)

i.e. |
1

gB2( jωB)
−g0( jωB)| = k|g0( jωB)| (19)

Assume the frequency response of the teared system
g0 and the buffer system gB2 with n tanks may be
written

g0( jωB) = re jθ, gB2( jωB) = (r2e jθ2)n (20)

where θ = 6 g0( jωB), r = |g0( jωB)|, θ2 = 6 gB2( jωB)/n
and r2 = n

√

|gB2( jωB)|. Note that for the buffer system
gB2( jωB) = 1/( τh2

n jωB + 1)n it holds r2 = cosθ2. By
inserting (20) into (19), we get

cos−2nθ2 −2rcos−nθ2cos(θ+nθ2)+(1− k2)r2 = 0 (21)

By solving the above nth order equation wrt. θ2, the
required total residence time of the buffer system gB2

can be calculated as

τh2 = −n tanθ2/ωB (22)

Structure 3: Similar to structure 2, buffers in location
3 should satisfy

|g3( jωB)| = |
kg0

1−g0gB3
( jωB)| = 1 (23)

i.e. |
1

g0( jωB)
−gB3( jωB)| = k (24)

Defining gB3( jωB) = (r3e jθ3)n = cosnθ3e j(nθ3) and
insert it into (24), the total residence time of n buffer
tanks in structure 3 is

τh3 = −n tanθ3/ωB (25)

where θ3 satisfies the following nth order equation
derived from (24)

cos2nθ3 −2r−1cosnθ3cos(θ+nθ3)+ r−2 − k2 = 0 (26)

In some cases there may not exist a positive real
solution to (25), which then implies that the required
dampening effect can not be achieved with n buffers
placed in location 3 alone.

Observe that the buffer phase lag (θ2 and θ3) plays an
important role in structure 2 and 3. Note also that, s1,
s2 and f in Figure 2 can be extended from constant to
transfer function with k in (19), (21), (24) and (26) set
to |k( jωB)|, if there are some process units in the path.



3.3 Optimal Location of Buffer

The optimal buffer location for a given process can
now be determined simply by computing the required
residence time for each location and choosing the
structure corresponding to the smallest volume. How-
ever, in order to obtain some insight into which con-
ditions that favor the respective locations, we here
analyze the influence of a buffer placed in different
locations.

A buffer cascaded with the process utilizes its low
pass property, i.e. gain reduction, to attenuate the dis-
turbance sensitivity. When placed within the recycle
loop, however, the phase lag as well as the gain of the
buffer will contribute to the “closed-loop” disturbance
sensitivity. This is easily deduced from linear systems
theory, and is due to the fact that the phase property
determines the feedback effect in the loop, i.e. distur-
bance amplification or attenuation. This implies that,
in principle, even though the buffer gain is less than
unity, the additional phase contribution of the buffers
may change the property of the feedback effect in the
recycle loop, e.g. from amplifying the sensitivity to
dampening it.

Since a buffer affects the feedback properties of a
recycle loop, we consider when one can expect the
buffer to improve, or deteriorate, the feedback proper-
ties of the loop. We first consider the effect of recycle
on the disturbance sensitivity of a process prior to
adding a buffer. Let the frequency response of the
loop, prior to adding a buffer, at a given frequency ω
be

g0( jω) = re jθ (27)

Then the feedback effect, imposed by the recycle, will
serve to decrease the disturbance sensitivity at ω if

|1− re jθ| > 1 (28)

and otherwise increase the disturbance sensitivity.
From (28) we derive the condition

cos(θ) <
r
2

(29)

for when the feedback provides disturbance damping
at ω. Since by definition r > 0, we get from (29)
that the recycle provides disturbance damping at fre-
quencies for which the phase lag θ ∈ [−3π/2,−π/2],
while it provides disturbance amplification for θ ∈
[−π/3,π/3] if we also assume r < 1. For other values
of θ the conclusion depends also on the value of r.

Next consider adding buffers, with a frequency re-
sponse given by gB( jω) = rBe jθB , in the feedback
(recycle) loop. Since θB contributes further phase lag
and rB ∈ (0,1], we find from (29) that the buffers
typically will deteriorate the feedback effect when
θ ∈ [−3π/2,−π]. The closer θ to −π, the less atten-
uation effect is achieved by integrating the buffers
in the recycle loop. Similarly, for θ ∈ [−π/3,0], the
buffers usually contribute to disturbance dampening.

The closer θ is to 0, the more advantageous it becomes
to integrate the buffers in the recycle loop.

In conclusion we find that, depending on the process
properties at the critical frequency ωB, placing a buffer
inside the recycle loop may either improve or deterio-
rate the disturbance damping provided by the feedback
effect imposed by the recycle flow. In the former case,
it may be advantageous to place a buffer inside the
recycle loop while in the latter case the buffer should
be placed outside the loop.

Example 1: Application of buffer design to a reactor-
separator system, see Figure 1. Linear reduced order
models of the individual units, with the recycle flow
teared, are
reactor:

dxR =
0.4

5s+1
︸ ︷︷ ︸

gr

(dxF0 +dxB) (30)

distillation column:
(

dyD

dxB

)

=
1

30s+1

(
0.04

2.2

)

︸ ︷︷ ︸

Gc

dxR (31)

The recycle flow rate B is equal to the fresh flow rate
F0. The nominal distillate composition is yD = 0.995
and the aim is to maintain the deviation in yD < 0.001
for disturbances up to 0.1 in the feed composition xF0.

The overall transfer-function from disturbance to out-
put without scaling is

dyD =
Gc1gr

1−Gc2gr
dxF0 (32)

With the proper scaling, (32) can be written on the
form (16) with

k = 100
Gc1

Gc2
, g0 = Gc2gr

The scaled steady-state disturbance sensitivity is 13.3
and disturbance attenuation is needed up to a fre-
quency ωd ≈ 0.045. Assume the bandwidth limitation
is ωB < 0.029, at which kd = 1.6, and a buffer system
is hence needed. Note that the feedback imposed by
the recycle increases the disturbance sensitivity at this
frequency since |1− re jθ|= 0.75. From (17), (22) and
(25), we find that the required total residence time is
minimum with only one tank for location 1 and 2,
and the residence times τh1 = 42min and τh2 = 19min,
respectively. For location 3, at least two tanks with
τh3 = 30min are required, and the size is gradually re-
duced when increasing the number of tanks (i.e. from
τh3 = 27min for 3 tanks to τh3 = 24min for 40 tanks).
However, the smallest residence time is achieved with
the buffer placed in the forward path of the recycle
loop (location 2).

The fact that the best disturbance damping is achieved
with an integrated buffer is as expected from the
previous analysis, since the open-loop phase lag of the
system without buffer at ωB is approximately −π/4.



Figure 3 shows the effective disturbance attenuation
achieved by a buffer tank with residence time τB = 20
in location 1, 2 and 3, respectively. As seen from
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Fig. 3. Effective disturbance attenuation by a buffer
with residence time τB = 20 placed in location
1 (dashed), 2 (solid) and 3 (dash-dotted), respec-
tively, in Example 1.

the figure, the buffer integrated in the forward path
of the recycle loop (location 2) gives a significantly
improved disturbance damping up to a frequency ap-
proximate 0.1, as compared to the cascaded buffer
(location 1).

To convert the computed residence times into actual
buffer volumes, it is necessary to know the flow rates
in the different positions. In the example, with the
flow rate q1 = q3 = 0.05m3/min, the integrated buffer
in location 3 has the minimum size, i.e. V1 = 2.1m3,
V2 = 1.9m3 and V3 = 1.35m3 (assuming that 3 tanks
are employed).

4. CONCLUSIONS

In this paper we have considered design modifications
for disturbance attenuation, in particular the problem
of determining the minimum size buffer tanks, in in-
tegrated plants. Design modifications should in prin-
ciple serve as a complement to feedback control sys-
tems, e.g. adding buffer tanks with the aim of attenuat-
ing the effect of disturbances which can not be handled
by the control system. Model based tools for deciding
optimal size and location of buffers in processes with
recycle of material and/or energy have been derived.

There exists a wealth of knowledge on how to de-
sign easily controllable process units, when operated
individually or in cascaded plant (see e.g. Buckley
(1964)). However, in order to enable this knowledge
to be used in strongly integrated plants, it is essential
to understand how the behavior of single units affects
the overall plant dynamic properties. In this paper, it
has been shown that modifying process units which
are located in the recycle loop, affect the loop phase
lag and hence the feedback effect imposed by the
recycle loop. Thus, in order to provide, or further im-
prove, disturbance attenuation properties imposed by
the feedback effect (recycle), the phase as well as the
gain property of the recycle loop should be optimized.
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