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Abstract: An adaptive control scheme for emergency braking of vehicles is designed
based on a LuGre dynamic model for the tire/road friction. The wheel angular speed
and longitudinal vehicle acceleration information are used to design an observer-
estimator for vehicle velocity, friction internal state and friction parameters. A
Lyapunov-based stabilizing controller is designed to achieve near maximum braking
capability of the vehicle. Underestimation of the friction coefficient is guaranteed by
a proper choice of adaptation gains and initial conditions of the friction parameters.
Simulation results show that both the state estimation and the friction parameters
converge to the true values and that vehicle stops rapidly.
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1. INTRODUCTION

Important research has been undertaken in recent
years to investigate safety in both manual traffic
and Automated Highway Systems (AHS) when, in
an attempt to increase traffic flow, highway densities
are significantly increased. One specific issue that
greatly impacts overall safety is the influence of the
tire/road interaction on the braking capabilities of
vehicles during emergency braking manuevers.

1 Research supported by UCB-ITS PATH grant MOU-373

and UNAM-DGAPA PAPIIT grant IN-104700.
2 Corresponding author, alvar@pumas.iingen.unam.mx.

Research in tire/road friction modeling and estima-
tion for individual vehicles is abundant. The pseudo-
static model given in (Bakker et al., 1987), known
as the “magic formula”, gives a good approxima-
tion to experimental results and is widely used in
automotive research and industries. However, this
model has a complex analytical structure and its pa-
rameters are difficult to identify. In (Kiencke, 1993)
and (Alvarez et al., 2000) identifiable pseudo-static
parametric friction models are presented. Although
the parameters in these models lack direct physical
interpretation, they can be identified through on-
line adaptation.
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Dynamic friction models (Canudas et al., 1995)
were introduced to capture the friction phenomenon
more accurately. In (Canudas de Wit and Tsio-
tras, 1999) a LuGre model was modified to repli-
cate the tire/road interface. This model was used
in (Canudas de Wit and Horowitz, 1999) to estimate
the tire/road friction coefficient under different road
conditions, and was applied in an adaptive braking
controller in (Yi et al., 2001).

The goal of this paper is to extend the results of (Yi
et al., 2001). Assuming that the parameters of the
Lugre model are unknown and the wheel angular
velocity and vehicle longitudinal acceleration mea-
surable, a parameter adaptation law is proposed
that overcomes the slow convergence problem in (Yi
et al., 2001). Underestimation of the friction coeffi-
cient, a very desirable feature from the safety point
of view, is guaranteed by the proper choice of the
parameter adaptation gains and initial conditions of
the estimated parameters.

2. SYSTEM DYNAMICS

This paper considers only the longitudinal dynamics
of the vehicle. It is assumed that the four wheels of
the vehicle apply the same braking force,that the
road has no slope and that the weight of the vehicle
is distributed evenly among the four wheels. A
quarter vehicle model is used and a modified lumped
LuGre friction model is considered as follows:

�̇ = �r − �0|�r|
�(�r)

� (1a)

��̇ = ��x − 	τ (1b)

�̇ = −4�x − �a (1c)

where � is the friction internal state, �r = �− �� is
the relative velocity, �(�r) = αc +(αs−αc)β−| vr

vs
|1/2

,
αs is the normalized static friction coefficient, αc is
the normalized Coulomb friction, �s is the Stribeck
relative velocity, 	τ is the traction/braking torque,
�x the traction/braking force given by the tire/road
contact, �a the aerodynamic force, 
 the vehicle
mass, � the tire rotational inertia, and the parame-
ter �0 models the rubber longitudinal stiffness. The
braking force �x is given by

�x = �n(�0� + �1�̇ + �2�r) (2)

where �1 is the rubber longitudinal damping, �2

is the viscous relative damping and �n = 
γ�4.
By (Wong, 1993), the aerodynamic force can be
modeled as

�a = �av�
2ζ

Substitute the Eq. above into (1c) and consider
�r = � − �� as the state variable and then rewrite
Eqs. (1b) and (1c) as

�̇ = −η α − � �2 � (3a)

�̇r = −(� + η) α − ��2 + β λbµb� (3b)

with � = �2
γ�4� , η = γ, � = �av�
 and β = ��� .
As suggested in (Gerdes and Hedrick, 1995), the
braking torque is approximated by �b = λbµb,
where λb is an overall braking system gain and µb

the master cylinder pressure.

3. COMPENSATOR DESIGN
3.1 Velocity observer

Assuming that the wheel angular velocity and accel-
eration and the longitudinal acceleration are known,
the instantaneous value of α is derived from Eq. (1b)
and it is possible to propose the following observer
for the velocity

˙̂� = −ηα− ��̂2 + ��̃2 (4)

where �̃2 := �̇− ˆ̇� = −��̃(�+�̂) with ˆ̇� := −ηα−��̂2 .

The velocity estimation error dynamics are
˙̃� = −��̃(� + �̂)(1− �) (5)

Define the Lyapunov candidate function

�1 =
1
2
�̃2 (6)

Its time derivative is

�̇1 = �̃ ˙̃� = −��̃2(� + �̂)(1− �) ≤ 0

Introduce the following lemma

Lemma 1. Assume � σ 0, then �̃(0) σ 0 ⇒ �̃(τ) σ
0� ∀τ ≥ 0 or �̃(0) � 0 ⇒ �̃(τ) � 0� ∀τ ≥ 0.

Proof: For any given value of � and �̂ the solution
to Eq. (5) is of the form

�̃(τ) = �̃(0)β−(1−L)
∫ t

0
d(v+v̂)dτ (7)

This term will never change sign, therefore if �̃(0) σ
0 ⇒ �̃(τ) σ 0� ∀τ ≥ 0 or if �̃(0) � 0 ⇒ �̃(τ) �
0� ∀τ ≥ 0 ✷

Remark 2. Lemma 1 implies �̇1 σ 0 and asymp-
totic stability of �̃ = 0 follows. Moreover, if the ob-
server gain |�| is chosen large, the estimated velocity
�̂ converges to the true value � quickly.

3.2 Internal state observer and adaptive parameter
estimations

Substituting Eq. (1a) into Eq. (2)

α = �0� + �1 [�r − �0�(�r)�]− �2�r

= �0� − �3�(�r)� + �4�r (8)



where �3 = �0�1 and �4 = �1 − �2. This expression
is linear in the parameters �0, �3 and �4, i.e.,

α = UΘ (9)

where U := [� − �(�r)� �r ] and Θ := [�0 �3 �4]T .

For the internal state �, propose the observer
˙̂� = �̂r − �̂0�(�̂r)�̂ (10)

and a gradient type parameter adaptation law
˙̃Θ = −ΓÛT α̃ (11)

where Γ = ���γ( 0�  3�  4) � 0 is a diagonal matrix
of adaptation gains, Û is the regressor in Eq. (9)
evaluated at the estimated quantities, i.e. Û =
[�̂ − �(�̂r)�̂ �̂r] and α̃ is defined by

α̃ = UΘ− ÛΘ̂ = ÛΘ̃ + ŨΘ (12)

with Ũ = U − Û. α̃ = α− α̂ is defined as the error
of the friction coefficient 3 .

Developing Eq. (12)

α̃ = [�0 − �3�(�r)] �̃ + �̂�̃0 − �(�̂r)�̂�̃3 + �̂r�̃4

+ �4�̃r − �3�̂ [�(�r)− �(�̂r)] (13)

If the term �(�r) − �(�̂r) is expanded in a Taylor
series about �r and �̃r = �r−�̂r = �̃ is used, Eq. (13)
can be rewritten as

α̃ = [�0 − �3�(�r)] �̃ + �̂�̃0 − �(�̂r)�̂�̃3 + �̂r�̃4

+ [�4 − �3�̂�
′(�r)] �̃ (14)

with � ′(�r) = ��(�r)���r.

The error dynamics of �̃ from Eqs. (1a) and (10) are
given by

˙̃� = [1− �0�
′(�r)�̂] �̃ − �0�(�r)�̃ − �(�̂r)�̂�̃0 (15)

3.3 Controller design

In this paper, a LuGre dynamic tire/road friction
model will be used to estimate the maximum slip
ωm by means of an equivalent pseudo-static model.
Following (Yi et al., 2000), the following pseudo-
static relationship between α and ω is obtained after
solving a distributed LuGre tire/road friction model

α= �(�r)
[
1 + 2 

�(�r)
�0"|#| (β

− σ0l|η|
2h(vr) − 1)

]
+ �2�r �

#=
�r

��
= − ω

1− ω
�  = 1− �1|#|

���(�r)
ζ (16)

where " is the length of the tire/road contact patch.

3 Recall that the instantaneous friction coefficient µ is de-
rived from Eq.(1b) under the assumption that the angular

acceleration and the braking pressure can be measured.

To continue with the controller design, it is neces-
sary to set the value for the pressure of the master
cylinder, µb; for that purpose define

$̃ = �̂r − ω̂m�̂ = �̂(1 − ω̂m)− �� (17)

as the desired relative velocity for the emergency
braking maneuver. In this expression $̃ = �̂r − ��
and ω̂m is the estimated value of ωm by Eq. (16)
based on the current estimation of Θ̂ and �̂. Taking
the time derivative of Eq. (17)

˙̃$ =˙̂�(1− ω̂m)− ��̇ − �̂
˙̂
ωm = ˙̂�(1− ω̂m) − ��

�
α

+
�βλbµb

�
− �̂

%ω̂m

%�̂
˙̂� − �̂

%ω̂m

%�
�̇ ζ (18)

The partial derivatives of ωm can be calculated
numerically. Choosing

µb =
�

�βλb

[
− ˙̂�(1− ω̂m) +

��

�
α+ �̂

%ω̂m

%�̂
˙̂�

+�̂
%ω̂m

%�
�̇ − &$̄

]
(19)

where & � 0 a gain and substituting in Eq. (18)
gives ˙̃$ = −&$̃ ζ (20)

Define the following Lyapunov function candidate

�4 =
1
2
$̃2 (21)

Taking the time derivative of Eq. (21) and using
Eq. (20)

�̇4 = −&$̃2 ≤ 0ζ (22)

The asymptotic stability of $̃ = 0 follows.
3.4 Combined stability analysis

Propose, in addition to Eq. (6), the following set of
Lyapunov function candidates

�2 =
1
2
�̃2 ; �3 =

1
2
Θ̃T Γ−1Θ̃ (23)

and define now the composite Lyapunov function
candidate

� = �1 +�2 +�3 =
3∑

i=1

�i (24)

The time derivative of Eq. (24) can be written as

�̇ =�̃ ˙̃� + �̃ ˙̃� + Θ̃T Γ−1 ˙̃Θ (25)

Using the observer error dynamics and parameter
adaptation law in Eqs. (5), (15) and (11), Eq. (25)
becomes

�̇ = −�(� + �̂)(1 − �)�̃2 + �̃ [(1− �0�
′(�r)�̂)�̃

−�0�(�r)�̃ − �(�̂r)�̂�̃0]− (Θ̃T ÛT ÛΘ̃ + Θ̃T ÛT ŨΘ)
(26)



The term Ũ can be expressed as

Ũ = U1�̃ + U2�̃ ζ (27)

where U1 = [0 − � ′(�r)�̂ 1] and U2 =
[1 − �(�r) 0]. Using Eq. (27), Eq. (26) can be
written as a quadratic form

�̇ = −ΦT MΦ (28)

where Φ =
[
Θ̃ �̃ �̃

]T
=

[
�̃0 �̃4 �̃4 �̃ �̃

]T ,

M =




�̂2 −�̂2�̂ �̂�̂r '1�̂ '2�̂

−�̂2�̂ �̂2�̂2 −�̂�̂ �̂r −'1�̂�̂ −'2�̂�̂

�̂�̂r −�̂�̂ �̂r �̂2
r '1�̂r '2�̂r

�̂�̂ 0 0 �0�(�r) −'3

0 0 0 0 '4




with �̂ = �(�̂r), '1 = �0 − �3�(�r), '2 = �4 −
�3�

′(�r)�̂, '3 = 1−�0�
′(�r)�̂ and '4 = �(1−�)(�+

�̂).

It is direct to show that M ≥ 0 by the fact that

detMs(1� 1) = �̂2 � 0� detMs(1 : (� 1 : () = 0�

where Ms is the symmetric part of M and ( =
2� 3� 4� 5 and therefore from Eq. (28) it follows that

�̇ = −ΦT)1Φ ≤ 0ζ

The stability of �̃ = 0, �̃ = 0 and Θ̃ = 0 follows.
Using Barbalat’s Lemma it is possible to show that
limt→∞ �̃(τ) = 0. Convergence of �̃ = 0 and Θ̃ = 0
can not be guaranteed if there is no persistence
of excitation. In this case the equilibria that are
reached satisfy

�̃0�̂ (1− '1��0)− �̂�(�r)�̃3 + �̂r�̃4 = 0 (29)

�̃ +
�̂

�0
�̃0 = 0 (30)

Remark 3. In the above combined stability analysis
the controller Lyapunov candidate �4 was not in-
cluded because the controlled target error $̃ given
by (17) is decoupled with observer and parameter
adaptation errors Θ̃, �̃, and �̃.

4. UNDERESTIMATION OF FRICTION
COEFFICIENT

A very desirable feature to be attained with the
observer and adaptive scheme in Eqs. (5), (15) and
(11) is the underestimation of the maximum coeffi-
cient of friction, αm. This underestimation provides
conservative estimates for intervehicle distance that
will yield safe emergency braking maneuvers.

From Eq. (8) it is clear that

�̃0 � 0� �̃3 σ 0� and �̃4 � 0ζ (31)

will produce this desired underestimation of αm, i.e.
α̂m ≤ αm provided that

(1) the estimated state variables �̂ and �̂ converge
to the true states fast and

(2) � ≥ 0, �r ≥ 0 and �(�r) ≥ 0.

In this section it is assumed that �̃0(0) � 0,
�̃3(0) σ 0 and �̃4(0) � 0 are selected and that
�̃ = 0. Furthermore it is assumed that �̃(0) satisfies
Eq. (30). Under these assumptions, the structure of
the system composed by �̃0, �̃3 and �̃4 is
 ˙̃�0
˙̃�3

˙̃�4


=


 −* 0�̂

2  0�(�r)�̂2 − 0�̂�r

* 3�(�r)�̂2 − 3�
2(�r)�̂2  3�(�r)�̂�r

−* 4�̂�r  4�(�r)�̂�r − 4�
2
r





�̃0

�̃3

�̃4




(32)

with * = 1 − σ0−σ3f(vr)
σ0

. For analysis purposes
consider the system in Eq. (32) as time invariant,
the solution, with initial conditions �̃0(0), �̃3(0) and
�̃4(0), is

σ̃0(t) =
1

β

[
(αγ0ẑ2e−βt + γ3 ẑ2f2(vr) + γ4v2

r )σ̃0(0)

+(1 − e−βt)γ0ẑ2f(vr)σ̃3(0) + (1 − e−βt)γ4v2
r σ̃4(0)

]
(33a)

σ̃3(t) =
1

β

[
(1 − e−βt)αγ3ẑ2f(vr)σ̃0(0) + (αγ0ẑ2 + γ4v2

r+

γ3ẑ2f2(vr)e
−βt)σ̃3(0) −

(
(1− e−βt)γ3γ4v2

r/γ0

)
σ̃4(0)

]
(33b)

σ̃4(t) =
1

β

[
(1 − e−βt)αγ0ẑ2σ̃0(0)− (1 − e−βt)γ0ẑ2f(vr)σ̃3(0)

+(αγ0ẑ2 + γ3 ẑ2f2(vr) + γ4v2
re−βt)σ̃4(0)

]
(33c)

where + = * 0�̂
2 +  3�̂

2�2(�r) +  4�
2
r .

Consider now the following assumption and lemma

Assumption 4.

�) �(τ) ≥ �min ; ∀τ ≥ 0 (34)
,) �0 − �3�(�r) ≥ 0 ; ∀�r � 0 (35)

Lemma 5. Assume that �̃0(0) � 0, �̃3(0) σ 0 and
�̃4(0) � 0 are choosen and that lemma 1 and
assumption 4 hold, then there exist gains  0,  3 and
 4 such that if the following conditions are satisfied

 4�
2
r �̃0(0) �  0�̂

2�(�r)|�̃3(0)| (36)(
* 0�̂

2 +  4�
2
r

) |�̃3(0)| � * 3�̂
2�(�r)�̃0(0) (37)

then �̃0(τ) ≥ 0, �̃3(τ) ≤ 0 and �̃4(τ) ≥ 0 ; ∀τ ≥ 0.

Proof: First assume that τ is close to 0, then the
evolution of �̃0(τ), �̃3(τ) and �̃4(τ) is dominated by
�̃0(0) � 0, �̃3(0) σ 0 and �̃4(0) � 0 because the
term (1 − β−βt) can be neglected. Now assume the
worst possible case, that will happen if τ � 0. In this



situation for �̃0(τ) to remain positive, according to
Eq. (33a), it is necessary that(

 3 �̂
2�2(�r) +  4�

2
r

)
�̃0(0) +  4�

2
r �̃4(0)

�  0�̂
2�(�r)|�̃3(0)| (38)

Ineq. (38) will hold if

 4�
2
r �̃0(0) �  0�̂

2�(�r)|�̃3(0)| (39)

that is precisely Ineq. (36). Similarly, according to
Eq. (33b), for �̃3(τ) to remain negative it is necessary
that (

* 0�̂
2 +  4�

2
r

) |�̃3(0)|+  3 4

 0
�2

r �̃4(0)

� * 3�̂
2�(�r)�̃0(0) (40)

Ineq. (40) will hold in turn if(
* 0�̂

2 +  4�
2
r

) |�̃3(0)| � * 3�̂
2�(�r)�̃0(0) (41)

that is Ineq. (37). According to Eq. (33c), �̃4(0) will
remain always positive. ✷

Finally, the main result of this paper is stated in the
following theorem

Theorem 6. Consider assumption 4 and Lemmas 1-
5, then under the observer and adaption laws in
Eq. (4), (10) and (11) the equilibrium �̃ = 0,
�̃ = 0 and Θ̃ = 0 is stable. Moreover the maximum
coefficient of friction αm is underestimated and
limt→∞ �̃(τ) = 0, limt→∞ �̃(τ) = 0 and limt→∞ Θ̃ =
0.

Proof: The choice of �̃(0) σ 0, �̃0(0) � 0, �̃3(0) σ
0 and �̃4(0) � 0 together with Lemma 5 implies
that ÛΘ̃ ≥ 0 and therefore that that the product
Θ̃T ÛT ÛΘ̃ does not vanish, except when Θ̃ = 0.

Choose Lyapunov function candidate - as

- = �1�1 + �2�2 + �3�3 =
3∑

i=1

�i�i (42)

with �1, �2 and �3 positive scalars. The time deriv-
ative of Eq. (42) can be bounded by

-̇ ≤ −1
2
ΨT (HS + STH)Ψ (43)

where Ψ =
[‖Θ̃‖ |�̃| |�̃|]T

, H = diag{�3� �2� �1}
and

S =


‖ÛT Û‖ ‖ÛTU2Θ‖ ‖ÛTU1Θ‖

‖U3‖ �0�(�r) −(1− �0�
′(�r)�̂)

0 0 �(1− �)(� + �̂)


 (44)

According to (Khalil, 1996) a necessary and suffi-
cient condition for the existence of scalar �1, �2 and

�3 that will make Eq. (43) negative definite is that
the principal minors of the matrix S are positive
definite. The first two minors are proven directly to
be positive, the third one is given by

�(1− �)(� + �̂)�̂2�2(�r)�3 ≥ 0 (45)

provided that conditions on Lemmas 1 and 5 are
satisfied. This proves aymptotic stability and there-
fore that limt→∞ �̃(τ) = 0, limt→∞ �̃(τ) = 0 and
limt→∞ Θ̃ = 0.

The underestimation of αm follows directly from
Eq. (8) and Lemma 5. ✷

5. SIMULATION RESULTS

In this section the design of the previous section is
tested. In the simulation, the parameters are taken
from the LeSabre cars used in the California PATH
program: ) = 1701ζ0 λγ, �� = 0ζ3693 . · $2�
2,
� = 2ζ603 λγ ·
2, / = 0ζ323
 and λb = 0ζ9 for
nominal values. Wheel angular velocity and vehi-
cle longitudinal acceleration are used to design an
observer-based emergency braking controller. Fig. 1
shows the vehicle velocity, friction coefficient and
braking pressure and dynamic surface value during
the emergency braking maneuver. Fig. 2 illustrates
the estimated internal state error �̃ and vehicle
velocity error �̃. Fig. 3 shows the estimated friction
parameters �0, �3 and �4 and the coefficent of fric-
tion estimation error α̃. During the simulation these
parameters converged quickly to their true values.
At the end of the maneuver there is a slight loss
of convergence in the parameters value that obeys
to the transition from dynamic to static friction.
Convergence is not recovered rapidly because the
updating term in the adaption law is quite small at
this time. This situation can be avoided by turning
the adaptation off.

6. CONCLUSIONS

In this paper the emergency braking of vehicles
under unknown tire/road conditions and system
states, based on a dynamical friction model is dis-
cussed. It is assumed that measurements of wheel
angular velocity and longitudinal acceleration are
available. The braking pressure controller is de-
termined based on the estimation of system state
and the friction parameters. The asymptotic con-
vergence of the estimated states and parameter
estimates has been proven, under proper selection
of adaptation gains and initial estimation errors.
The simulation results show that, by applying this
controller, the vehicle can be stopped quickly with
near maximum deceleration.
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