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Abstract: T elematics allo w a prediction of the future driving conditions of a car
along some time horizon. This prediction o�ers a kno wledgeof the torque request
caused by the route ahead and can be used for implementing sophisticated operating
strategies for Hybrid Electric Vehicles (HEVs). The inten tion of the present paper is
to describe a method which minimizes the fuel consumption of the system beyond the
prediction horizon. Therefore the strategy determines the best operating conditions
of the combustion engine and the electric motor with respect to the predicted torque
request and the SOC of the battery.
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1. INTRODUCTION

Future car models will be equipped with sev eral
telematic devices which can pro vide the driv er
and the control units with various environmental
information. Based on this data a prediction of the
expected driving conditions ahead of the car can
be acquired. The information for this prediction
can be gained through:

� GPS and road maps containing information
about road bends, speed limits and topogra-
phies

� traÆc information obtained by external sour-
ces

� on-board sensors like Distronic, which is a
radar system for detecting the distance to the
car ahead.

The prediction o�ers the possibility of implement-
ing adv ancedoperating strategies for the driv e-
train. This will help to reduce the fuel consump-
tion of pow er-driv envehicles, which is the most
important aim of all automotive dev elopment top-
ics!

The kno wledgeof the torque request caused by
the route ahead can be used to giv e the driv er
hin ts for a fuel eÆcient w ayof driving. An ex-
ample for this is the advice to release the gas
pedal very early when it is predicted that the
speed has to be reduced soon. It can be sho wn
that a prediction horizon of only 500 m helps
saving up to 15 % of fuel. (Fried et al., 2000) But
it is ob vious that this strategy is not satisfying
for the driv er,as he looses the pow erto set the
velocit y of the car. A solution to this problem is
a hybrid electrical driv etrain.As the additional
electrical pow er source together with the battery
can be used for transforming and storing energy,
the hybrid con�guration o�ers an extra degree
of freedom. T ogetherwith the prediction of the
future torque request the electrical machine can
be used for recuperating surplus kinetic energy by
transforming it in to electrical energy which can
be stored in the battery of the vehicle. A shift
of the engine's load condition to regions of higher
eÆciency is also possible. The energy acquired this
w ay can be used for either pure electrical driving
or for adding an electrically generated torque to
the torque of the combustion engine. Every pro-
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Fig. 1. Model Predictive Control

cedure can be done under the boundary condition
that the driver's torque request will always be
satis�ed, which gives the driver the full control
over his vehicle. As both the concept of predictive
control and that of the hybrid drivetrain provides
substantial potential savings in fuel on their owns,
it can be expected that the combination of the two
will lead to an even better result.

This paper's aim is to examine the potential
of the combination of predictive control and a
hybrid powertrain. As the modeling of a driver's
behavior, which is necessary for predicting the
torque request, is a very complicated task in itself,
this paper �rst of all regards a kind of predictive
cruise control. The speed is set to a constant value
and the torque request is calculated only out of
the knowledge of the incline pro�le ahead. This
allows to show the potential of this approach. In
a next step, of course, the prediction of the driver's
actions to get a velocity prediction ahead has to
be done.

2. PREDICTIVE CONTROL OF A HEV

If, for example, the driver of a car enters his de-
sired destination into the navigation system, and
the velocity over this distance could be predicted
properly, then in theory the entire pro�le of the
torque request at the wheel Twheel(t0; tp) in the
time interval [t0 tp] would be known. Using this
knowledge, an optimal solution, with respect to
some cost criterion, for the distribution of this
torque request onto the electrical machine and
the combustion engine can be found. The cost
criterion is a measure of the cost of a control
action and has to be minimized. When minimizing
the fuel consumption of a HEV the criterion has to
punish the fuel consumption and also to consider
the charge of the battery.

In practice there are several problems which make
it impossible to proceed this way. As there will be
many disturbances caused by the traÆc etc., there
is no possibility of getting a suitable prediction of
the velocity shape over the whole distance ahead.
But even if the velocity could be predicted, there
would be the need for solving a nonlinear dynamic
optimization problem. However, this leads to an

extraordinary high computational e�ort, which
cannot be coped with in real-time applications.

Thus the method of model predictive control
(MPC) is applied. The basic concept is described
in �gure 1 (Camacho and Bordons, 1999). De-
pending on the prediction of the desired veloc-
ity, a reference trajectory over p time-steps for
the vehicle can be obtained. p is the so-called
prediction horizon. The basic idea is to obtain
the control variables by minimizing an objective
function which can depend on the deviation to
the reference and on the values of the control
variables. If the vehicle is given in time-discrete
state-space form

x(k + 1) = f
�
x(k); u(k); k

�

dimx = n

dimu = p

(1)

with the state-variable x(k) and the control in-
put u(k) and the desired reference-trajectory is
termed xr(k) the cost criterion will take the shape
of

J =

�=k+pX
�=k+1

�
�
jjxr(�)� x̂(�jk)jj

�

+

�=k+mX
�=k

�
�
u(�); x̂(�jk)

�
:

(2)

x̂(�jk) means "predicted x at time-step �, when
prediction is made at time-step k". The so-called
control horizon m is normally chosen equal to
the prediction horizon. The functions �(�) and
�(�) allow a weighting of the inuence of the
state-variables and the control variables. If the
reduction of the fuel-consumption is the aim of
the optimization, then �(�) will be chosen as a
function expressing the consumption and �(�) is
for making sure that the reference trajectory of
the state-variables is followed.

When minimizing J a sequence of optimal con-
trol values [u(k); u(k + 1); � � � ; u(k +m)] will be
obtained. Applying them to (1) leads to an open-
loop control. In presence of disturbances an open-
loop control would fail, therefore the loop has to
be closed. This is done by applying the following
algorithm:

1. Predict the system-trajectory over the predic-
tion horizon. This trajectory is dependent on
the unknown control variables [u(k); u(k + 1),
� � � ; u(k +m)] and the present state x(k).

2. Solve the optimization-problem phrased by (1)
and (2). This leads to a sequence of optimal
control inputs
[u�(k); u�(k + 1); � � � ; u�(k +m)].

3. Apply the �rst value u�(k) of the sequence of
control-variables.



4. Go to 1. and restart the algorithm with the
measured current state.

By applying only the �rst control input (which of
course can also be a vector) and then updating
the current state a closed-loop controller is got.
Due to the fact that the prediction horizon is
always the same, this horizon will move forward.
Consequently MPC is also called receding horizon
control.

There are generally no limitations for the method
which is used for solving the optimization prob-
lem (Allg�ower and Zheng, 1991). But as the ac-
tual problem is non-linear and as the number of
states is small, Bellman's dynamic programming
(Bryson and Ho, 1975) has been found to be
suitable.

3. THE MODEL OF THE HYBRID

3.1 Con�guration of the Hybrid Drivetrain

The regarded hybrid drivetrain is a parallel one.
It consists of a front-wheel driven common-rail-
diesel powertrain with an automated manual gear-
ing mechanism. Additional, there is an electrical
engine included, which is connected via a second
gearbox to the rear-wheel. Both gear-boxes are
connected in a way that they always shift simul-
taneously. The electrical machine is a permanent
magnetic synchronous machine with about the
same power as the diesel engine has.

A NiMH-battery from Panasonic is held as an
energy storage, the complete con�guration is rep-
resented in �gure 2

3.2 General Assumptions

Generally there are two di�erent approaches to
modeling vehicles:

� By using Newton's second law, several bal-
ances of power and electrical and chemi-
cal correlations, a set of di�erential equa-
tions can be obtained, which describe the
behaviour of the car. The control actions
like acceleration and breaking pedal position,
choice of the gear or the desired torque of
the electrical machine are the inputs to these
equations; the rotation speed of the drive-
train or of the wheels, the output torque
of the combustion engine and the state of
charge of the traction battery are the outputs
(Kiencke and Nielsen, 2000).

� By inverting the chain of causality and cre-
ating a model with a driving pro�le which
consists of a velocity and acceleration shape
and the route gradients as an input, most of
the dynamic states can be neglected. This is

based on the fact, that calculating backwards
from accelerations, velocities and climbing
resistances leads to the torque request to
the two machines. Then the only control in-
put is the distribution of the torque to the
two torque sources, which then causes a fuel
consumption and a change of the state of
charge (SOC). Therefore the SOC is the only
remaining state variable (Guzzella, 2000).

As the assigned task of the model is mere to
describe the behavior of the vehicle when driving
with a known velocity along a known acclivity
trajectory, the second approach mentioned above,
a so-called quasi-static model, can be applied for
modeling the engines and the mechanical part of
the vehicle. As the trajectory of the SOC is the
unknown result of the optimization, the battery
has to be modeled as a dynamic system, described
by a di�erential equation of �rst order. It should
be mentioned, that this �rst-order di�erential
equation is the only dynamic part of the vehicle
model.

3.3 State Space Model of the Battery

Using the quasi-static approach for modeling the
mechanical system, it can be managed with only
one single dynamic state describing the SOC of
the traction-battery:

_Q = �I(Q;PEM ) (3)

Q is the SOC, which is limited between 0 and 1,
I(�) is describing the current which is charging or
discharging the battery. The battery is modelled
as a charge reservoir and an equivalent circuit
whose parameters are a function of the remaining
charge in the reservoir. The equivalent circuit
accounts for the circuit parameters of the battery
as if it were a perfect open circuit voltage source in
series with an internal resistance (NREL, 2001).
Therefore I(�) is a function of the present SOC
and the power request of the electrical machine
PEM .

For simplicity thermal e�ects inuencing the eÆ-
ciency of the battery are neglected.

3.4 Model of the Electric Machine

The balance of power

TEM � !EM = �(!EM ; TEM ) � PEM (4)

leads to a model for the electric machine where
TEM is the torque of the electrical machine, !EM
is it's angular velocity and �(�) is a testbed-map
which describes the eÆciency of the machine.
Using !EM = jDTE(i) �!wheel where !wheel is the
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Fig. 2. Con�guration of the Hybrid Drivetrain

angular velocity of the driven wheels and jDTE(i)
is the gear-dependent gear-ratio of the drivetrain
from the electrical machine to the wheel, leads to
the description of the electric motor

PEM =
TEM � jDTE(i) � !wheel

�(!EM ; TEM )
(5)

with the gear i and the mechanical torque TEM
as inputs and the electrical power request PEM as
output.

3.5 Internal Combustion Engine and Drivetrain

The internal combustion engine (ICE) and the
losses of mechanical energy in the drivetrain are
described with measured maps. As a backward-
dynamic model is used for modelling the drive-
train, see section 3.2. The torque request at the
wheel Twheel is given by the predicted velocity and
incline pro�le. Calculating this torque backwards
through the drivetrain gives the gear-dependent
torque request to the two engines, TEM and TICE,
respectively. As TEM holds as an input variable
to the system, TICE is only dependent from the
driven cycle, the selected gear and the electric
torque:

TICE = �DTC � jDTC(i) �
�
Twheel�

��DTE � jDTE(i) � TEM
� (6)

The variables �DTC , jDTC and �DTE , jDTE are
the eÆciencies and transmission ratios of the
combustion engine and electrical machine, respec-
tively. The drivertrain eÆciencies are expressing
the mechanical losses as gear, angular velocity and
mechanical torque dependent coeÆcients.

As the torque of the combustion engine is given
by (6) it is suÆcient to describe the combustion
engine by it's steady-state fuel consumption map.
For each torque TICE and rotational speed !ICE
of the combustion engine this map delivers the
need for fuel �(!ICE ; TICE).

3.6 Route Dependent Model

A time-based model has the disadvantage that
it doesn't really match the problem: A map of
the incline and a velocity prediction is used while
predicting over some horizon. Both are not time-
dependent, but dependent on the position of the
vehicle! To handle this fact the time-dependent

model is transformed into a position-dependent
model by using the coherence between position s

and velocity v:

ds

dt
= v ) dt =

1

v
ds (7)

The result of using (7) for replacing the di�erential
operator dt in (3) is

dQ

ds
= �

1

v
� I(Q;PEM ) : (8)

This new route-dependent model is valid for all
v 6= 0.

3.7 Discretization of the Problem

As MPC shall work together with dynamic pro-
gramming, a discrete model has to be used.
This will not be a time-discrete model but a
position discrete model with the position-step-
size �s. As the problem is non-linear, an Eu-

ler-based approximative discretization is used
[Oga87]. Derivations are replaced by di�erence
quotients and integrals are replaced by sums. This
leads to:

Q(s+�s) = Q(s) + �s
�
�
1

v
� I(Q;PEM )

�
(9)

4. DESCRIPTION OF THE ALGORITHM

In this section a brief description of the underlying
optimization algorithm, the used cost criterion
and some ideas to decrease the computational
e�ort will be done.

4.1 Predictive Dynamic Programming

Bellman's Dynamic Programming is a standard
approach for the numerical solution of optimiza-
tion problems for time-discrete dynamic systems
expressed by the di�erence equation (1) with re-
spect to the criterion (2), see for example (Bryson
and Ho, 1975). When using Dynamic Program-
ming, the state and control variables of the system
will be quantised and a backward-calculating algo-
rithm delivers a matrix which's elements are the
optimal control, dependent on the present time-
step and the present state of the system.

As Dynamic Programming is suited for solving
non-linear problems with limited state and control
variables and a �nite control horizon, it can be



easily used for solving the optimization problem
in the model predictive control algorithm as it is
described in section 2.

4.2 The Cost Criterion

The cost criterion has to prevent the battery's
charge from getting too low and it has to weight
the fuel consumption. To penalize a too low SOC
at the end of the prediction Qend = Q(t0 + tp), a
penalty function

h(Qp) =

�
0 for Qend � Qmin

1 for Qend < Qmin
(10)

is introduced. Using digital computers "1" means
"a very big number". For weighting the fuel con-
sumption, the sum over the output of the steady-
state engine map

t0+tpX
�=t0

�(!ICE ; TICE)�t (11)

is used. Here t0 is the present time, t0 + tp is
the end of the prediction horizon in time domain
and �t is the sample time. Using (7) allows a
transformation of (11) into the route domain. By
adding (10) the cost criterion then gets it's �nal
form

h(Qp) +

s0+spX
�=s0

1

v(�)
�(!ICE ; TICE)�s(�) (12)

where s0 is the current position and sp is the
length of the prediction horizon.

4.3 Reducing the Computational E�ort

The drawback of Dynamic Programming is the
quite high computational e�ort, which increases
exponentially with the number of states. As the
problem is formulated as a di�erence equation
with only one dynamic state, the need for compu-
tational power is not extensively high, but still too
high for calculating over horizons of 1000 m and
more. Therefore some approaches which specially
match the predictive control are used to increase
the computational eÆciency:

� In the classical Dynamic Programming, a
search through the complete state-space has
to be done to �nd the optimal controller. In
the problem of optimizing the hybrid vehi-
cle this would mean calculating the optimal
control for all possible SOC-conditions of the
battery over the whole prediction horizon.
But as the current SOC is known and the
maximum possible power of the electrical
motor generally doesn't allow to completely
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Fig. 3. trajectory of the optimal SOC and pro�le
of the test track

load or unload the battery, only the reach-
able SOC-area has to be regarded. This in
itself leads to a signi�cant reduction of the
computational e�ort!

� The storage of the complete optimal control
matrix over the whole prediction needs a
lot of memory. But as only the �rst control
input is applied to the system and then the
optimization is started again (see 2), only the
control values in the current position s0 have
to be kept in memory.

� Due to the concept of the receding horizon,
only the area close to the present position
has to be calculated with a very �ne grid
of quantization. The area far ahead can be
calculated with a rougher grid.

5. SIMULATION RESULTS

In this section some results, obtained by simu-
lating the HEV while driving on a test track,
will be presented. The benchmark for the shown
test-simulations is a round-course on a typical
low-mountain area. For getting the x-, y- and z-
coordinates of the course the measurements were
made by using di�erential-GPS. This leads to a
very high accuracy of all coordinates. Figure 3
shows the pro�le of the absolute height of the
benchmark track and the optimal trajectory of
the SOC. To obtain the global optimum for this
calculations the prediction horizon was extended
to the complete track. For the SOC the condition
was set that it must reach at least it's initial
value at the end. It can be seen, that the SOC
stays in reasonable limits between 30 % and 100
% and that the �nal SOC is identically to the
initial SOC. Also can be seen, that the battery
is charged during all downhill driving conditions
and that the stored energy is only used for driving
the vehicle in not very steep uphill sections, but
not in the steep ones. To explain the reason for
this strategy, a section out of the test track will
be regarded.
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Fig. 4. a section out of the trajectories of the SOC
and the pro�le

Figure 4 shows a section of the SOC and the
height. Figure 5 shows the torque distribution
in the upper part. The solid line represents the
torque of the electrical machine at the wheel
TEMw, which means that the inuence of the
gearbox is already considered. The dotted line is
the torque request at the wheel for enabling the
car driving the test track. It can be seen that the
strategy is using negative torque requests for re-
generative breaking and that small positive torque
requests are supplied by the electrical machine
while bigger torque requests are the domain of
the combustion engine. The second plot in �gure 5
explains this behaviour: Here the trajectory of the
eÆciency of the diesel engine over the driven route
is plotted, dotted when driving the cycle purely
with the combustion engine, solid when using the
hybrid strategy. If the thermal eÆciency is high,
like in the steep uphill parts mentioned above,
then the electrical machine is o� and the diesel
engine is working alone. Only if the eÆciency is
small then the electrical motor is using the energy
stored in the battery for generating the traction
torque.

Extending the prediction horizon to the entire
route shows a high potential of fuel saving, in
a dimension of 20 %, compared to a non-hybrid
con�guration with a much smaller mass.

Of course the complete track, it's length is around
80 km, is an unrealistic long horizon. Therefore
simulations with shorter horizons between 250 m
and 3000 m were carried out. They showed that
the saving of fuel is decreasing with a decreasing
horizon, but that this e�ect is strongly dependent
of the pro�le of the torque request ahead. There
are also dependencies on the size of the battery,
which is clear when considering that the potential
of using the information of a pro�le ahead is
dependent on the amount of energy which can be
stored.
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Fig. 5. a section out of the trajectories of the
torque distribution and the combustion en-
gine eÆciency

6. CONCLUSIONS

In the present paper it could be shown that a
predictive powertrain control for a HEV o�ers a
possibility of saving fuel. A simpli�ed model with
only one dynamic state for a HEV is derived and
transformed into the route-domain. Some ideas on
how to use Dynamic Programming for solving the
optimization problem in model predictive control
and how to reduce the computational e�ort were
presented. It is also mentioned that the success of
minimizing the fuel consumption is dependent on
the prediction horizon. How to choose this horizon
when considering the route ahead and how to
accelerate the algorithms are the topics of our
future work.
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