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Abstract:

This paper addresses the problem of obtaining finite dimensional models of distributed-
parameter systems from measurement data using system identification. The data are used
to construct approximations of the solution and the forcing function in a finite dimensional
space, which are expressed in terms of a finite element basis. A discrete time model is then
identified based on the resulting finite dimensional coordinate vector. The existence and
convergence of such a representation is established for a class of abstract first order systems.
The proposed approach is illustrated in practice using simulated noise contaminated data.
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1. INTRODUCTION

In most practical cases, the analysis, simulation and
control of a distributed parameter system, which is
described by partial differential equations (PDE’s)
and is characterised by an infinite dimensional state-
space, cannot be solved using only analytical methods
(Bensoussan et al., 1992). The solution in these cases
is to replace the original infinite dimensional PDE
description with a finite dimensional approximation
which captures, with sufficient accuracy, the proper-
ties of the original PDE.

Different techniques can be applied to transform the
original PDE into an approximate system of ordi-
nary differential or difference equations. The most
commonly used approaches are the finite difference
and the finite element methods. All methods require
knowledge of the form and parameters of the PDE’s
describing the distributed parameter system.

This paper addresses this problem from a system iden-
tification perspective. The idea is to obtain the finite
dimensional approximate model from measurements,
without assuming any a priori knowledge of the struc-
ture or the parameters of the PDE’s. There is a large
body of work in the area of parameter estimation

for distributed parameter systems. The literature deal-
ing with this subject is quite extensive and has been
reviewed by a number of authors (Kubrusly, 1977;
Goodson and Polis, 1978). An in depth treatment of
this subject can also be found in the monograph by
Banks and Kunish (Banks and Kunish, 1989). How-
ever, the problem of identifying the model equations
as well as the parameters has not been addressed.

The proposed approach involves two basic steps. In
the first stage, finite dimensional approximations of
the solution and the forcing functions are derived from
the data. The approximations are expressed in terms
of a suitably conditioned finite element basis that ac-
counts for the boundary conditions that are assumed
known. If the number of degrees of freedom is too
large the dimension of the coordinate vector can be
reduced by successive projections onto a lower dimen-
sional subspaces subject to maintaining a certain de-
gree of accuracy. System identification techniques are
employed in the second stage to estimate a discrete-
time model based on the resulting coordinate vector.

The theoretical aspects of the proposed identification
approach are also investigated. In particular the exis-
tence, stability and convergence of the finite dimen-



sional models are established for a class of first order
systems. The proposed approach is illustrated using
simulated noise contaminated data.

2. THE EVOLUTION EQUATION

Let H be a separable real Hilbert space with inner
product (-,-) and norm |-| and V another separable
Hilbert space which is embedded continuously and
densely in H. Here H is identified with its own dual
space. Let V* denote the dual space of V and || - ||
denote the norm on V*. It follows thatV C H C V*
with continuous and dense embeddings. Specifically
the following inequality is assumed to hold

o] <A7Y2|jg|| @)

The notation (-,-) will also be used to denote the
duality pairing between V and V* where the pair-
ing between ¢ € H and y € V agrees with the in-
ner product (¢, ). It follows that ||¢||. < 4|e| and
llwll« < A?||w||. Often in practice it will be assumed
that H = L%(Q), V is the Sobolev space H'(Q) with
dual V* = H='(Q).

Consider the following evolution equation

E‘FAU:V(t) (2)

u(0) = ug 3)
and the equivalent variational formulation

G0 = 0,0, @

u(0) = uy, Vo €V ()

where it is assumed that:

(Al) Ae Z(V,V*).

(A2) The operator A is coercive that is (A, @) >
a||o||?, Yo € V for some o > 0.

(A3) The forcing function v(t,x) € C(IR_;H) N
L2(0,T;H) is bounded, i.e. sup [v(t)| < vg.

telR,

A solution of the initial value problem (2), (3) is a

function u € L?(0,T;V) with D;u € L?(0,T;V*) that

satisfies (2) and (3) for all T > 0. Specifically, here it

is assumed that

(A4) u(t,x) € C(R,,H)NL%(0,T;V), T >0 is a
unique solution of (2), (3).

The equation (2) is usually complemented by bound-
ary conditions which can be of the Dirichlet, Neu-
mann or periodicity type for example. These can be
accommodated by considering restrictions of A and v
to corresponding closed subspaces V

3. THE IDENTIFICATION METHOD

In general, the numerical integration of evolution
equations is based on a finite dimensional approxima-
tion of the original infinite dimensional system.

The idea is to reduce the infinite dimensional sys-
tem to a system of ordinary differential or differ-
ence equations which can be used either to compute
an approximate solution or to design the controller.
Most common approaches include the finite difference
method and the finite element Galerkin method (FEM)
(Brenner and Ridgway Scott, 1994).

The problem addressed in this paper is that of esti-
mating from data, a finite dimensional, discrete-time
dynamical system which approximates with sufficient
accuracy the unknown infinite dimensional system.
This approach assumes no a priori knowledge of the
PDE’s which governs the distributed parameter sys-
tem. The identification method can be viewed as an
inverse finite element Galerkin approach where the
solution is used to derive the finite dimensional model
rather than the original PDE’s.

The identification is performed in two stages. In the
first stage the data are used to construct approxima-
tions of the solution and the forcing function in a
finite element subspace V". This involves computing
the input and output coordinate vectors relative to the
finite element basis. The second stage involves identi-
fying a finite dimensional, discrete-time model which
approximates this input/output behaviour.

3.1 Approximation Results

Let .V"cV™lc . ..cV withn=12 . bea
sequence of nested finite dimensional subspaces of
H which is dense in V and are spanned by a finite
dimensional basis {¢['}}__,. Moreover, there exists a
constant C, > 0 independent of n such that for any
f(x) = X]_oCj@]'(x) inV"

n
>l <fff? (6)
j=0

For example, this condition is satisfied in the case of
the B-spline basis. Let

S

Ya(t,x) = 2 Vo j (D@} (), t>0 (7)

J

™M= b

Vn(t,X) = Vn,j (t)(pjn(x) t>0 (8)

0

]

denote the approximations of u and v respectively in
V" such that y, — u in L?(0,T;V) and vy — v in
L2(0,T;H).

The following theorem establishes the existence, sta-
bility and convergence of a finite dimensional dynam-



ical system which provides an approximate realisa-
tion of the input/output behaviour vn(t) = (v, o(t), ..

Vnn(t)), yn(t) = (yn70(t),...,yn7n(t)), t>0.

Theorem 3.1. Assuming (Al)-(A4) to hold, let u(t,x)
be the unique solution of (2) with initial conditions
(3) and forcing function v(t,x). Let v(t), yn(t) be the
coordinate vectors of vy(t,X) and yn(t, x) defined in (8)
and (7) respectively. An n+1-dimensional dynamical
system exists such that if un(t) = (U, o(t), ..., Unn(t))
is the trajectory of the system with input vn(t)
and initial conditions un(0) = yn(0) and up(t,x) =

o Un j (1) @]'(x) then:

a) Un(t,x) remain in a bounded set of
L=(IR,;H) and un(t,X) = ya(t,X) strongly in
L?(0,T,H) and L?(0,T,V) as n — oo,

b) The trajectories un(t) belong to a bounded set of
L(IR;;12(0,0)) and un(t) — ya(t) in

L2(0,T;12(0,00)) as n — oo,
Proof:
For eachn=0,1,2, ... define the operator A, : V" —
V" by
<AUn, > <Anun7 >7 (Pn € Vn (9)

for any un € V". From the Riesz Representation The-
orem (Naylor and Sell, 1989) applied to the Hilbert
space V" C H it follows that A, is a well defined oper-
ator given that (Aup, -) is a bounded linear functional.

Consider the initial value problem in V"

% + Anun = Vi (b), (10)

dt
Un(0) = yn(0) (11)

which is an ordinary differential equation. For each
n > 1 the existence of solutions on some interval
(0, Tn) follows from standard theorems for ordinary
differential equations. The a priori estimates below
show that these solutions are defined for all t > 0 (i.e
Th = 4o0). From (10) and (9) it follows that for any
o" € V", up is the solution in V" of

du

<d_tn’ @") + (Aun,@") = (vn, ") 12)
Un(0) = yn(0) (13)
For ¢" = uj it follows that
1d

—|un|? 4 (Aun, Un) = (Vn, Un) (14)

2dt
Since A is coercive
1d

2dt|un|2+0‘||un||2< |Vnl|un] (15)

and subsequently, using the well known inequality,

2

b
< R
ab 2a + % (16)

and (1) it follows that

d 1
&|un|2+a||un||2§ —O‘|Vn|2 (17)

and subsequently, after using (1) again that
d 1
a|un|2+oc/%|un|2 < R|vn|2 (18)

Integrating (18) and using the classical Gronwall
lemma yields

2 2 —0At |\/S|2 At)
unl? < lun(O) e+ 255 (L —e M) (19)
where vg = sup |vn|. Therefore T, — +eo as stated

teR,
earlier i.e. the solution up is defined for all t > 0.
It remains to prove that u, converges to y, as n —
oo, However, y, — u in L?(0,T;V) and L?(0,T;H)
strongly as n — . From the triangle inequality it
follows that it is sufficient to show that u, — u strongly
inin L2(0,T;V) as n — oo,

Equation (19) implies that un remains in a bounded
set of L (IR_.;H) as n — e=. Going back to (17) it also
follows that ||un|| is uniformly bounded for any t > 0
so that for any T > 0 up, remains in a bounded set of
L?(0,T;V) as n — oo

These estimates ensure the existence of an element
U and a subsequence n’ — oo such that for all T >
0, u, — U weakly in L2(0,T;V) du,/dt — du/dt
weakly in L(0,T,V*) and u, — U weak-star in
L=(IR™;H) , as n’ — . Owing to a classical compact-
ness theorem (Temam, 1983) it follows that u,, — U’
strongly in L?(0,T;H) for all T > 0 as n' — . By
passing to the limit in (12) it follows that u’ = u and
the whole sequence converges to u. The strong conver-
gence result in L?(0,T;V) follows easily by showing
that the expression

]
X = 3n(T) ~u()F+ [ fltn—uldt  (20)
0

tends to zero as N — oo,

If we expand up in equation (10) in terms of the finite
element basis in V" and take the inner product with

(pj“ for j = 0,...,n, this leads to the following system
of differential equations
du
M" dt” + E"up = M vy (1) (21)

where M{; = (9", ¢') and E'; = (A¢", ¢]').

The second part of the theorem follows easily since
according to (6)

n
Z yn] )|2S Cl|uﬂ_yn|2 (22)



which after integrating with respect to t

Tn
[N TOEAL |<c/|un Wl (23
o 1=0

leads to the convergence result in L?(0,T;12(0,0)).

3.2 The ldentification Problem

Consider the evolution equation (2) with Dirichlet
boundary conditions satisfying (A1)-(A3) and u(t,x)
a solution satisfying (A4).

To account for the fact that in general it is not possible
to measure the full state of the system, the following
observation operator is introduced

Z:C([0,T],C(Q)) » ¥ (24)

where % is the observation space to which the mea-
surements y = 2u belong.

In what follows it is assumed that point measurements
are recorded from a finite number of locations dis-
tributed uniformly over the spatial domain. Here the
data is spatially sampled at the n— 1 nodal points
12 .., "L Note thatthis is notastrong requirement.
Data which is not sampled at equally spaced points
in the spatial domain can also be handled. For sim-
plicity Q is assumed one-dimensional, in particular
Q = (0,1). The results however are also valid for
Q c IRYwithd > 1.

Specifically, in the case of discrete-discrete observa-
tions considered here, the observation operator is de-
fined as

Yo = Zu= {ut,x) H=0 (25)

and the observation space is % = IRN*", This choice
of observation operator requires that both u(t,x) and
v(t,x) are continuous functions with respect to x.

It is assumed that in the time domain, the data is uni-
formly sampled over the interval [0, T] of observation
with a sampling time At. In practice it is assumed that
both Ax = % and At are sufficiently small so that the
full behaviour of the solution u is captured.

Let V" be a finite dimensional subspace of V. The
identification problem is to determine, based only
on the given set of discrete observations yy , =
{u(t,x;) H=t0 and vy, = {v(t;, %) =0 a finite
dimensional d);namlcal system whose solutlon Un ap-
proximates the observed dynamical behaviour.

3.3 Finite Element Approximation

A common choice of finite element subspaces V" on
Q are the spaces of continuous piecewise polynomial

functions defined with respect to a uniform mesh on
Q. Let {¢]'}]_, be the standard Ith order B-spline base
(de Boor, 1978). In this case V" = span{¢j'}]_y and V

is the Sobolev space H'(Q). Note that (J V" is dense
n=0

in H = L2(Q) and H'(Q). Moreover, for the B-spline
basis the inequality (6) holds.

When defining the approximation subspaces V" and
the associated basis elements respectively, it is im-
portant to take into account the boundary conditions.
For instance for zero Dirichlet boundary conditions
V= H(') and V" is the space of continuous, piecewise,
Ith order polynomial functions corresponding to the
uniform partition {0, %, rz], ,1}, which vanish at 0 and
1 and is denoted S 1 In practice the standard B-spline
basis functions {¢]'}_, can be modified to account
for specific boundary conditions.

Let yn(t,X) = 13,1} 1u(t,X) be the linear B-spline in-
terpolation of the discrete datayy , = {u(t;, J)}J =1 N
where 1}, 4 and I, are the linear interpolation opera—

tors in SN ([0, T]) and S (Q) respectively. It follows
that yn(t,x) can be expressed in terms of the two-
dimensional linear tensor splines ®N-"(t,x) = N (t) ®
" (x) such that

yn(t,X) =

Mz
M=

Yo (O (EX)  (26)

i 0

1j

The interpolation v,(t,x) of the perturbation function
from the pointwise data vy , can be defined ina similar
manner.

Choosing the optimal approximation subspace V",
that is the mesh size h = % is very important. In
practice, the initial mesh size could be selected based
on the frequency content of the solution along the

spatial and temporal coordinates.

In identification, the mesh size is related to the number
of measurement locations in the spatial domain. Re-
cent developments in sensor technology mean that the
number of measurement locations can be quite large
and still cost-effective. For example, the data could
represent a video recording of patterns in a chemical
reaction or a sequence of MRI scans of brain activity.

As in the numerical integration of PDE’s, if the mesh
is too fine the dimension of the resulting finite dimen-
sional model will be too large and computationally
expensive. Finding a more economical representation
can be achieved by projecting the initial interpolate
Yn onto coarser spaces V"1 V"2 in order to find
the minimum number of basis functions m= m,;,, for
which the approximation error does not exceed a given
threshold p.



Fig. 1. Noise-corrupted coordinate vector §n(t)

4. NUMERICAL EXAMPLE

This section illustrates the identification of a finite
dimensional, discrete-time dynamical model for the
following diffusion equation (heat equation)

au(t,x) _C82u(t,x)
ot X2

=0, @7)

with domain Q = (0, 1), initial conditions

x€ (0,0.5)

2BXx
u(0,x) = { 2B—2Bx x€ (0.5, 1) @)

and Dirichlet boundary conditions. For B = 2 the
exact solution u(t, x) of the initial value problem (27),
(28) is given by the following series expansion

k-1
-1) o C(2k—1)?n% (29)

The solution, based on the first 50 terms of the ex-
pansion (29) with ¢ = 1.0 was sampled uniformly in
both the spatial and time domain with Ax=1/128 and
At=0.5x1073,

From each location N=1000 data points were gener-
ated and superimposed with white noise with variance
0% =0.01.

The data were interpolated using linear B-spline func-
tions. The initial interpolated solution involving 127
basis functions was subsequently projected on a lower
approximation subspace and expressed in terms of
only 15 basis functions.

One thousand samples shown in Figure 1, corre-
sponding to the noisy coordinate vector §,(t) =
(Y1 (1), .., ¥ 15(t)), were used for identification. The
data was used to estimate a MIMO-ARMA model (hot
given here for reasons of space) which included both
deterministic and stochastic terms. The selection of
the linear terms included in each of the 15 subsystems
was performed using the Orthogonal Forward Regres-
sion algorithm (Billings et al., 1988).

Fig. 2. Model predicted output (solid) ¥,(t) of the
MIMO-ARMA model superimposed on the orig-
inal noise free trajectory (dash-dot) yn(t) .

The deterministic part of the model was simulated and
the resulting model predicted output

yn (t) = Ayn (t) (30)

was plotted in Figure 2 superimposed on the original
noise-free trajectory yn(t) The two trajectories are
practically indistinguishable. In equation (30) A is the
matrix of backward shift polynomials

Ali,J) =aq " +...+aMg™ (31)

where a,!f j represent the estimated coefficients and qk
is the backward shift operator.

Fig. 3. Model prediction errors €, (t)

The model prediction errors &, (t) =y, (t) — ¥, (1),
relative to the original noise-free coordinate vector
yn(t), plotted in figure (3), are very small with a
NRMSE of less than 1%. The model output was
used to compute the approximate PDE solution y(t,x)
shown in Fig.(4).



Fig. 4. Predicted PDE solution y{(t,x)
The prediction errors e(t,x) = y(t,x) — ¥(t,x) plotted

in Fig.(5) have the same order of magnitude as the
initial B-spline approximation errors.

e, (t,x)
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Fig. 5. Predicted PDE solution errors €(t, X)

5. CONCLUSIONS

Finite dimensional approximations of PDE’s play an
essential role in the control and simulation of dis-
tributed parameter systems. This paper has developed,
analysed and tested a method for deriving the finite
dimensional approximation of a distributed parameter
system, for which the governing PDE’s are not avail-
able, directly from noisy data using system identifica-
tion.

However, even when the equations are known, this
approach can be used to provide a more economical
and even more accurate representation than the one
obtained by classical methods. Indeed, in a companion
paper it will be shown both in theory and by means
of an example that, for a given subspace V", the
identified model is more accurate than the equivalent
finite element Galerkin approximation derived from
the original PDE’s.
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