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∗ Instituto de Ingenieŕıa, Universidad Nacional Autónoma de
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Abstract: Modeling of magneto-rheological dampers to be used in semi-active control
of civil engineering structures is addressed. The behavior of this kind of dampers
is modeled through a first order Lugre dynamic friction model whose structure is
analytically simpler than other dynamic friction models used in the literature. With
this structure real-time parametric identification of the magneto-rheological damper
is possible. Forces obtained with this modeling approach are in good agreement with
those produced by other models.
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1. INTRODUCTION

Protecting civil engineering structures from the
damage induced by earthquakes is a subject of great
importance. The tragic consequences of Kobe and
Los Angeles earthquakes, to name just two of the
most recent large events, are well known and re-
mark the importance of structures protection. In
recent years, there has been a significant amount of
research in the areas of active, semi-active and pas-
sive control to protect civil engineering structures
and reduce the damaged sustained by them when
subject to seismic motion (Ramallo et al., 1999; Rib-
akov and Gluk, 1999; Xu et al., 2000; Nagarajaiah
et al., 2000; Zeng et al., 2000).

In (Dyke et al., 1996) and (Ramallo et al., 1999) the
benefits of semi-active control techniques are com-
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pared with those of active control. The authors con-
clusion is that both active and semi-active control
techniques achieve better performance than passive
technique when protecting multiple story buildings.
They also point out that the performance of active
and semi-active control techniques is very similar,
although the later is less expensive and more reliable
because of the limited power supply required for its
operation.

One of the main devices used in semi-active seismic
isolation and protection are magneto-rheological
dampers (MR) (Dyke et al., 1996; Spencer et al.,
1997). These devices are similar to viscous dampers
although the fluid that they contain can change
dramatically its viscosity properties when exposed
to a magnetic field. These changes, in turn, induce
a change in the dynamic properties of the structure
in which MR are placed. Adjusting in real time this
viscosity so as to optimize a given criteria is the
basic goal of the semi-active control approach. There
are several applications of this technology currently
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implemented (interested readers can consult, for ex-
ample, (Xu et al., 2000; Nagarajaiah et al., 2000)).

To evaluate the effect of using and properly operate
MR-dampers it is convenient to have a good math-
ematical representation of its dynamic behavior. In
(Spencer et al., 1997) the modeling of these dampers
is extensively analyzed. The authors used a Bouc-
Wen hysteric dynamic model (Wen, 1976) to repre-
sent the behavior of the damper. The results showed
in (Dyke et al., 1996) and (Spencer et al., 1997)
used experimentally generated curves of force versus
velocity to optimize the parameters of such a model.
The force versus velocity curves generated by using
the mathematical model with the optimized para-
meters show good agreement with the experimental
curves.

When using MR to implement semi-active control
schemes for building seismic isolation, the charac-
teristics of the damper, magnetizable fluid and the
structure are not perfectly known, as is normally
the case with parameters of models in all engineer-
ing modeling applications. The traditional approach
has been to use the parameters derived from the
experimental data for a similar damper as the true
parameters in the control applications.

In this paper a different approach is used for MR-
damper modeling. A LuGre dynamic friction model
(Canudas et al., 1995) is introduced to describe the
behavior of the MR-damper. There are two main
advantages gained with this new model structure:
1) It is analytically simpler than the structure of
the Bouc-Wen model (Wen, 1976) although it can
still reproduce the most important phenomena of
MR-dampers behavior and 2) This model can be
linearized in the parameters after proper manipula-
tion and therefore is suited for real-time parametric
identification. The use of real-time parametric iden-
tification avoids the problem of parameter calibra-
tion.

There are other attempts to use different modeling
paradigms for MR-dampers, such as neural net-
works like in (Kim and Roschke, 1999). Although
the authors achieve good results in terms of MR-
damper force response, the neural network model
is not physically motivated and it is therefore more
difficult to use when combined with the model of
the structures. This is important when attempting
real-time control.

This paper is divided into four sections. The first
one deals with MR-damper modeling. In the next
section, the parametric identification of the Lugre

dynamic friction model for the MR-damper is in-
troduced. The third section contains comparative
results of the force responses of the MR-damper
using both the Bouc-Wen model and the model
introduced in this paper. Finally, the last section
contains concluding remarks and directions of on-
going work.

2. MAGNETO-RHEOLOGICAL DAMPER
MODELING

In this section the modeling of MR is presented. A
good model is of importance when real-time control
of civil engineering structures is attempted. MR-
dampers are dissipative devices whose behavior is
much more complex than that of a normal viscous
damper. They present several nonlinear phenomena
that are not captured by this simple modeling
paradigm.

A systematic approach to model MR-dampers is
attempted in (Spencer et al., 1997). The authors
resort to a model based in a Bouc-Wen structure.
This modeling structure is specially well suited to
reproduce the hysteretic behavior that is observed
in experiments when force versus velocity curves
are obtained. The model proposed in (Spencer et
al., 1997) is based on the scheme shown in Fig. 1,
and has the following form

Fig. 1. Mechanical representation of an MR-damper.

c1ẏ = αz + k0(x− y) + c0(ẋ − ẏ) , (1a)
ż = −γ|ẋ− ẏ|z|z|n−1 − β(ẋ − ẏ)|z|n +A(ẋ− ẏ) ,

(1b)
f = αz + c0(ẋ− ẏ) + k0(x − y) + k1(x− x0) .

(1c)



where f is the force exerted by the MR-damper
x is the relative displacement of one end of the
MR-damper 4 , y is an internal state included to
represent rollover effects observed at low velocity
and z is the Bouc-Wen internal state. k0, k1, c0 and
c1 represent the value of the stiffness and viscous
damping in springs and dampers in Fig. 1. γ, β and
A are the parameters that control the shape of the
hysteresis loop in the Bouc-Wen yielding element.
Finally, α and n are other parameters that refer to
the internal state z and determine its coupling with
the force f and its evolution.

The model in Eqs. (1) does not explicitly include
the effect of the magnetic field applied to the MR-
fluid in the damper. To represent the possible vari-
ations of this field, (Spencer et al., 1997) assume
that this field is directly proportional to a control
voltage and propose the following linear structure
for parameters α, c0 and c1

α = α(u) = αa + αbu , (2a)
c0 = c0(u) = c0a + c0bu , (2b)
c1 = c1(u) = c1a + c1bu . (2c)

where αa, αb, c0a , c0b, c1a and c1b are constants and
u is a filtered version of the input voltage v that
obeys

u̇ = −η(u − v) . (3)

In this paper the dynamic friction model introduced
in (Canudas et al., 1995) is used, this model has the
following form

f = σ0z + σ1ż + σ2ẋ , (4a)
ż = ẋ− σ0a0|x|z . (4b)

where f is the force in the MR-damper, x is the
relative velocity between its ends, z is an internal
deformation state and σi ; i = 0, 1, 2 and a0 are
parameters.

In the original formulation in (Canudas et al., 1995)
the parameter a0 is non-linear a function of the
relative velocity 5 . To keep the simplicity of the
model, and based in the model proposed by (Dahl,
1976), a0 is kept constant in this paper.

4 The other end is fixed in Fig. 1.
5 Intended to represent the Stribeck effect.

To model the effect of the magnetic field, it is
assumed that the current that determines the in-
tensity of the field is proportional to an applied
voltage. The model in Eqs. (4b) is then modified
to incorporate this voltage v as

f = σ0zv + σ1ż + σ2ẋ , (5a)
ż = ẋ− σ0a0|ẋ|z(1 + a1v) . (5b)

If Eq. (5b) is substituted into Eq. (5a) then

f = σ0zv − σ0σ1a0|ẋ|z − σ0σ1a0a1|ẋ|zv + (σ1 + σ2)s .
(6)

Define the following parameters

θ1 = σ0 , (7a)
θ2 = σ0σ1a0 , (7b)
θ3 = σ0σ1a0a1 , (7c)
θ4 = σ1 + σ2 . (7d)

Using Eqs. (7), Eq. (6) can be rewritten as a form
linear in the parameters

f = UΘ , (8)

with

U = [zv,−|ẋ|z,−|ẋ|zv, ẋ(t)]T (9)

and

Θ = [θ1, θ2, θ3, θ4]T . (10)

3. REAL-TIME IDENTIFICATION OF
MR-DAMPER PARAMETERS

Once the structure of the MR-damper is trans-
formed to a linear in the parameters form, it is
straightforward to apply conventional identification
algorithms to adjust the parameters value. In this
paper a recursive least squares identification algo-
rithm (Ljung, 1987) is used as this method allows
real-time implementation.

The adaptation law for θ̂, the estimated value of θ
is



θ̂(t) = θ̂(t− 1) + L(t)(f(t) − U(t)θ̂(t− 1)) ,

(11a)

L(t) =
P (t− 1)U(t)

λ(t) + U(t)TP (t− 1)U(t)
, (11b)

P (t) =
P (t− 1)
λ(t)

(
I − U(t)U(t)TP (t− 1)

(λ(t) + U(t)TP (t− 1)U)

)
.

(11c)

The regressor U in Eq. (9) assumes that the internal
state is known. This is not the case. For that reason
an observer for this state is proposed of form

˙̂z = ẋ− σ̂0â0|ẋ|ẑ(1 + â1v) , (12)

where σ̂0, â0, â1 are the estimated values of the non-
hat parameters calculated with base on Eqs. (7) and
the current estimation of θ.

The regressor U in Eq. (11) is then substituted by
Û

Û = [ẑv,−|ẋ|ẑ,−|ẋ|ẑv, ẋ(t)]T . (13)

Substituting Eq. (13) into Eqs. (11) yields

θ̂(t) = θ̂(t− 1) + L(t)(f(t) − Û(t)θ̂(t − 1)) (14a)

L(t) =
P (t− 1)Û(t)

λ(t) + Û(t)TP (t− 1)Û(t)
(14b)

P (t) =
P (t− 1)
λ(t)

(
I − Û(t)Û(t)TP (t− 1)

(λ(t) + Û(t)TP (t− 1)Û)

)

(14c)

The join convergence of the parameter identification
scheme and the observer for the internal state z
follow similar lines to those presented in (Luis Al-
varez and Luis Olmos, 2001). Consider the following
Lyapunov function candidate

W =
1
2
θ̃TP−1θ̃ +

1
2
z̃2 , (15)

where θ̃ = θ − θ̂ and z̃ = z − ẑ. Taking the time
derivative of Eq. (15) yields, after some manipula-
tion

Ẇ ≤= − [Θ̃ z̃
] [ÛT Û ÛTU1Θ

U2 |ẋ|(θ2 + θ3v)/σ1

][
Θ̃
z̃

]
,

(16)

Table 1. Parameters for the model in
Eqs. (1)-(3).

Parameter Value

c0a 20.2N s/cm

c0b
2.68N s/V cm

k0 15.0N cm

c1a 350N s/cm

c1b
70.7N s/V cm

k1 5.37N/cm

αa 44.9

αb 6381/V

γ 39.31/cm2

β 39.31/cm2

A 47.2

n 2

η 2511/s

where U1 = [v − |ẋ| − |ẋ|v 0] and U2 =
[0 c1|ẋ|ẑ c2|ẋ|ẑv c3|ẋ|+ c4|ẋ|v] with c1, c2, c3, c4 de-
pending on σ1, σ̂1, θ̂2 and θ̂3. It is direct to show that
Eq. (16) is a negative semidefinite form. Stability of
f̃ = 0 and z̃ = 0 follows. Seismic excitation forces
are normally rich enough to guarantee persistence of
excitation, therefore in most practical cases θ̃ = 0.

It is important to remark that only four parameters
are identified with θ although Eqs. (5) require five.
To uniquely determine the parameters, it is assumed
that the value of σ2 is known and the others are
obtained from

σ1 = θ4 − σ2 (17a)

σ0a0 =
θ2
σ1

(17b)

σ0a0a1 =
θ3
σ1

(17c)

4. SIMULATION RESULTS

To evaluate the performance of the proposed model
for the MR-dampers, the model in (Spencer et al.,
1997) was used as a reference to generate forces. The
values in Table 1 for the parameters in Eqs. (1) to
(3) were also taken also from (Spencer et al., 1997).

The first simulation result corresponds to an input
signal in which displacement x [cm] and excitation
voltage v [V ] satisfy

x = 1.15 sin(8.6π t)
v = 1.25 + 1.25 sin(10.2π t)

Using this signal, a force is generated using Eqs. (1)-
(3) and then the identification-observation scheme
is applied. The results, in Fig. 2, shows very good
agreement between the reference force and the force



obtained by the identification procedure suggested
in this paper.
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Fig. 2. Response of MR-damper model for time
varying excitation signal.

The vector of adapted parameters, obtained after
36 s of simulation is

θ̂ = 104 × [1.059 0.181 -0.026 0.008]T . (18)

The parameter evolution curves in time are shown
in Fig. 3. It can be noticed that response time is
about 1.5 s.
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Fig. 3. Evolution of adapted parameters vs. time.

In the second simulation results, the parameters in
Eq. (18) were kept constant and then used to match

a different input signal. The excitation signal for
both the model in Eqs. (1)-(3) and in Eq. (6) was a
sinusoidal displacement x [cm]

x = 1.5 sin(5π t)

with input constant voltages of 0.75, 1.5, 2.25 V .
Figs. 4-6 show the results obtained in this case.
Fig. 4 contains the force vs. time responses, Fig. 5
the force vs. displacement curves and, finally, Fig. 6
shows the force vs. velocity curves.
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Fig. 4. Force vs. time response with constant voltage
inputs.
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Fig. 5. Force vs. displacement curve with constant
voltage inputs.
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Fig. 6. Force vs. velocity curve with constant voltage
inputs.

In summary, the results presented in Figs. 2-6 show
good agreement with the reference force generated
with the Bouc-Wen model. Parameter convergence,
as shown in Fig. 3, is also very good.

5. CONCLUSIONS

A new model approach for MR-dampers based on
a first order Lugre dynamic friction model was pre-
sented. The proposed structure can be transformed
to render a linear in the parameters model that is
used in combination with a nonlinear observer for
the internal state of the friction model. The model
proposed has a simpler analytical structure than the
one introduced in (Spencer et al., 1997) but it is
still capable of reproducing the force responses for
different kinds of excitation signals. One important
feature of this modeling structure is that it allows
real-time identification of the MR-damper model
parameters. Experimental verification of these re-
sults is ongoing work.
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