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Abstract: The problem of designing a nonlinear observer for flexible-joint manipulators using
a neural network approach is considered in this paper. In the first instance, noa priori
knowledge about the system dynamics is assumed in developing the basic structure of the
neural observer. The recurrent neural network configuration is obtained by a combination of
a multilayer feedforward network and dynamical elements in the form of stable filters. Next,
partial knowledge about the manipulator dynamics is assumed. However, a model of the joint
stiffness, stiction, and friction is assumed to be unknown. This modification greatly simplifies
the original design and facilitates its real-time implementation. This scheme does not need
any measurement from the output shaft of the manipulator. The neural networks are trained
online. Simulation results for single and two-link manipulators are presented to demonstrate
the effectiveness of the proposed approach.
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1. INTRODUCTION

The flexibility of robot motor transmissions (joint flex-
ibility) is often the dominant source of compliance
in a robotic system. For example, in relative terms,
a harmonic drive transmission is much more flexible
than a conventional gear transmission. The uncon-
ventional gear-tooth meshing action of the harmonic
drive, makes it possible to acquire higher gear ratios
and high torque capabilities in a compact geometry.
However, the flexibility of the joint causes difficulty
in modeling manipulator dynamics and becomes a
potential source of uncertainty that can degrade the
performance of the manipulator and in some cases can
even destabilize the system (Goldsmithet al., 1999).
Consequently, addressing this issue is essential for
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calibration as well as modeling and control of robot
manipulators.

To compensate for joint flexibility, many sophisti-
cated control algorithms have been proposed both
in constrained (Spong, 1989; Ge and Woon, 1998)
and unconstrained motions (Spong, 1987; Chang and
Daniel, 1992; Zemanet al., 1997; Hung, 1991; Al-
Ashooret al., 1993). Most of these schemes assume
the availability of both the link and the motor po-
sitions, a condition that may not always be satis-
fied or practically feasible. A Luenberger observer, a
reduced-order high-gain observer, and Kalman filter
based observer were reported to relax the requirement
of measurements from both sides of the transmission
device (Jankovic, 1995; Nicosiaet al., 1988; Nicosia
et al., 1989; Nicosia and Tornambe, 1989; Tomei,
1990; Jankovic, 1992). However, a fundamental as-
sumption underlying all of these methods is that the
system nonlinearities are completely knowna priori.
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The nonlinear mapping properties of neural networks,
their adaptive nature, and their ability to deal with
uncertainty make them a powerful tool for the control
and identification of nonlinear systems. In (Elanayar
and Shin, 1994), a state estimator has been designed
using a Radial Basis Function (RBF) neural network.
The problem of state estimation for a class of discrete–
time nonlinear systems was considered in (Levin and
Narendra, 1996). A dynamic neural-network-based
observer for a class of SISO nonlinear systems was
considered in (Kimet al., 1996). In (Ahmed and
Riyaz, 2000), a Kalman filter based observer using
neural networks was considered. The nonlinearities of
the system were assumed to be known and the neural
network was employed to approximate the Kalman
filter gain.

In this paper, a reduced-order observer for flexible-
joint robots when motor positions and velocities are
available, is proposed. This choice of measured vari-
ables is most desirable. In Section 2, the dynamic
model used for the simulation is defined. The pro-
posed neural network observers are introduced in Sec-
tion 3. As a first step, noa priori knowledge about
the system dynamics is assumed. The recurrent neural
network configuration is obtained by a combination
of a multilayer feedforward network and dynamical
elements in the form of stable filters. In the next step,
partial knowledge about the manipulator dynamics is
assumed, but joint stiffness, stiction, and friction are
assumed to be unknown. This modification greatly
simplifies the original design and facilitates its real-
time implementation. This scheme does not require
any measurement from the output shaft of the ma-
nipulator. Finally, in Section 4 simulation results are
presented.

2. MANIPULATOR MODEL

Manipulators with harmonic drive actuators or motors
with long shafts tends to have inherent joint flexi-
bilities. The most common way to model the joint
flexibility is to consider a rotational spring between
the input shaft (motor) and the output shaft (link) of
the manipulator (Spong and Vidyasagar, 1989; Ortega
et al., 1998).

Dl (q1)q̈1 +C1(q1, q̇1)+g(q1)+B1q̇1 = τs,

Jaq̈2 + τs+B2q̇2 = τ, (1)

whereq1 ∈ℜn is the vector of link positions,q2 ∈ℜn

is the vector of motor shaft positions,g(q1) ∈ ℜn is
the gravity loading force,C1(q1, q̇1) ∈ ℜn is the term
corresponding to the centrifugal and Coriolis forces,
B1 ∈ ℜn×n and B2 ∈ ℜn×n are the viscous damping
matrices at the output and input shafts,Dl (q1) ∈ℜn×n

andJa ∈ ℜn×n are the robot and the actuator inertia
matrices respectively, andτ is the input torque.

Fig. 1. Structure of the neural network observer.

The reaction torqueτs from the rotational spring is
often considered as

τs = K(q2−q1)+β(q1, q̇1,q2, q̇2) (2)

whereK ∈ ℜn×n is the positive-definite stiffness ma-
trix of the rotational spring attached between the in-
put and the output shafts. In general, there is an un-
known nonlinear forceβ(q1, q̇1,q2, q̇2) which can be
regarded as a combination of a nonlinear spring and
the friction at the output shafts of the manipulator. The
reaction torqueτs cannot be modeled accurately and
is assumed to be unknown for observer design and is
included for simulation purposes only.

3. THE NEURAL NETWORK OBSERVER

Consider the nonlinear system

ẋ= f (x,u)

y=Cx (3)

where u ∈ ℜm is the input,y ∈ ℜm is the output
and x ∈ ℜn is the state vector of the system. Now,
by adding and subtractingAx whereA is a Hurwitz
matrix, (3) becomes

ẋ= Ax+g(x,u)

y=Cx (4)

whereg(x,u) = f (x,u)−Ax (Kosmatopouloset al.,
1992; Talebiet al., 2000). Based on (4), a recurrent
network model is constructed by parameterizing the
mapping g by feedforward (static) neural network
architectures, denoted byN1. Therefore, the following
model is considered for observer design.

˙̂x = Ax̂+ ĝ(x̂,u,w)+Γ(y−Cx̂) (5)

wherew is the weight matrix of the neural network
andΓ is selected such thatA−ΓC is a Hurwitz matrix
(Kim et al., 1996). The structure of the observer is
shown in Figure 1. In this figure, ˆx denotes the state of
the observer (5). Corresponding to the Hurwitz matrix
A, W(s) := (sI−A)−1 is also shown which is ann×n
matrix whose elements are stable transfer functions.



The objective function for training the neural network
is selected asJ = 1

2(eTe), where e = y−Cx̂. The
weight adjustment mechanism is based on the steepest
descent method, namely

ẇ =−η(
∂J
∂w

)T ,

whereη is the learning rate. Note that∂J
∂w is computed

according to

∂J
∂w

=
∂J
∂e

∂e
∂w

= eT ∂e
∂w

Sincee= y−Cx̂, we get

∂J
∂w

=−eTC
∂x̂
∂w

(6)

Now, by using static approximation of∂x̂
∂w as−A−1 ∂ĝ

∂w,

we may write∂J
∂w as

∂J
∂w

= (eTCA−1)
∂ĝ
∂w

,

where ∂ĝ
∂w can be computed using the backpropagation

method.

3.1 Reduced Order Observer

For the case of a flexible-joint manipulator, there are
4 states corresponding to each joint (positions and ve-
locities of the input and output shafts). Consequently,
for a manipulator withn joints, the dynamical system
is a 4nth order system. Hence, the neural networkN1

should have 4n outputs. This makes the observer com-
putationally expensive especially if the neural network
observer is to be employed and trained online. One so-
lution to this problem is to consider partial knowledge
about the dynamics of the system (basically the rigid-
body model) and employ the neural network to ap-
proximate the stiffness dynamics (the reaction torque
τs in equations (1,2)). The manipulator dynamics (1)
can be rearranged as

M(q)q̈+C(q, q̇)+κτs = U, (7)

whereq = [qT
1 ,qT

2 ]T , M(q) =
[

Dl (q1) 0
0 J

]
, C(q, q̇) =[

C1(q1, q̇1)+g(q1)+B1q̇1

B2q̇2

]
, U =

[
0
τ

]
, κ =

[
−In
In

]
,

and In is then× n identity matrix. Now, by defining
x = [qT , q̇T ]T and following the same steps as in the
previous section, equation (7) can be written as

ẋ= Ax+g(x,u)+Ts

y=Cx (8)

where,Ts =
[

0
M−1κτs

]
and y = [qT

2 , q̇T
2 ]T . The ob-

server model is now given by

Fig. 2. Structure of the reduced-order neural network
observer, whereF(.) is realized according to (9)

˙̂x = Ax̂+g(x̂,u)+ T̂s(x,w)+Γ(y−Cx̂), (9)

where

T̂s(x,w) =
[

0
M−1κτ̂s(x̂,w)

]
(10)

and τ̂s(x̂,w) is the mapping performed by the neural
network (N2). The structure of the observer is shown
in Figure 2.

The objective function for training the neural network
is selected as before, namelyJ = 1

2(eTe), wheree=
y−Cx̂. The steepest descent method is also used to
adjust the weights of the neural network,

ẇ =−η(
∂J
∂w

)T ,

Note that∂J
∂w in this case is computed according to

∂J
∂w

=
∂J
∂e

∂e
∂w

= eT ∂e
∂w

Sincee= y−Cx̂, we get

∂J
∂w

=−eTC
∂x̂
∂w

∂x̂
∂w

=
∂x̂
∂τ̂s

∂τ̂s

∂w
(11)

Now, by using the static approximation of∂x̂
∂τ̂s

as

−A−1 ∂T̂s
∂τ̂s

, we can write∂J
∂w as

∂J
∂w

= (eTCA−1)
∂T̂s

∂τ̂s

∂τ̂s

∂w
,

where ∂T̂s
∂τ̂s

can be computed using (10) and∂τ̂s
∂w can be

computed using the backpropagation method.

4. SIMULATION RESULTS

The performance of the proposed observer is first
investigated on a single flexible-joint manipulator
whose parameters areJ = 1.16kg.m2, m= 1Kg, l =
1m, K = 100N/m, whereJ is the motor inertia,m is



Fig. 3. The responses of the open-loop system to
sin(t) reference trajectory with initial random
weights for neural network: (a) link position,
(b) link velocity, (c) link position after learning,
(d) link velocity after learning. The dashed lines
correspond to the states of the manipulator and
the solid lines correspond to the states of the
observer.

the link mass,l is the link length, andK is the stiffness
of the joint. For the neural network based observer, a
three-layer neural network was used with 4 neurons in
the input layer, 5 neurons in the hidden layer, and 1
neuron in the output layer. The inputs to the network
are q̂1, ˙̂q1, q̂2, and ˙̂q2. The hidden layer neurons have
sigmoidal transfer functions and the output neurons
use linear activation functions. The initial weights of
the network are selected as small random numbers.
when training the neural network,β(q1, q̇1,q2, q̇2) in
(2) is considered to be zero and later included in the
model to show the ability of the neural network in
dealing with uncertainties.

Figure 3 shows the simulation results for this case.
Figures 3–a and 3–b show the responses ofq1 and
q̇1 to a sin(t) input signal when the learning evolves.
After the learning has been completed, the responses
of q1 and ˙q1 are shown in Figures 3–c and 3–d, respec-
tively. As can be seen, the neural network observer has
learned the system dynamics and its states accurately
track the flexible-joint states. In the next simulations,
the weights of the neural network are taken from the
previous simulation. To evaluate the ability of the neu-
ral observer under different conditions, the frequency
of the reference trajectory was changed to 3Hz and

Fig. 4. The responses of the closed-loop system to
sin(3t) reference trajectory: (a) motor position,
(b) link position, (c) motor velocity, (d) Link
velocity. The solid lines correspond to the states
of the observer.

the control loop was also closed using a PD controller.
Note that, the weights of the network are still updated
in this case. The simulation results in this case are
shown in Figures 4–a to 4–d. As can be seen, the neu-
ral network observer is still able to follow the states
of the flexible-joint manipulator. Next,β(q1, q̇1,q2, q̇2)
was changed toβ(q1, q̇1,q2, q̇2) = 10000(q1 − q2)3

and the performance of the observer was tested. The
simulation results are shown in Figures 5–a to 5–d. It
follows that the states of the observer track the states
of the system after some transient period. This shows
the advantage of the proposed observer in using an on-
line training scheme. In general, the initial condition
of the system is not available to the observer. Figures
6–a to 6–d show the simulation results when the ini-
tial condition of the system was selected randomly.
It takes a longer time for the states of the observer
to converge, but eventually they follow the states of
the system. Finally, simulation results for a two-link
planar manipulator are given. The parameters areJ =
diag([1.16,1.16])kg.m2, m1 = m2 = 1Kg, l1 = l2 =
1m, K = diag([100,100])N/m. Figures 7–a to 7–d
show the system and observer state responses. After
the learning has been completed, the responses of the
system are shown in Figures 7–e to 7–h. It can be
observed that the neural network was also able to learn
the system states in this case.



Fig. 5. The responses of the closed-loop system to
sin(3t) reference trajectory with nonlinear model
for stiffness: (a) motor position, (b) link position,
(c) motor velocity, (d) link velocity. The solid
lines correspond to the states of the observer.

Fig. 6. The responses of the closed-loop system to
sin(3t) reference trajectory with nonlinear model
for stiffness and random initial conditions of the
system: (a) motor position, (b) link position, (c)
motor velocity, (d) link velocity. The solid lines
correspond to the states of the observer.

Fig. 7. The responses of the two-link manipulator to
sin(t) reference trajectory with nonlinear model
for stiffness, during (a–d) and after (e–h) the
learning period: (a & e) position of the first link,
(b & f) position of the second link, (c & g)
velocity of the first link, (d & h) velocity of the
second link. The solid lines correspond to the
states of the observer.

5. CONCLUSIONS

The problem of designing a nonlinear observer for
flexible-joint manipulators using a neural network ap-
proach has been addressed in this paper. Noa pri-
ori knowledge about the joint stiffness, stiction, and
friction were assumed. Simulation results for single
and two-link manipulators were presented that demon-
strate the effectiveness of the proposed algorithm. The
possibility of applying the proposed scheme for cali-
bration of a seven degrees-of-freedom manipulator is
currently being investigated.
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