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Abstract: This paper introduces a model-based controller designed to minimize
the total unburned hydrocarbons produced by the internal combustion engine and
processed by the three way catalytic converter, during the warm-up period.
We assume to feed back the temperature of the exhaust gas; having in mind to
decouple the control of combustion from the control of intake manifold, we assumed
as controllable inputs the flow of air and fuel into the cylinder and the spark advance.
The outputs are the total unburned hydrocarbons pre and post converter.

1. INTRODUCTION

Nowadays, every new motor vehicle is equipped
with a three-way catalytic converter (TWC) and
an emissions control system aimed at reducing the
pollutants emitted from spark ignition internal
combustion engines (SI-ICE). The action of the
TWC concurs to pull down the concentrations of
carbon monoxide, nitrogen oxides and unburned
hydrocarbons in exhaust gases. The chemical re-
actions inside the TWC proceed simultaneously,
provide the catalytic converter is ”sufficiently”
heated and the composition of the mixture feeding
the engine is maintained at stoichiometry by the
control strategy governing air and fuel supplied to
the engine.

Currently, new and stricter anti-pollution norms
in automotive field request an on-line optimiza-
tion of engine control strategies during every driv-
ing condition. In particular, a still open prob-
lem is the pollutant reduction during the thermal
transient, when the converter does not yet work
correctly and, therefore, a large quantitative of
injurious substances is emitted.

From what above, the design of these new real
time applications, as warm-up controllers and
on board diagnostic systems (see, for example,
Fiengo et al. (2001)), starts from reliable math-
ematical models of the dynamic behavior of the
SI-ICE and the catalyst.

In this work, based on simplified phenomenologi-
cal models of the engine combustion and the cat-
alytic converter presented in Fiengo et al. (2002),
a control strategy will be proposed, aimed at mini-
mizing the total unburned hydrocarbons produced
by the engine and not processed by the cata-
lyst during the warm-up period. This controller
is computed by solving on-line an approximate
linear quadratic optimization problem.

2. CONTROL ORIENTED MODELS

2.1 Internal Combustion Engine

The scheme in figure 1 represents the model of
the internal combustion engine. It was presented
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in Fiengo et al. (2002) and in the following it will
be briefly illustrated.

The model describes the combustion process as-
suming that air and fuel entering the combus-
tion chamber can be directly assigned. Two in-
puts represent the physical quantities entering the
cylinder, through air mass flow rate (ṁa [g/sec])
and air/fuel ratio (λ [/]); other inputs are the
spark advance (θ [deg]), the engine speed (n [rpm])
and the temperature of the coolant (Tcool [C]).
The output is the total unburned hydrocarbons
(THCpre [g/sec]); the state of the model is the
exhaust gas temperature (TFG [C]). In the follow-
ing the model blocks are briefly described.

Fig. 1. Internal combustion engine

Burned fuel It computes the fuel charge (ṁfe

[g/sec]) actually burnt during the combustion:

ṁfe =
ṁa

λST
×











1

λ
when λ ≥ 1

1 when λ < 1

(1)

where λST is the stoichiometric value of the air-
fuel ratio.

Combustion efficiency It estimates the efficiency
of the engine (ηf [%]) in transforming the chemical
energy of the fuel into mechanical energy through
the combustion:

ηλ = c0 + θ
(

c1λ
2 − c2λ

)

, (2a)

ηAV = 1− c3(θ − θ∗)2, (2b)

ηf = ηλ · ηAV, (2c)

where θ∗ is the nominal value of the spark advance
for the production of the torque from the combus-
tion and it is a nonlinear function of the engine
operative point θ∗ = f(n, ṁa, Tcool).

Combustion It estimates the mean indicated
torque generated by the combustion (T [Nm]) and
the heat produced by the combustion (Q̇u [W])
warming the exhaust gas:

T =
ηfṁfeQHV

n
, (3a)

Q̇u = β(t) (1− ηf ) ṁfeQHV, (3b)

where QHV is the low heat value of the fuel
[J/g] and β describes the time-varying partition
of thermal energy directed toward both the engine
mechanical components and exhaust gas.

Thermal dynamic It models the dynamical be-
havior of the exhaust gas temperature:

ṪFG = a0Q̇u − a1n(TFG − Tcool). (4)

Unburned hydrocarbons It calculates the total
unburned hydrocarbons (THCpre) at the exhaust
pipe as a function of the feedgas temperature
(TFG), air mass flow rate (ṁa), spark advance (θ),
engine speed (n) and air/fuel ratio (λ).

2.2 Three Way Catalytic Converter

In figure 2 is shown the block diagram of a sim-
ple phenomenological TWC dynamic model pre-
sented in Fiengo et al. (2002).It was developed for
control purposes and captures the phenomenon
of the oxygen storage. The oxygen-storage is a
key mechanism that enhances the catalyst ac-
tivity helping the catalyzed oxidation-reduction
reactions: during transients, in presence of oxygen
excess, there is an oxygen chemiadsorption on the
catalyst, while in conditions of defect, there is a
release.

Fig. 2. Three way catalytic converter

It is important to note that we use the feedgas
temperature (TFG) as an indirect indicator of the
catalyst temperature. This hypothesis allows to
not model the temperature dynamics inside the
TWC so reducing the system order. In the follow-
ing the model blocks will be briefly introduced.

Oxygen Storage The oxygen storage phenomenon
is modelled by two actions aimed at correcting the
quantity of oxygen in the gas at the inlet of the
catalyst, trying to reach the optimal value for the
catalytic reactions, the stoichiometric point.



We compute the fraction per unit of time of
oxygen capacity that is effectively stored in lean
condition or released in rich condition Θ̇cor as
follows:

Θ̇cor = (Θ̇FG − Θ̇St) · g(TFG) ·

{

fL(Θ) λFG ≥ 1
fR(Θ) λFG < 1

(5)
where Θ̇FG and Θ̇St are the fraction per unit
of time of the total oxygen quantity respectively
present in the feedgas and, ideally, at the stoichio-
metric value; Θ is the fraction of oxygen capacity
occupied in the TWC; g(TFG) is a function that
models how the feedgas temperature affects the
TWC efficiency; and the functions fL(Θ) and
fR(Θ) determine how much of the surplus or
deficit oxygen can be respectively stored or re-
leased depending on the catalyst state.

After computing Θ̇cor, it is possible to compute
the fraction of oxygen capacity per unit of time in
the gas after this first correction, Θ̇FGcor

, and the
corresponding A/F ratio, λFGcor

:

Θ̇FGcor
= Θ̇FG − Θ̇cor, (6a)

λFGcor
=

Θ̇FGcor
C

0.23 ṁfS
, (6b)

where C is the catalyst capacity.

A second correction is modelled by a first order
linear system

λ̇aux =−
λaux

τ(λFG, λaux, TFG)
+

+
λFGcor

τ(λFG, λaux, TFG)
, (7)

where τ(λFG, λaux, TFG) is the time constant, de-
pending on the air/fuel ratio of the gas at the inlet
and the outlet of the catalyst, and the feedgas
temperature.

Now it is possible to determine the change of oxy-
gen capacity occupied in the TWC, in according
to:

Θ̇ =







Θ̇FG − Θ̇aux Θ ∈ (0, 1)

max{0, Θ̇FG − Θ̇aux} Θ = 0

min{0, Θ̇FG − Θ̇aux} Θ = 1

(8)

where Θ̇aux is the corresponding fraction of oxy-
gen capacity per unit of time present in the gas at
the outlet of the catalyst.

Finally the air-fuel ratio at the tailpipe, λTP

(model output), is described as follows:

λTP(t) = λaux(t−∆(t)), (9)

where ∆ is the transport delay of the gas, depend-
ing on an average value of the air mass flow rate.

Catalytic Reactions The simplified kinetic model
has one output (the mass flow rate of the un-

burned hydrocarbons at the outlet of the TWC,
THCpost [g/sec]), five inputs (the mass flow rate
of the unburned hydrocarbons at the inlet of
the TWC, THCpre [g/sec]; the engine speed, n

[rpm]; the fuel flow rate, ṁf [g/sec]; the air/fuel
ratio of the gas corrected by the oxygen storage
phenomenon, λTP [/]; the feedgas temperature,
TFG [C]) and two states (the mass flow rate of
the unburned hydrocarbons in the middle of the
catalyst, THCmd [g/sec] and at the end, THCpost

[g/sec]):

˙THCmd =−K1n(THCmd − THCpre)

−Rmd(TFG,THCmd, ṁf , λTP),

˙THCpost =−K2n(THCpost − THCmd)

−Rpost(TFG,THCpost, ṁf , λTP);

where Ri = Ri(TFG,THCi, ṁf , λTP) are the reac-
tion rates, i = md,post.

3. WARM-UP CONTROL

The goal of the control strategy is to command
the engine minimizing the polluting emissions at
the outlet of the three way catalytic converter.

Here the main idea is to use the spark advance
(θ) to increase the feedgas temperature. On the
other side this causes a performance loss for the
torque that is compensated increasing the air
mass flow rate (ṁa). Supposing to measure the
exhaust gas temperature, we realize a feedback
loop around the engine system (see figure 3) that
allows to shorten the warm-up duration. The
action is bounded to produce same extra-pollution
in the first seconds of engine working. This is
caused by the non optimal combustion due to the
peculiar use of spark angle and air mass flow rate.
Extra-pollution will be compensated by earlier
activation of catalytic reactions.

From above it is apparent that TWC system is
not included in optimal control loop since no
sensor exists (or is commercially available) at this
moment to measure the unburned hydrocarbons
on line. Its model is used to off-line tune the
parameters, as explained later.

In conclusion the control strategy must find an
optimal balance between earlier TWC activation
and extra-pollution production.

The engine control problem was treated as an
optimal control problem (see equation (18) in the
Appendix, section 5), where we suppose the spark
angle (θ) to be the controllable input, and air
mass flow rate (ṁa), air/fuel ratio (λ), engine
speed (n) and coolant temperature (Tcool) to be
uncontrollable inputs; we indicate the states and
the inputs of the engine system as follows



Fig. 3. Control scheme

x = TFG; u = θ; ν =









ṁa

λ

n

Tcool









. (11)

This choice is due to the following considerations:

• The air mass flow rate (ṁa) is used to pro-
duce the requested engine torque and thus
maintain the performances unchanged. It is
computed as follows

ṁa =
λSTPrif

ηfQHV
×







λ when λ ≥ 1

1 when λ < 1
(12)

where Prif = Trifn is the reference power,
depending on the torque Trif demanded by
the driver.

• Since this control strategy must work during
the cold start and the warm-up period, when
the oxygen sensors are badly working and so
a good A/F control is not possible to realize,
the air/fuel ratio in the cylinder (λ) is not
used as a controllable input.

• The engine speed (n) is determined by the
torque commanded by the driver.

• The coolant temperature (Tcool) is physically
an uncontrollable input.

• Intake manifold dynamics will be taken into
account in a successive step when designing
a controller for throttle and fuel injectors.

In this work a secondary air pump on the exhaust
manifold is not considered. This device, inserted
in the exhaust pipe, allows to burn the hydro-
carbons contained in feedgas, thus increasing the
TWC temperature. We are going to exploit the
effectiveness of this technique in future activity in
this research field.

Letting (TFG, θ, ṁa, λ = 1, n, T cool) be a
generic point in the state and input space and
t a generic time instant, we can calculate the
linearized system (from model equations (1) – (4))
as follows

δṪFG = −a1n δTFG + a0
∂Q̇u

∂θ
δθ

+a0
∂Q̇u

∂ṁa

δṁa + a0
∂Q̇u

∂λ
δλ+

+

[

a0
∂Q̇u

∂n
− a1(TFG − T cool)

]

δn+

+

[

a0
∂Q̇u

∂Tcool
+ a1n

]

δTcool,

(13)

where the the overlined terms indicate functions
calculated in the linearization point. So, the lin-
earized system (13) can be rewritten as

δẋ = Aδx+Bu+ [f(x, u, ν) + Γδν −Bu] ; (14)

where the dynamic matrices are

A = −a1n, (15a)

B = a0
∂Q̇u

∂θ
, (15b)

Γ =





























a0
∂Q̇u

∂ṁa

a0
∂Q̇u

∂λ
[

a0
∂Q̇u

∂n
− a1(TFG − T cool)

]

[

a0
∂Q̇u

∂Tcool
+ a1n

]





























T

; (15c)

and the nonlinear function, computed in the lin-
earization point, is

f(x, u, ν) = a0Q̇u − a1n(TFG − T cool). (16)

Finally, we need the state and input signals to
track. For the spark angle we use its nominal
value θ∗, while for the feedgas temperature, which
is unconstrained, its reference (T̃FG) is a parame-
ter of the controller to be set.

Now, based on linearization, the suboptimal con-
trol law can be obtained solving the corresponding
differential Riccati equation (see Appendix 5 for
mathematical details). Moreover, in order to re-
duce the computational complexity of the control
algorithm, here we employ algebraic equations as
follows

PA+ATP − PBR−1BTP +Q = 0 (17a)

(A−BR−1BTP )T b−Q(x̃− x) +

+P [f(x, u, ν) + Γδν +B(ũ− u)] = 0(17b)

The linearized system, and consequently the ma-
trices P and b obtained by equations (17), is com-
puted whenever the norm of the deviation vector
(δx, δu, δν) is bigger than a threshold, typically a
percentage of the norm of the vector (x, u, ν).

Determined the matrices P and b, the control
input usubopt is computed as (22). The parameters



of the controller (the weight matrices Q and R

and the reference signal T̃FG) are obtained solving
an optimization problem through a purposely de-
signed genetic algorithm (see Davis (1991)): mini-
mize the unburned hydrocarbons produced at the
outlet of the catalytic converter. The procedure is
based on the TWC model introduced in section
2.2.

The performances of the ”warm-up controller”,
described in this paper, are compared with exper-
imental data referring to an engine and a TWC
controlled by a strategy currently implemented
in a commercial ECU during an ECE drive cy-
cle. In the following we refer to this commercial
controller as ”standard controller”. The system
inputs, not computed by warm-up controller (air
fuel ratio, engine speed and coolant temperature)
are obtained from data.

The following figures report the system outputs
when the standard controller (dashed line) and
the warm-up controller (22) (solid line) is applied.
In these figures, the vertical line points out the
time instant when the temperature goal of the
warm-up controller is reached and, hence, the
standard controller is switched on. The deviation
in trends that exist in figure 4 after the vertical
line is only numerical caused by different integra-
tion steps.

Figures 6 and 7 show the time history of pre
and post-catalyst unburned hydrocarbons integral
value respectively when the warm-up controller is
applied (solid line) and not applied (dotted line).
The results show that the unburned hydrocarbons
produced by the engine combustion remain almost
unchanged: the integral of the THC with the
standard control is 3.36g and with the warm-up
control is 3.38g. On the other hand, the unburned
hydrocarbons at the outlet of the catalyst decrease
by 21.5% (0.77g with the standard control, 0.60g
with the warm-up control).
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Fig. 4. Spark advance, θ, when the warm-up controller is

applied (solid line) and not applied (dotted line)
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Fig. 5. Exhaust gas temperature, TFG, when the warm-

up controller is applied (solid line) and not applied

(dotted line)
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Fig. 6. Time history of the integral value of pre-catalyst
unburned hydrocarbons respectively when the warm-
up controller is applied (solid line) and not applied
(dotted line).
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Fig. 7. Time history of the integral value of post-catalyst

unburned hydrocarbons respectively when the warm-
up controller is applied (solid line) and not applied

(dotted line).

4. CONCLUSION

In this paper a first version of a warm-up control
strategy for the cascade SI-ICE/TWC was pre-
sented. The procedure was designed and tested
by simulation on experimental data furnished by
Magneti Marelli. Future work in this research
field will concern with refinements of the control
strategy and implementation of the controller on
a vehicle. Moreover, in the future the possibility
to use other control variable, instead of the only
spark advance angle, will be exploited.



5. APPENDIX

5.1 A Nonlinear Finite Horizon Sub-Optimal Control

Let consider the following optimal control prob-
lem for nonlinear systems

ẋ = f(x, u, ν), x(0) = x0, (18a)

min
u(.)

V = min
u(.)

1

2

∫ T

0

[

(x− x̃)TQ(x− x̃)+

+(u− ũ)TR(u− ũ)], (18b)

where x is the variable state, u is the controllable
input and ν is an uncontrollable input. Since, on
many occasions, finding the exact solution to this
nonlinear optimal control problem is practically
unfeasible, we illustrate a suboptimal procedure
based on successive linearization of the problem.
Our approach resembles receding horizon tech-
niques, such as in Mayne and Michalska (1990)
and in Chen and Allgöwer (1998).

Let x, u and ν be a generic point in the state
space and in the input space, and compute the
linearized system at this point

δẋ = Aδx+Bδu+ Γδν + f(x, u, ν) (19)

where

• δx, δu and δν are the deviations from the
chosen fixed point (x, u, ν);

• A, B and Γ are the jacobian matrices.

The objective functional (18b) becomes

V =
1

2

∫ T

0

[

(δx− (x̃− x))TQ(δx− (x̃− x))+

+(u− ũ)TR(u− ũ)]dt, (20)

where (x̃− x) is the new signal to be tracked.
Finally, substituting u = u + δu into (19), we
obtain:

δẋ = Aδx+Bu+ [f(x, u, ν) + Γδν −Bu] . (21)

The optimal control for the linearized system is:

−Ṗ = PA+ATP − PBR−1BTP +Q, P (T ) = 0,

−ḃ = (A−BR−1BTP )T b+

+P [f(x, u, ν) + Γδν +B(ũ− u)]−

−Q(x̃− x) b(T ) = 0,

usubopt = −R−1BTPδx−R−1BT b+ ũ. (22)
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