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Abstract: In this paper, a passive control scheme for port Hamiltonian systems with
dissipation (PHD) is presented. The control scheme is able to conserve the PHD
structure of the system when constrained on a sub-manifold of the state space. The
idea is to modify both the interconnection and damping structures of the system and
to add a proper dynamical extension in such a way that the constraint can be related
to some dynamical invariants of the resulting closed-loop system. Since part of the
structure of this dynamical extension can be arbitrarily chosen, it is also possible to
drive the state of the system on the constraint and to obtain the dynamical behavior
defined by the constraint. For example, if a proper variable structure dynamical
extension is chosen, it is possible to achieve a sliding-mode behavior that can be
interpreted by means of energetic considerations.
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1. INTRODUCTION

This paper is divided into two distinct parts.
In the first, some considerations about the zero-
dynamics of port Hamiltonian systems with dis-
sipation (PHD) (Maschke and van der Schaft,
1992), (van der Schaft, 1999) are presented. In
(Nijmeijer and van der Schaft, 1991), a detailed
analysis of the zero-dynamics of Hamiltonian sys-
tem is described, assuming that no dissipation
effects are present and that the input signals mod-

ulate Hamiltonian vector fields that are strictly
related to the constraints on which the zero-
dynamics is calculated. Moreover, in (van der
Schaft, 1999), the reduced dynamics of a mechan-
ical system expressed in PHD form and subject to
holonomic constraints can be found. The starting
point is a PHD system and a generic constraint
defined on the state space. In the first part of
this paper, a passive controller guaranteeing that
the closed-loop PHD dynamics satisfying the con-
straints is still representable in PHD formalism is
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introduced. This can be achieved by relating the
constraints to some dynamical invariants (Casimir
functions) of the closed-loop system.

Since the constraints can be seen as a sliding sur-
face in the framework of the sliding-mode control
technique, in the second part of this paper the
development of an energy-based variable-structure
control characterized by a sliding-mode behavior
is presented (Utkin, 1978). Given a non-linear
system in classical state space representation and
a constraint defined on the state variables, in
(Sira-Ramirez, 1999) it is shown that the action
of the drift vector with respect to the constraint
is strictly connected to the energetic structure of
the system. In particular, the fact that the system
spontaneously moves toward the constraints can
be interpreted as the results of dissipation effects
or, on the other hand, the fact that the system
diverges can be related to the presence of regen-
erative effects. In this work, it is pointed out that
a proper modification of the structure of the plant
(in particular of the dissipative part) is needed for
reaching the sliding surface and therefore obtain-
ing a PHD constrained dynamics.

In Sec. 2, some considerations about the con-
strained dynamics of PHD systems are discussed,
and a control scheme guaranteeing that the con-
strained dynamics is still representable within
the PHD formalism is illustrated. Moreover, it
is shown how to obtain the attractiveness of the
constraint by using a passive controller. In Sec.
3, an application of these ideas is presented. In
particular, a passive implementation of sliding-
mode controller is illustrated. Sec. 4 concludes
with final remarks.

2. DYNAMICS OF A PHD UNDER
CONSTRAINTS

Let us consider the port Hamiltonian system with
dissipation (PHD system)











ẋ = [J(x) − R(x)]
∂H

∂x
+ G(x)u

y = GT (x)
∂H

∂x

(1)

where x ∈ X , u ∈ U ⊂ Rm, y ∈ Y ≡ U∗, being
U∗ the dual space of U , and H : X → R the
energy function, bounded from below. Moreover,
J(x) = −JT (x) and R(x) = RT (x) ≥ 0, G(x) =
[g1(x) · · · gm(x)], with rank[G(x)] = m, ∀x ∈ X .
Finally, it is assumed that dim(X ) = n and
m ≤ n.

Assume that Si : X → R, i = 1, . . . ,m is a
set of function defined on the state manifold and,
for each Si, let us define the following state sub-
manifolds:

Si,0 , {x ∈ X |Si(x) = 0}

Si,+ , {x ∈ X |Si(x) > 0}

Si,− , {x ∈ X |Si(x) < 0}

(2)

Moreover, let us define

S(x) ,
[

S1(x) · · · Sm(x)
]T

If

rank

[

∂S

∂x

]

= rank

[

∂S1

∂x
· · ·

∂Sm

∂x

]

= m

∀x ∈ X , then the state sub-manifold S(x) = 0,
that is

S0 ,

m
⋂

i=1

Si,0

is (n − m)-dimensional.

By introducing a state-feedback law, that properly
modifies the interconnection and damping ma-
trices of system (1), and by interconnecting the
resulting system with another PHD system in a
power-conserving manner, it is possible to obtain
a new system such that, if constrained on S0, it
can be still described in the PHD formalism.

In the following, it will be assumed that the
transversality condition (Sira-Ramirez, 1988)

rank

(

∂T S

∂x
G

)

= m (3)

holds ∀x ∈ X . From a sliding mode point of view,
this means that S0 has locally relative degree one
in X .

Consider the following PHD system (controller)










ξ̇ = [Jc(ξ) − Rc(ξ)]
∂Hc

∂ξ
+ Gc(ξ)uc

yc = GT
c (ξ)

∂Hc

∂ξ

(4)

with Hc(ξ) the arbitrary energy function, ξ ∈ Xc,
uc ∈ Uc ≡ Y and yc ∈ Yc ≡ U . This system has to
be connected to system (1) via power-conserving
feedback interconnection.

We see in (van der Schaft, 1999) that the resulting
system is still PHD and that, if some conditions
on the interconnection and damping matrices of
(1) and (4) are satisfied, it is possible to relate
the state variables of the controller to the state
variables of the plant by using Casimir functions.
In particular, we want that ξi−Si(x), i = 1, . . . ,m
is a set of Casimir function for the closed-loop
system. Clearly, it is enough to choose dim(Xc) =
m since we have m sliding surfaces.

First of all, it is necessary to properly modify
the interconnection and damping matrices of the
system (1) by means of a state feedback action
u = β(x). In particular, as suggested in (Ortega
et al., 2000) for the IDA-PBC design technique,
assume that there exist matrices Ja(x) = −JT

a (x)



and Ra(x) = RT
a (x) ≥ 0 and two function Ha :

X → R and β : X → U , such that the following
PDE holds

[J + Ja − (R + Ra)]
∂Ha

∂x
=

= −[Ja − Ra]
∂H

∂x
+ Gβ

(5)

By now, define Hd(x) , H(x) + Ha(x), Jd(x) ,

J(x)+Ja(x) and Rd(x) , R(x)+Ra(x); then the
matrices Ja and Ra together with the parameters
of the controller (4) will be chosen in such a way
that the following conditions hold, see (van der
Schaft, 1999):

∂T S

∂x
(x)Jd(x)

∂S

∂x
(x) = Jc(ξ) (6a)

Rd(x)
∂S

∂x
(x) = 0 (6b)

Rc(ξ) = 0 (6c)

∂T S

∂x
(x)Jd(x) = Gc(ξ)G(x)T (6d)

If in (1) we impose u = β(x) + u′, from (5)
we obtain the following PHD system with inter-
connection and damping matrices that satisfies
conditions (6):











ẋ = [Jd(x) − Rd(x)]
∂Hd

∂x
(x) + G(x)u′

y′ = GT (x)
∂Hd

∂x
(x)

(7)

Given the systems (4) and (7) and one of the two
possible power-conserving feedback interconnec-
tions (Stramigioli, 2001), for example the follow-
ing:

{

u′ = −yc + e

uc = y′ + ec

with ec ∈ Y and e ∈ U external signals, it is
possible to show that each ξi−Si(x), i = 1, . . . ,m
is a Casimir function for the closed loop system,
see again (van der Schaft, 1999). In particular, the
reduced dynamics on the foliation induced by the
Casimir functions will be given (if ec = 0) by

ẋ = (Jd − Rd)
∂

∂x
(H + Ha)

+(Jd − Rd)
∂

∂x
Hc(S1, . . . , Sm) + Ge

(8)

where the energy function Hc : Xc → R of the
controller (4) can be arbitrary. In particular, it
can be chosen in such a way that the sub-manifold
S0 can be reached. Clearly, the power conjugated
output will be given by

y′′ = GT ∂

∂x
[H + Ha + Hc(S1, . . . , Sm)] (9)

The system (8) naturally evolves in such a way
that ξi − Si(x) = cons., ∀i = 1, . . . ,m. Moreover,
if a damping action is injected by imposing e =

−Ky′′, with K = KT > 0, from (6b) the resulting
dynamics is given by:

ẋ = [Jd − (Rd + GKGT )]
∂

∂x
(H + Ha)

+(Jd − GKGT )
∂S

∂x

∂Hc

∂S

(10)

where
∂Hc

∂S
=

[

∂Hc

∂S1
· · ·

∂Hc

∂Sm

]T

It is easy to prove that, with a proper choice of
Hc(·), the state can be brought on S0. First of all,
consider the vector function (1-form) v : Rm →
Rm and rewrite (10) as:

ẋ = [Jd − (Rd + GKGT )]
∂

∂x
(H + Ha)

+(Jd − GKGT )
∂S

∂x
v

(11)

If V (x) , 1
2ST (x)S(x) is considered as a Lya-

punov function that measures the state distance
from the sub-manifold S0, it is sufficient to prove
that V̇ (x) < 0 on the trajectory of the closed-
loop system (11) for a proper choice of v. Since

V̇ (x) = ST (x)
∂T S

∂x
ẋ, from (10), (6a) and (6b) we

have

V̇ = ST

{

∂T S

∂x

[

Jd − GKGT
] ∂

∂x
(H + Ha)

+

[

Jc −
∂T S

∂x
GKGT ∂S

∂x

]

v

}

From (3), and since the damping matrix K is
positive definite, it is possible to show that

rank
∂T S

∂x
GKGT ∂S

∂x
= m

and that

rank

[

Jc −
∂T S

∂x
GKGT ∂S

∂x

]

= m (12)

because Jc is skew-symmetric. As a consequence,
by properly choosing the vector function v on the
(controller) state space Xc, the inequality V̇ (x) <
0 can be satisfied.
The presence of non-singular damping injection is
sufficient to assure that the state will tend to S0.
If the 1-form v is closed, or, equivalently, if it is a
gradient of a scalar function, that is

∂T v

∂S
=

∂v

∂S

and the set {s = S(x) |x ∈ X} ⊆ Rm is
a contractile manifold, then an energy function
Hc(·) for the controller (4) can be found such that

∂Hc

∂S
= v(S)

guaranteeing the reaching of the sub-manifold S0.

In Fig. 1, a visual description of the behavior of
this control scheme is presented. The state of the



PSfrag replacements

X

S0

ξ

ξ − S(x) = cons.

(x(t), ξ(t))

x(t)

Fig. 1. Behavior of the proposed control scheme
in the case of dimX = 2 and m = 1.

closed-loop system (x, ξ) ∈ X × Xc, evolves on
the sub-manifold defined by the Casimir function
ξ − S(x) = cons.. A proper choice of the energy
function Hc(·) of the controller and the action
of the damping injection will bring the state on
S0 ⊂ X × Xc, that is the state x of the plant will
be constrained on S(x) = 0.

Moreover, it is possible to prove that the dynamics
of the system (10) constrained on S0 is described
by a PHD system. This fact can be seen as a
generalization of (Nijmeijer and van der Schaft,
1991), where no dissipation term is present in the
Hamiltonian model of the plant.

It is important to notice that the (orthogonality)
condition (6b) imposes some constraints on the
structure of the dissipation term in (1), in rela-
tion to the sub-manifold S0. In particular, the
damping matrix R(x) in (1) is compatible with
the sub-manifold S0 if and only if it is possible to
find a linear, symmetric and positive semi-definite
operator Ra(x) such that Rd(x) , R(x) + Ra(x)
satisfies condition (6b).

The constrained dynamics of (10), or equivalently
of (11), on S0 can be seen as a zero-dynamics on
S(x) = 0. The equivalent control input vequiv that
constrains the system (11) on S0 can be calculated

by imposing that
∂T S

∂x
ẋ = 0 and by substituting

the x dynamics given by (11). Since (6b) and (12)
hold, it follows that

vequiv = −

[

∂T S

∂x

(

Jd − GKGT
) ∂S

∂x

]−1

·

·
∂T S

∂x

(

Jd − GKGT
) ∂

∂x
(H + Ha)

(13)
From (6d), we can write

[

∂T S

∂x

(

Jd − GKGT
) ∂S

∂x

]−1

=

=

(

GT ∂S

∂x

)−1 (

Gc −
∂T S

∂x
GK

)−1

and

∂T S

∂x

(

Jd − GKGT
)

=

(

Gc −
∂T S

∂x
GK

)

GT

that, if substituted in (13), give the following
expression for the equivalent control:

vequiv =

(

GT ∂S

∂x

)−1

GT ∂

∂x
(H + Ha) (14)

Finally, from (14) and (11), the constrained dy-
namics expression can be deduced:

ẋ = (Jd − Rd)
∂

∂x
(H + Ha)

−Jd

∂S

∂x

(

GT ∂S

∂x

)−1

GT ∂

∂x
(H + Ha)

(15)

It is easy to prove that the matrix

−Jd

∂S

∂x

(

GT ∂S

∂x

)−1

GT

is skew-symmetric. From (6a) and (6d) we have
that

−Jd

∂S

∂x
= GGT

c

GT
c = −

(

GT ∂S

∂x

)−T

Jc

and consequently

−Jd

∂S

∂x

(

GT ∂S

∂x

)−1

GT =

= −GT

(

GT ∂S

∂x

)−T

Jc

(

GT ∂S

∂x

)−1

GT , J̃

with J̃ = −J̃T , since Jc = −JT
c .

As a consequence, if we define Jd,0(x) , Jd(x) +

J̃(x) and Rd,0(x) , Rd(x), the constrained dy-
namics can be written in the following PHD sys-
tem form

ẋ = [Jd,0(x) − Rd,0(x)]
∂

∂x
[H(x) + Ha(x)] (16)

Remark. The zero-dynamics (16) is given in
terms of the evolution of an n-dimensional state.
Since the system is constrained on the n − m
dimensional sub-manifold S0, the achieved dy-
namics can be described by a system of order
n − m. In other words, a proper state coordinate
transformation that explicitly show the n − m
order constrained dynamics can be defined. If

z = Φ(x) ,

[

S(x)
T (x)

]

with rank

(

∂Φ

∂x

)

= n

is a well-defined coordinate transformation, the
system dynamics (16) can be expressed in the new
coordinates as

ż =
[

J̄d,0(z) − R̄d,0(z)
] ∂

∂z

[

H̄(z) + H̄a(z)
]

where

J̄d,0 =
∂T Φ

∂x
Jd,0

∂Φ

∂x

R̄d,0 =
∂T Φ

∂x
Rd,0

∂Φ

∂x

H(x) = H̄[Φ(x)]

Ha(x) = H̄a[Φ(x)]



Since
∂Φ

∂x
=

[

∂S

∂x
,

∂T

∂x

]

, it follows

J̄d,0 =





J̄
(1,1)
d,0 J̄

(1,2)
d,0

−J̄
(1,2) T

d,0 J̄
(2,2)
d,0





R̄d,0 =





R̄
(1,1)
d,0 R̄

(1,2)
d,0

R̄
(1,2) T

d,0 R̄
(2,2)
d,0





with, in particular,

J̄
(1,1)
d,0 =

∂T S

∂x
Jd

∂S

∂x
− Jc = 0

J̄
(1,2)
d,0 =

[

∂T S

∂x
Jd − Jc

(

GT ∂S

∂x

)−1

GT

]

∂T

∂x

=

[

GcG
T − GcG

T ∂S

∂x

(

GT ∂S

∂x

)−1

GT

]

∂T

∂x

= 0

R̄
(1,1)
d,0 =

∂T S

∂x
Rd

∂S

∂x
= 0

R̄
(1,2)
d,0 =

∂T S

∂x
Rd

∂T

∂x
= 0

as can be deduced from (6). It follows that

J̄d,0 =

[

0m×m 0m×(n−m)

0(n−m)×m ??

]

R̄d,0 =

[

0m×m 0m×(n−m)

0(n−m)×m ??

]

where ‘??’ indicates a quantity (in general) differ-
ent from 0. These interconnection and damping
matrices clearly define a dynamics of order n−m.

Remark. Suppose that m = n, that is the sub-
manifold S0 reduces to a point. We have seen that

Jd,0 = Jd

[

In×n −
∂S

∂x

(

GT ∂S

∂x

)−1

GT

]

where
∂S

∂x

(

GT ∂S

∂x

)−1

GT = In×n

since it is idempotent and non-singular, and then
Jd,0 = 0. Moreover, from (6b) and from the
independence of the functions S1, . . . , Sm, also
Rd,0(x) = 0. Therefore, the constrained dynamics
becomes ẋ = 0, that is coherent with the fact
that the control action tries to keep the state in a
specific point.

3. ENERGY-BASED APPROACH TO
SLIDING-MODE

With the dynamical extension (4), the system
(1) is characterized by a set of Casimir functions
which are strictly related to the sliding surfaces

S1(x), . . . , Sm(x). By properly choosing the en-
ergy function Hc(S1, . . . , Sm) of the controller (4)
it is possible to constrain the state of the system
(1) on S0 in a passive way.

The same behavior of classical sliding-mode con-
trollers (and clearly the same robustness prop-
erties) can be achieved if the function Hc(·) is
characterized by a variable structure. Since this
function is also an energy function, it must be at
least of C0 class. Moreover, the energy function
of the controller Hc(·) has to be chosen in such
a way that the state of the plant (1) reaches S0,
after a (finite) reaching phase, and that a sliding
regime is possible on it. This means that the
sliding surface has to become attractive for the
closed-loop system.

In the case of several sliding surfaces, the problem
is more complex, also without introducing energy
constraints into the controller design. This is due,
in particular, to the couplings that are, in general,
present in the dynamics of the system (Sira-
Ramirez, 1988).
If only one sliding surface is given, it is easy to find
explicit solutions for control laws that assure the
completion of the reaching phase and the stability
of the sliding mode, also within the framework
presented in this paper.

An explicit solution in terms of a set of 2m in-
equalities that involve ∂Hc/∂Si, i = 1, . . . ,m, can
be found under some hypotheses. It is interesting
to point out that, under these hypothesis, the
dynamical system (4) will have a nice physical
interpretation. First of all, suppose that

∀x ∈ X , Lgj
Si(x) = 0 if i 6= j and

Lgi
Si(x) 6= 0, ∀i, j = 1, . . . ,m

(17)

Clearly, this assumption is compatible with the
hypothesis (3). In this case we have that

∂T S

∂x
G(x) = diag [Lg1

S1(x), . . . ,Lgm
Sm(x)]

is non singular. Condition (17) requires a decou-
pling between input signals and sliding surfaces:
this means that each input signal can drive the
state variable only on one sliding surface. More-
over, in (10) we choose K = diag[k1, . . . , km], with
ki > 0, i = 1, . . . ,m and finally in (4-6a) we
suppose that is possible to choose Jc(ξ) = 0.

Since we want to design a controller that is able to
bring the state of the system on the intersection of
m independent sliding surfaces, it is important to
determine what is the behavior of the controlled
system in relation to each sliding surface Si(x) =
0. Given the closed-loop dynamics (10) and under
the previous hypotheses, we have that



LẋSi =
∂T Si

∂x
ẋ =

=

[

∂T Si

∂x
Jd − kiLgi

Sig
T
i

]

∂

∂x
(H + Ha)

−ki (Lgi
Si)

2 ∂Hc

∂Si

(18)

The reaching phase can be completed and the
sliding mode is possible on the sliding surface if

LẋSi(x) < 0, ∀x ∈ Si,+

LẋSi(x) > 0, ∀x ∈ Si,−

i = 1, . . . ,m (19)

Then, define

Hc[S1(x), . . . , Sm(x)] ,

m
∑

i=1

Hc,i[Si(x)] (20)

with

Hc,i[Si(x)] ,

{

H+
c,i[Si(x)] if x ∈ Si,+ ∪ Si,0

H−
c,i[Si(x)] if x ∈ Si,−

such that H+
c,i(0) ≡ H−

c,i(0), i = 1, . . . ,m so that
the energy function of the controller is continuous.
From (19) and (18), it follows that the sliding
mode is possible on S(x) = 0 if, ∀i = 1, . . . ,m:

∂H+
c,i

∂Si

>

1

ki (Lgi
Si)

2

[

∂T Si

∂x
Jd − kiLgi

Sig
T
i

]

∂

∂x
(H + Ha)

(21a)
∀x ∈ Si,+, and if

∂H−
c,i

∂Si

<

1

ki (Lgi
Si)

2

[

∂T Si

∂x
Jd − kiLgi

Sig
T
i

]

∂

∂x
(H + Ha)

(21b)
∀x ∈ Si,−.

If the set (21) of 2m independent inequalities in
the 2m unknown functions

∂H+
c,1

∂x
, . . . ,

∂H+
c,m

∂x
,
∂H−

c,1

∂x
, . . . ,

∂H−
c,m

∂x
can be satisfied, then the system will reach the
sub-manifold S0 and then evolve on it according
to the dynamics defined by (16).

Remark. Since the dynamical extension (4) of
the plant (1) has both the interconnection and
damping matrices equal to zero, that is Jc = Rc =
0, and an energy function given by (20), it is easy
to see that the action of this dynamical system
can be interpreted as the action of a set of m
nonlinear springs, each with center of stiffness on
a corresponding sub-manifold Si,0.

4. CONCLUSIONS

In this paper, the problem of the constrained
dynamics for PHD systems is discussed. A passive

control scheme that assures that the resulting
constrained dynamics for a PHD system is still
representable in PHD form is presented. The pro-
posed feedback law relates the given constraints
to dynamical invariants of the closed-loop system.
In this framework, the action of the constraints
over the plant can be seen as a modification of
its interconnection structure, as it is pointed out
in (16). By exploiting the degrees of freedom
available thanks to the dynamical extension, it is
possible to satisfy the constraints on the system
state in a passive way. Depending on the structure
of this dynamical extension, it is possible to im-
plement different control schemes. If we choose a
variable structure implementation, a sliding mode
behavior can be achieved, as pointed out in Sec.
3.

Future work will address both the implementa-
tion of this control technique and its extension
to more general cases. In particular, it appears
of interest to remove condition (6b) that limits
practical implementations of the presented control
method, since it imposes strong requirements on
the dissipation structure of the plant or, equiva-
lently, limits the class of constraints that can be
considered.
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