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Abstract: The operational water management of river reservoirs has to consider dif-
ferent and sometimes competitive objectives, e. g. navigation conditions, hydro-power
generation, flood protection and environmental aspects. Despite of problem specific
extensions to cover the non-linear process behavior the application of local standard
(PI) controllers to each reservoir can fulfill only basic management requirements.
MBPC algorithms have the capability to give a wide and time proper exploitation of
the active storage of the whole cascade. A two-layer control structure, consisting of a
predictive controller in the upper layer and local controllers at each barrage, allows
to provide the management decisions under real time conditions. Simulation results
for three reservoirs of the river Moselle show the aptitude of the proposed approach.

Keywords: river reservoir systems, model predictive control, distributed-parameter
systems

1. INTRODUCTION

Many rivers are improved with barrages to make
them open for navigation throughout the year
and to generate hydropower. Besides these objec-
tives the operational water management of river
reservoirs has to consider further aspects, e. g.
flood protection and ecology. Up to now standard
SISO controllers are applied to keep the water
level upstream of each barrage within desired
bounds (Cuno, 1998). The reference level depends
on the current flow situation to fulfill navigation
demands. A predetermined time schedule for the
change of these target levels in the reservoirs is
utilized to attenuate waves traveling along the
river. However, the compilation of an operating
instruction, representing the sometimes contra-
dicting objectives in a suitable manner, is very
difficult.

A single central model predictive controller for
the whole cascade could take into account all the
operational requirements, but the necessary com-
plexity of the underlying process model prevents
its application under real time conditions.

Therefore, a two-layer control structure for the
management of a cascade of river reservoirs is pro-
posed, see fig. 5. The model predictive controller
of the upper layer calculates optimal trajectories
for both the water level of each reservoir and the
discharges of weirs and turbines. The operational
requirements are formulated as an objective func-
tion and as constraints for the process variables.
The control decisions are derived using a nonlinear
model of the whole reservoir cascade based on a
suitable discretization of the Saint Venant equa-
tions. The local controllers of the lower layer keep
the prescribed reference trajectories for water level
and flow. They compensate for uncertainties of the
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process model of the upper layer and guarantee
safe control system operation in failure case, e. g.
communication breakdown.

This paper presents simulation results for the
proposed control strategy for three reservoirs of
the river Moselle, Germany, with a total length
of 72 km. Besides the two-layer structure this ap-
proach differs from other known applications of
predictive controllers to river reservoirs (Compas
et al., 1994; Ackermann et al., 1997) in the com-
plexity of the process model and the direct treat-
ment of the level constraints in the optimization
solver.

2. PROCESS MODEL

The process model has to reproduce the propa-
gation of waves along the river and their effects
on the local water level with sufficient accuracy.
Therefore, a conservative formulation of the Saint
Venant equations
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is used to describe the process behavior (Weiyan,
1992), where A is the wet cross section of the river
bed, Q is the flow and P is the total pressure on
A depending on the time t and the position ξ.
The lateral inflow is denoted by q. The frictional
slope Sf , which depends on the bottom structure,
is calculated by the Chezy/Manning formula and
Sξ is the bottom slope. Two nested trapezoids
are used to approximate the relation between the
cross section of the river bed and the water level
h (A = f(h)) for the interesting range as well as
to take real flow velocity profile into account, see
fig. 1. Thereby Q is assumed to be zero outside of
the ‘inner’ trapezoid. This profile representation
requires only one set of model parameters over
the whole flow range and has an explicit relation
h = f−1(A), which is useful with respect to
the applied optimization algorithm within the
predictive controller. The model parameters were
estimated by a least squares method in order
to reproduce the water surface under static flow
conditions at 200 m3/s and 1340 m3/s, see fig. 2.
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Fig. 1. Approximation of the river bed.

The first order Godunov method, which is based
on a discrete formulation of the integral form of
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Fig. 2. Water surface of the reservoir Detzem.
Measurements (solid lines) compared to sim-
ulation results (dashed lines) with optimized
model parameters (∆ξ=600 m).

the underlying hyperbolic system, is used for the
numerical solution of (1). Therefore, each reservoir
is divided into equidistant cells with the state
variables A and Q defined in a cell averaged man-
ner. This defines a sequence of Riemann problems,
which are solved using a local linearization ap-
proach due to Roe (Roe, 1981).

Fig. 3 shows simulation results for two model real-
izations of different grid sizes, which are used for
the simulation of the impoundments (∆ξ=600 m)
and the process model within the model predictive
controller (∆ξ=3 km). The time step is chosen
taking into consideration the Courant-Friedrichs-
Lewy condition. Even the coarse grid model is
suitable for control purposes, see fig. 3.

3. LOCAL CONTROLLER

Usually, the water level of cascades of river reser-
voirs is controlled by a local controller for each of
the reservoirs. The main operational goal of the
local controller is a constant and steady discharge
within narrow water level tolerances (Cuno, 1998).
Operational rules are set up to manage, e. g. set
point changes for the whole cascade, which de-
mand communication between the human opera-
tors.

Typically, a PI controller controls the upstream
water level hup of each reservoir. The manipulated
variable of the SISO control system (2) is the
discharge of the reservoir Qout which serves as a
command variable for the subsidiary weir sector
and turbine flow control loops. Control saturation
has to be taken into account to avoid windup in
the integral path of the PI controller.

The reference value href is changed with the flow
situation. With increasing flow, this target value
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Fig. 3. Reservoir Detzem: measurements compared to simulation results for the detailed model
(∆ξ=600 m) and the model used within the model based predictive controller (∆ξ=3 km).

of the upstream water level is reduced gradually
to fulfill the navigation demands.

The behavior of the local control system is im-
proved substantially by an additional feedforward
control path Qff , see e. g. (Theobald, 1998a),
where the delayed entering flow into the reservoir
is added to the manipulated variable.

Qout(s) =
KR(1 + sTN )

sTN
(hup(s)− href (s))

+
exp (−sTt)
(1 + sTf )2

Qin(s)︸ ︷︷ ︸
Qff (s)

(2)

Careful adaption of both flow-dependent con-
troller and filter parameters to the flow situation
avoids the amplification of inflow waves. However,
there is no clear correlation between control goals
and controller parameters, which makes the tun-
ing process expensive.

Fig. 4 shows the upstream water level and the dis-
charge of the reservoir Detzem during a medium
flood event in March 2001. The actual water level
follows the changing reference value and stays
safely within the desired bounds of ±0.05 m.
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Fig. 4. Reservoir Detzem: measurement data
from local controller operation starting from
03/20/2001 16:00.

Unfortunately, the inclusion of additional control
goals, e. g. damping of water level variations re-
sulting from setpoint changes or regularization of
the downstream water level, into this SISO control
scheme is not straightforward or even impossible.
The main reason is the lack of communication
between the local control units of the adjacent
reservoirs. Therefore, the local controllers are em-
bedded in a hierarchical control structure, see
fig. 5.

The coordinator described in detail in section 4
sets the upstream water level reference trajectory
as well as the discharge reference trajectory of the
feedforward path. href is replaced by the optimal
h∗up and Qff by Q∗out, respectively.

Qout(s) =
KR(1 + sTN )

sTN

(
hup(s)− h∗up(s)

)
+Q∗out(s)

(3)

The feedforward path enables the local control
system to follow changing discharge trajectories
almost immediately. The feedback path allows
attenuation of local disturbances and compensates
uncertainties of the process model of the upper
layer.

This process model includes a simplified model of
the local control units only. The dynamics of the
control loop as well as the details of the actuators
are neglected. The actuator limits are translated
into constraints of the model variables.

4. MODEL BASED PREDICTIVE CONTROL

Predictive controllers optimize the future process
behavior using a (nonlinear) process model and
a forecast of the non-controllable inputs. At each
time step an optimal control problem is solved,
where the operational requirements are formu-
lated as objective function and constraints for the
process variables:



min
xk,uk

{
K−1∑
k=0

Jk(xk,uk) + JK(xK)

}
(4)

subject to:

x0 = x(t0),
xk+1 = fk(xk,uk, zk), k = 0, . . . ,K − 1 (5)

gk(xk,uk, zk) ≤ 0, k = 0, . . . ,K − 1 (6)
gK(xK) ≤ 0, (7)

with the discrete time index k, the control horizon
K, the state variables (flow and water level of the
cells of the discretized Saint Venant equations)
xk ∈ Rn, the control variables (outflow through
the turbines or over the weir) uk ∈ Rm and the
non-controllable inputs zk (predicted inflow into
the river reservoirs).

Detzem

reservoir #3

Zeltingen

reservoir #2

Wintrich

reservoir #1

river Moselle

local
controller

local
controller

coordinator

local
controller

Fig. 5. Two-layer structure of the control system.

While usually the first element of the computed
control sequence is applied directly to the process,
in this case these values serve as reference values
for the local controllers. In this way, a suitable
reaction to the predicted inflow can be achieved.

The considered reservoirs belong to the lower
reaches of the river Moselle and posses no im-
portant lateral inflows. Therefore, the inflow pre-
diction can be obtained from analyzing the flow
situation upstream of the first reach over the last
hours.

One important aspect of the water management
is to guarantee safe navigation conditions. There-
fore, the water level hup upstream of the control
facilities must be within predetermined bounds

|hkup − hkref | ≤ ∆h , k = 1, . . . ,K, (8)

where the target level href depends on the current
flow situation. In addition the objective function
(4) includes a term to evaluate the deviation of
the water level from the target

Jk(href ) = ρkref (hkup − hkref )2 , k = 1, . . . ,K (9)

as well as another term to damp waves traveling
along the river

Jk(Qout) =
l1∑
i=l0

ρout(Qkout −Qk−iout )2 , (10)

k = 1, . . . ,K − 1 .

The generation of electrical energy is another rel-
evant goal of the management of river reservoirs.
The obtained profit, which is to be maximized,
depends on the outflow, the head and a time
varying charge ck

Jel =
K−1∑
k=0

ckf
(
Qkout, h

k
up, h

k
down

)
∆t. (11)

The operational range and the efficiency of the
turbines are described in dependence on the flow
and head using a set of linear constraints and a
quadratic approximation, respectively.

Predictive controllers are especially suitable for
reservoirs with a large active storage, because
the resulting volume to be managed can be used
to adapt the control strategy to time varying
requirements.

The discrete time optimal control problem is
solved as a large scale, structured nonlinear pro-
gramming problem in the state and control vari-
ables. Therefore, a specially tailored SQP al-
gorithm with an interior-point solver for the
quadratic subproblem is used, see (Franke and
Arnold, 1999).

5. SIMULATION RESULTS

Fig. 6 and 7 show simulation results of the coordi-
nated operation of the three reservoirs compared
to the sole application of the local controllers.
The artificially generated inflow into the reser-
voirs varies between 250 m3/s and 1500 m3/s (see
fig. 6) and was used as forecast for the predictive
controller. The inflow peak exceeds the admissible
limit for navigation slightly.

One crucial point for the management of river
reservoirs is the generation of a suitable target
level for each reservoir. Up to now this is done at
the central process control station in dependence
on the inflow into the first reservoir (Detzem)
based on an operating instruction, which comprise
the experiences of the staff.

The standard SISO controller holds the reference
values with a high accuracy, but this leads to a
slight amplification of the flood wave at the end
of the first reservoir. Within the following two
reservoirs the flood wave is damped.

The target level for the local controller is used
within the predictive controller, too. But in peri-
ods with variations of the target the constraints
for this level are modified to allow changes of the
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Fig. 6. Reservoir Detzem and reservoir Zeltingen
(third reservoir): inflow into the chain of
reservoirs and outflow generated from local
(SISO) and MBPC controller, respectively.

set point within a larger time interval (±4 h). The
predictive controller is able to deliver the reference
values, which lead to a noticeable attenuation
of the flood wave. The weight of the according
term (10) of the objective function was chosen
to dominate the term for keeping the reference
values. During the transient to normal flow con-
ditions (time interval from 36 h to 42 h) the local
controller in Detzem generates an undershoot of
the flow, which impacts especially the level at the
downstream face of the weir. In drought periods
this controller is not able to attenuate flow varia-
tions, which leads to a similar behavior and may
endanger the navigation on the river, as reported
in (Linke and Arnold, 2000). The model based
predictive controller avoids such effects.

A discrete time step of 0.5 h and an optimization
horizon of 12 h are used. The reference trajectories
are updated each hour. The current state x(t0) of
each reservoir is reconstructed from water level
measurements at both ends of the impoundment
and model inputs over the last hours using a
moving horizon state estimator.

The solution of the optimal control problem (4)–
(7) takes approximately 20 SQP steps, and about
15 minutes on a PC Pentium III (600 MHz).

6. CONCLUSIONS

A hierarchical two-layer control system for a cas-
cade of river reservoirs is developed. At the up-
per layer, a model predictive controller sets water
level and discharge references for the local control
systems at the lower layer.

The process model of the model predictive con-
troller is obtained by a suitable discretization of
the Saint Venant equations, which describe wa-
ter level and flow dynamics of the river sections.
The open-loop optimal control problem which is
solved at each sample instant includes a proper
formulation of the navigation demands as well as
maximization of hydro-power generation in the
objective function and in the constraints.

The two-layer structure enables a substantial im-
provement of the control decisions of the lower
layer compared with a pure local control. In par-
ticular, the wave attenuation of the cascade and
the behavior during setpoint (target) changes is
improved. On the other hand, the existence of the
local controllers of the lower layer allows simpli-
fications of the process model and subsequently
essential savings of computational effort in the
upper layer. Furthermore, the local controllers
guarantee safe operation, even if communication
breaks down in the distributed control system.

As a first step towards the implementation of
the whole control system, the local controller of
the reservoir Detzem was put in operation in
November 2000.

7. REFERENCES

Ackermann, T. (1999). Optimale Regelung
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