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Abstract: Relaxation oscillators typically consist of a hysteresis element and a dynamic
feedback. The robustness of oscillations in such an interconnection is of interest in
many applications. In particular, we seek the robustness margin on the component
perturbations in the gap metric so that oscillatory behavior of the closed loop is
preserv ed.A new distance measure for oscillatory signals utilizing time scaling is
introduced for this purpose. The robustness of a system consisting of an ideal relay
with hysteresis and an integrator has been studied in (Georgiou and Smith 2000).
Here analogous results are derived for a system consisting of an integrator and a relay
whose branches have non-zero slope. This system resembles the classical van der Pol
oscillator more closely than the ideal relay system.
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1. INTRODUCTION

Oscillatory systems are omnipresent in nature
and have been a subject of intense investigation
(Jackson 1991, Guckenheimer and Holmes 1983,
Strogatz and Stewart 1993). Y et,there remain
several questions to be answered. Here, w eare
interested in the robustness of an autonomous
oscillator to internal ¢ hanges in the system. There
ha vebeen numerous studies on ho wvariation of
parameters in a model of an oscillator can affect
the behavior. How ever, w e seek a more general ap-
proach that relies on the internal structure found
in most oscillators. A large class of oscillators, es-
pecially relaxation oscillators, can be represented
as an interconnection of a hysteretic subsystem
with a dynamic feedback (Varigonda 2001). Often,
a feedback connectionf a static h ystresis and a
linear subsystem yields an oscillator sufficient to
model complex mathematical as w ellas natural
phenomena (Jac kson 1991, Grasman 1984, Scott
1994, Varigonda 2001). The geometric robustness
theory of feedback con trol systems pro vides a

qualitatively and quantitativ ely elegait character-
ization of robustness (Foias et al. 1993, Georgiou
and Smith 1990, Georgiou and Smith 1997). This
theory also elucidates the equivalence of robust-
ness to system model perturbations and robust-
ness to external disturbances.

Counsidering oscillators as feedback systems en-
ables the tools of robustness analysis from control
theory to be employed. A first effort in this direc-
tion has been made in (Georgiou and Smith 2000)
where the robustness margin (é.e., the maximum
size of the perturbation in a subsystem that can
be tolerated) of a relaxation oscillator consisting
of an ideal (on—off) relay hysteresis and a negative
integral feedback was computed.

This w orkextends the analogy to a more com-
plex relay oscillator, w e call, the sloping relay
oscillator. One of the main issues with an on-off
relay oscillator, as poirted out in (Georgiou and
Smith 2000), is that the response of the system
can be unbounded even when the disturbances are
bounded. The parallel projection operator from



Fig. 1. The input-output characteristic of a mod-
ified relay hysteresis

the disturbances to the internal signals becomes
unbounded which makes it difficult to estimate
the effect of perturbations. To circumvent this
problem, in (Georgiou and Smith 2000), the relay
element was modified so that the branches of
the relay characteristic have a positive slope after
the absolute value of the input exceeds a certain
threshold.

An alternative modification of the ideal relay
that will result in a bounded projection operator
involves considering the relay branches with a
constant positive slope for all inputs as shown in
Fig 1. We take the relay on-off points at y = £1,
the input levels at switching points as u = +3 and
the slope of the branches to be unity. That is, the
branches of the relay are given by

up(y) =y +2
u(y) =y — 2.

The oscillator obtained by connecting a negative
integrator to this relay is shown in Fig 2. We refer
to this oscillator as the sloping relay oscillator
and it represents a piecewise linear analog of
the van der Pol oscillator (Guckenheimer 1980)
which, unlike the ideal relay oscillator, also retains
the property of bounded response to bounded
disturbances 1y and yo. The autonomous reponse
(corresponding to zero external disturbances wug
and yp) of the sloping relay oscillator is shown
in Fig 3 where the initial condition chosen is
y1(0) = 0. The integrator input w; varies in
[—3, 3] and the output y; variesin [—1,1]. The first
switching occurs at ¢; = In2 and the subsequent
switchings occur according to tx41 — tx = In3.
The entrainment behavior in such an oscillator
has been well studied in the literature (Levi 1981,
Guckenheimer and Holmes 1983, Jackson 1991).

The dynamics of relay feedback systems (RFS) is
itself an active area of research and RFS are en-
countered in many practical applications like pro-
cess identification and auto-tuning of controllers
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Fig. 2. The sloping relay oscillator
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Fig. 3. Autonomous response (4o = yo = 0) of the
sloping relay oscillator

(Astrom et al. 1995, Astrom 1995, Johansson et
al. 1999, Gongalves et al. 2001, Varigonda and
Georgiou 2001). We shall concern ourselves with
only the robustness aspect here.

The main issue in extending the robustness analy-
sis of feedback systems to oscillators is to identify
the suitable signal spaces and the norms. The
hysteresis element requires continuous, piece-wise
monotone inputs. The linear or nonlinear feed-
back element takes discontinuous signals. Thus,
the L., signal space where the norm of a signal
x(t),t € [0,00) is defined as

|lzllc = sup ()
t€[0,00)

seems suitable. For a system of the kind shown
in Fig 2, (Georgiou and Smith 2000) showed that
the class of linear systems that satisfies the above
constraint on the input-output signals consists of
those systems that have a piece-wise Lipschitz
convolution kernel.



To analyze the robustness of the oscillator, we
need a suitable notion of the distance between
two oscillatory signals. Most of the metrics used
traditionally in the analysis of feedback systems
are suitable for steady state operating points or
trajectories for which time is topologically linear.
However, for oscillatory systems, one would like to
consider time in a circular topology. To illustrate
this further, consider two sinusoidal signals = and
y with the same amplitude but slightly different
phase or frequency. The distance do (z,y) = ||z —
Yl|oo based on the Lo,-norm does not satisfactorily
account for the oscillatory nature of z and y since
doo (x,y) is of the order of the signal amplitude, no
matter how small the difference in the frequencies
is. Thus the d, metric is overly conservative.
We suggest an alternative notion of distance for
oscillatory signals that allows a time scaling, i.e.,
orientation preserving homeomorphisms of the
interval [0,00), to be used before taking the L
metric. This idea is motivated by the concept of
Zhukovskii stability which is defined as follows.

Definition 1. (Fradkov and Pogromsky 1998, pp 147)

The limit set M containing the solution Z(t) of the
system & = f(x) with initial condition z(0) is

i) strongly orbitally stable if for each ¢ > 0,
there is > 0 such that

|z(0) — z(0)| < 0 = Vt >0,
|[2(h1(t)) — Z(ha(t))] <€
for some time scalings hi, hs.

ii) asymptotically strongly orbitally stable if it
is stable and § can be chosen such that

|z(0) —z(0)| < 6 =

Jin [z(ha(8)) — 2(ha (1)) = 0

for some time scalings hq, hs.

Without loss of generality, the two time scalings
in the above definition can be replaced by a single
one. Let Ko, denote the set of time scalings. We
define the distance between two oscillatory signals
z,y € Ly, as

dela,y) = inf {llo(t) - y(o(t) oo+

sup |o(t) —¢[/t }.
te[0,00)

Such a notion of distance basically allows a scaling
of time to match the two signals z,y but penalizes
for the “amount” of scaling. The definition of
d.(z,y) does not qualify to be a metric as the
triangle inequality is not verified. But it may be
possible to combine the idea of using a suitable

time scaling with penalty along with the L., met-
ric to define a valid metric. We believe that such
a metric is more suitable to define the operator
norms of systems receiving and sending oscillatory
signals and it enables the extension of the gap
metric robustness results to oscillatory systems.

Using the above distance notion, (Georgiou and
Smith 2000) studied the gap metric robustness of
a relaxation oscillator consisting of an on-off relay
and an integrator. They showed that if the linear
element (the integrator) is perturbed slightly in
the gap, the behavior still remains oscillatory and
close to the nominal behavior. In the following
section, we present a similar robustness study for
the sloping relay oscillator.

2. ROBUSTNESS OF A PIECEWISE LINEAR
OSCILLATOR

In this section, we derive a quantitative robust-
ness margin for the sloping relay oscillator. Our
procedure parallels the one used in (Georgiou and
Smith 2000). The goal is to demonstrate that
the behavior of this oscillator is robust to small
perturbations in the linear component, namely,
the integrator which we will sometimes refer to
as “the plant”. The perturbations of the plant are
measured in the gap metric and the change in the
system behavior is measured using the scaled Lo
norm on the internal signals. Since the analysis is
lengthy and closely follows the one in (Georgiou
and Smith 2000), we shall only state the result
and briefly outline the key steps in the proof.

Basic notions of gap metric robustness analy-
sis can be found in (Georgiou and Smith 1997).
Briefly, the graph of a system refers to the collec-
tion of all compatible input and output signals.
The feedback connection is stable if the space
of external disturbances is coordinatized by the
graphs of the two subsystems i.e., any external
disturbance has a unique decomposition into two
points, one each on the graphs of the subsystems.
The robustness margin is related to the norm of
the parallel projection operator that maps ex-
ternal disturbances to signals inside the loop. A
suitable choice of the signal spaces is the space of
bounded functions L., [0, 00) for the plant inputs
U, and for the outputs Y, we consider the subspace
C10,00) of L[0,00) which consists of continuous
functions. For the plant output, we take the initial
condition y;(0) = 0. Recall that wo = (uo,yo)
denotes the external disturbance. For the nominal
system, we have wy = 0.

Consider a perturbation of the graph of the plant
from M to M;. From the definition of gap, we
have a bijective map ® from M to M;. We would



like to compare the difference in the response of
the two feedback systems for a common external
disturbance wg = 0. Let wg = mi + n be
the unique decomposition of wy induced by the
perturbed feedback system. Thus,

my; = HM1||NIU0 and n = HNHleo-
Define m, xg by m1 = ®m and zy = m + n. That
is, g represents the disturbance to be applied
to the nominal system to produce an internal
response that is close to the internal response of
the system with the perturbed plant.

With some algebraic manipulation, it can be
shown that (Georgiou and Smith 2000),

wo = [I+ (@ — I)HMHN] To
(1)

(oI pqpar — pgya)wo = (I — @) aqarzo +
oy nvwo — Hagazo

(2)

where o is any time scaling. Given the size of the
plant perturbation || — ®||, (1) helps in bounding
the equivalent disturbance, zg. This step makes
use of the global boundedness of the nominal
system, namely, the bound on ||y arl]. The
main robustness result is obtained using (2) which
essentially relates effect of plant perturbation (the
left hand side expression) to the effect of external
disturbances (the last two terms on the right hand
side). The result is an equivalent of (Georgiou and
Smith 2000, Theorem 1) and is stated below.

Proposition 2. Consider the sloping relay oscila-
tor shown in Fig 2. Let G be the negative inte-
grator, G; be a perturbation of G and H be the
sloping relay shown in Fig 1. Let M, M; and N
be their graphs respectively. If 6(G, G;1) < e < %,
or equivalently, if there exists a bijective map
® : M — M such that

1
IT-all<e<y 3)

then there exists a time scaling i.e., an orientation
preserving homeomorphism of the positive real
axis o such that

In 3 — 10e¢
lo(t) — t| 31 —6e)
sup——— <l = ooy W

and the response of the two feedback systems
[G,H] and [G1,H] with zero external distur-
bances (wp = 0) satisfy

4e

1—3€

()

lloTag a0 — ag, A Olloo <

Proof: We provide only a sketch of the proof
here. As described in (Georgiou and Smith 2000)
for the case of the ideal relay oscillator, the proof
involves two main steps. The first step involves
getting a bound 7 on the norm of the equivalent
disturbance x( corresponding to a given plant
perturbation bound ¢, as in (3). This step involves
computing a bound on ||l v || by analyzing the
nominal system and using the relation (1). The
second step involves bounding the distance (in
the sense defined in Sec 1) between the nominal
response Iy x0 and the response Il g arzo when
the system is subjected to external disturbance
xo = (ug,yo) bounded by r. This step can be
further broken into two steps: first, bounding the
L, distance

loT g Ar0 = TTaq o ll oo
for a suitably chosen time scaling o and second,
bounding the size of ¢ which is defined as
|o(t) — ¢
t t '

From the evolution equation of y; for the nominal
system [G, H] with external disturbance zy such
that ||zo|| < 7, it can be shown that, for r < 3,

[y1llee <147
[ur]loo <3(1 +7)

and hence

T ol < 3(1 + 7).
Using (1), we can deduce that whenever ||[I—®|| <
€ < —, we have r <

. Noti h he th
10 -3 otice that the the

€
upper bound on € considered in the statement of

. 3 .
the proposition is below 10 This decrease comes

from the analysis in the second step.

In the second step of the proof, we need to
obtain a bound on [|oTlogn0 — Iy arollo- Let
u1,y; denote the signals on the graph of the
plant for the nominal system (wy = 0) and let
uf,y] denote the same signals when an external
disturbance wg = g is applied. Denote by ¢ (k >
0,tp := 0) the switching times of the autonomous
system and denote by tj, (k > 0,t; := 0), the
switching times of the system with disturbance zg.
Observe from Fig 3 that y; (¢) is monotonic in each
switching interval [ty, t5+1]. For sufficiently small
Zo, y1 (t) also remains monotonic in each switching
interval [t,t;,]. In fact, for r < 1, yi(t) can
be guaranteed to be monotonic. We restrict our
attention to this regime only and this further
reduces the bound on the plant perturbations to
e<1/4.



Since yi(t) is monotonic, we can define a time
scaling o(t) given by

2_y1(t) —yi(t)

3y (tet1) — y1 (&)

o(t) =t —In |1 —

in each interval [t},t,,]. Notice that o(t}) = t
for all k. Using this time scaling, it can easily be
shown that

loys () —y1(E)] <7 for all k.

The function oy (t) — y;(¢) is monotonic in ¢
since by our choice of o, it turns out to be a
linear in y; (¢) which in turn in monotonic in . A
continuous monotone function bounded at both
the ends of the interval [t},#}_ ] by r must be
bounded everywhere in the interval by r. Thus we
have

oy () = ()] <.

From this, it can be shown that

|ouy (t) — uy(t)] < 3r

which in turn implies that

loTl A a0 — T aqarzolloo < 37 (6)

The final task is to bound the size of o. From
the monotonicity of o in each interval [t;,#; ], it
follows that

t)—t t.) —t
wp 2@t 1o(6) ]
t k>0 tk

By analyzing the scenarios for the slowest and
fastest switchings, we find that r must be below
1/3 to guarantee switching. This gives rise to the
bound 1/6 on € as stated in the proposition. We
also obtain

2(1 2(1 -
lnw< t’l Slng

1+3r 1-3r

3+r 3—r

— <t -t < > 1.
1n1+3r_tk+l tk_lnl—?)r for k>1

Adding up the above equations, we get

In

2(1+7)(3 +r)kt ,
(1+ 3r)k - b <

2(1 —r)(3 —r)kt
(1 —3r)k

In

Subtracting the autonomous switching time t; =
In2+ (k—1)In3, we obtain

(1+7)(1+7r/3)FL

1
" (14 3r)k -

ty —ti <

(L= —r/3tt

1
S GRS

In the range of interest, namely, for r < 1/3, the
upper bound becomes the bound on |t} —t|. Thus,
we have

(1—7)(1—r/3)k1 ‘

t, —te] <1
|ty — te| <1In (1—3r)k
. . . 1-r/3
Adding the positive quantity In to the
—-r
bound, we get
1—r/3
ty, — tr] <kl .
[t =t < kln 3=

Using the relation

2(L+7r) 3+ )kt
to>1 =
B (1+ 3r)k
kl 3+7 3+r

n —In ,
1+3r 2(1+7r)

we obtain

1-7/3
|t), — tx] kin 3=
= 3+ 3T
iy kln 1+3’"T —1In 2(1+’"T)

Taking the supremum over k& > 0 which occurs for
k =1, we obtain

1—r/3

sup lo(t) —t] _ In3=7
T e

¢ t In 57

We can now relate the effect of plant perturbation
in the gap to the effect of disturbances using (2)
which implies

(e Tagn = ag, )0l o <
I(1 = @)L g arwolloo + loThag a0 = Tagarofoo-

Observe from (1) that (I — @)Ly nzo = w0 —
wo = mp. Thus, [|[(I — @)IrnTolle < 7 and
together with (6), this implies that

(e — Tagy ) Olloo < 4.

All the bounds we have obtained are monotonic
in r and can be represented in terms of e by
substituting r = =5 since, from the first step
of the proof, this is the maximum possible r for a
given plant perturbation of size €. Thus we have
the relations (3)—(5) stated in the proposition. B

This study demonstrates that the feedback paradigm
for relaxation oscillators indeed facilitates an un-
structured robustness analysis. We strengthen the
case made in (Georgiou and Smith 2000) by pro-
viding a robustness result that parallels Theo-
rem 1 of (Georgiou and Smith 2000) for another



piecewise linear oscillator which resembles the van
der Pol system. The next challenge is a similar
analysis for the case of fully nonlinear oscillators
like the van der Pol system.

3. CONCLUSION

The theory of feedback control provides an el-
egant geometric characterization of robustness.
This theory considers robustness in a very general
sense that is independent of the way one chooses
to represent of the system. A feedback mechanism
driving a bistable (hysteretic) subsystem has been
observed in several oscillator systems. Thus one is
naturally interested in an extension of the robust-
ness analysis of feedback systems to oscillators
that can be represented as feedback systems. The
robustness analysis of oscillators requires a suit-
able measure of distance between two oscillatory
signals. We proposed a distance notion based on
Zhukovskii stability and this distance measure has
been employed in the robustness analysis of an
ideal on-off relay relaxation oscillator consisting
of an integrator in (Georgiou and Smith 2000).
We presented here a similar study for another
piecewise linear system with a qualitatively dif-
ferent time profiles for the internal signals. This
analysis further strengthens the view that a feed-
back paradigm for oscillators facilitates unstruc-
tured robustness analysis. Such an analysis for the
case of higher dimensional relay oscillators and
other nonlinear oscillators is challenging and can
provide a valuable insight into the robustness of
natural oscillators.
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