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Abstract: This paper focuses on a special path following task arising from the needs
of vision-based autonomous guidance: a given front point of a car-like vehicle that is
within the look-ahead range of a stereo vision system, must follo w a prespeci�ed
Cartesian path. Solution to this path follo wing problem is pro vided by a new
feedforward/feedback con trol strategy where the feedforward is determined by a
dynamic generator based on exact dynamic inversion over the nominal vehicle model
and the feedback is mainly issued by correcting terms proportional to the tangential
and normal errors determined with respect to the vehicle's ideal trajectory .A
con vergence analysis of the resulting dynamic inversion based controller is established
versus a vehicle's uncertain model de�ned via equation errors. A simulation example
highlighting the controller's performances is included. Copyright c 2002 IF A C
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1. INTRODUCTION

P ath following of car-like vehicles has been treated
using various approaches in the literature. F o-
cusing on motion planning, i.e. on methods to
deriv eopen-loop con trolsto steer the vehicle on
desired Cartesian paths, a particularly relev an t
method is the di�erential atness approach of
Fliess and cow ork ers (Fliesset al., 1995; Rouchon
et al., 1993). On the other hand, path follo wing
can be approached with feedback con troland in
many cases the feedback strategy is deriv edby
reduction from a trajectory tracking methodology
(Sampei et al., 1991) or by extension from a point
stabilization task (S�rdalen and de Wit, 1993).
Another possible approach could be feedback re-
ceding horizon scheme to maneuver regulation as
proposed in (Hauser and Jadbabaie, 2000). When
better performances are sought an integrated feed-

forward/feedback design is in order as pointed out
in (Al-Hiddabi et al., 1999; Luca et al., 1998).

This paper focuses on a special path following task
arising from the needs of vision-based autonomous
guidance (Broggi et al., 1999b; Piazzi and Guarino
Lo Bianco, 2000): a giv en fron t point of a car-
like vehicle that is within the look-ahead range of
a stereo vision system must follo w a prespeci�ed
Cartesian path. A purely feedforward solution to
this problem has been delineated in (Consolini et
al., 2001) by means of an exact dynamic inversion
procedure. In this paper, building upon this result,
a new feedforward/feedback con trol strategy is
proposed. The feedforward control is determined
by a dynamic inversion generator based on the
nominal vehicle model and the feedback is mainly
issued by inserting, in the generator equations,
correcting terms proportional to the tangential
and normal errors determined with respect to the
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vehicle's desired trajectory. A distinguished fea-
ture of the proposed approach is the explicit use
of a vehicle's uncertain model de�ned via equation
errors. Overall, the resulting dynamic inversion
based controller can provide robust performance
with guaranteed bounds in the path following task
of the autonomous vehicle.

Paper's organization. Section 2 recalls the main
results (Theorem 1 and Theorem 2) for the motion
planning of the vehicle using a dynamic inver-
sion approach. In particular, the explicit equations
that generate the open-loop steering control are
given in (5). Section 3 introduces the uncertain
vehicle model (6), the dynamic inversion based
controller (9), and the main result of the paper
(Theorem 3) that gives suÆcient conditions, in-
volving the model error bounds and the curvature
of the desired path (see (11)), for which arbitrarily
good robust path following may be achieved. A
simulation example is included in Section 4 and
�nal remarks are presented in Section 5.

Notation. kPk and PT will denote the Euclidean
norm and the transpose of a vectorP respectively.
If I � R, given a function f : I ! R we set
kfk1 = supt2I jf(t)j. Let a curve on the Carte-
sian fx; yg-plane be described by a parameteri-
zation (�) = [�(�) �(�)]T with real parameter
� 2 [0; a] where a is a �nite real value; the associ-
ated \path", called �, is the image of [0; a] under
the vectorial function , i.e. � = ([0; a]). We say
that the curve  is regular if there exists _(�)
and _(�) 6= 0 8� 2 [0; a]. A curve  is of class
Ck if  2 Ck([0; a];R2 ), i.e. both the coordinate
functions � and � have continuous derivatives up
to the kth-order. Associated to every point (�) of
a regular curve  there is the orthonormal moving
frame f� (�);�(�)g where � (�) is the unit tangent
vector and �(�) is the unit normal vector oriented
in such a way that f� (�);�(�)g is congruent to the
fx; yg-plane. Let  2 C1([0; a];R2), we say that
 has arc-length parameterization if k _()k = 1
8� 2 [0; a], therefore � (�) = _(�) and, as known
from Frenet formulae, _� (�) = �(�)�(�) where
�(�) is the local curvature.

2. THE OPEN-LOOP DYNAMIC INVERSION
BASED GENERATOR

Let the motion model of a car-like vehicle be given
by the following simpli�ed nonholonomic system:8><

>:
_x(t) = v cos �(t)
_y(t) = v sin �(t)
_�(t) =

v

l
tan Æ(t)

(1)

where (see Fig. 1) x and y are the coordinates
of the middle point P of the rear axle, v is the
constant velocity of P (i.e. k _P(t)k = v for any
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Fig. 1. The car-like vehicle with front point Q.

t), � is the vehicle's heading angle, l is the inter-
axle distance and Æ, the front wheel angle, is
the control variable to steer the vehicle. Let the
initial conditions of the above model be given by
x(0) = x0, y(0) = y0, and �(0) = �0.

Q, called the "front point" of the vehicle, is a
distinguished point of the model; it belongs to
the vehicle's symmetry axis at a �xed distance
d from P ahead of the vehicle. This point could
be a physical point of the vehicle or a virtual one
belonging to the road scene as viewed in the look-
ahead range by the vehicle's vision system.

Introduce the orthonormal frame fw(�); z(�)g as
a function of the vehicle's heading angle:

w(�) :=

�
cos �
sin �

�
; z(�) :=

�
� sin �
cos �

�
: (2)

This frame can be thought as attached to the
vehicle's body and is congruent to the Cartesian
fx; yg plane; then the coordinates of Q(t) are
given by

Q(t) = [xQ(t) yQ(t)]
T = P(t) + dw(�(t)) (3)

and its motion is governed by the following sys-
tem:8>>>><

>>>>:
_xQ(t) = v cos �(t)�

dv

l
sin �(t) tan Æ(t)

_yQ(t) = v sin �(t) +
dv

l
cos �(t) tan Æ(t)

_�(t) =
v

l
tan Æ(t) :

(4)

A pertinent motion planning problem for the the
d-ahead point Q can be introduced as it follows:
given a suÆciently smooth Cartesian curve ,
�nd a continuous steering control Æ and initial
conditions of model (1) in such a way that the
motion path of the front point Q matches the
path � exactly. For the degenerate case d = 0, i.e.
Q = P, this problem has been solved in (Broggi
et al., 1999b) by means of an elegant closed-form
solution exploiting the curvature function along
the curve . For the nondegenerate case d > 0 we
can state the following two results that can easily
deduced from (Consolini et al., 2001).



Theorem 1. Let a curve  : [0; a] ! R
2 of class

C2 be given with arc-length parameterization.
Assume that the initial state of model (1) satis�es
the conditions:

Q(0) = (0) and _(0)Tw(�0) > 0.

a) Then there exist a suÆciently small �t 2 R
+

and a steering function Æ 2 C0([0; �t ];R) such
that the motion of the front point Q follows
� = ([0; a]), i.e. Q(t) 2 � 8t 2 [0; �t ].

b) Moreover, if the curvature �(�) of (�) satis-
�es the following condition

j�(�)j < 1=d 8� 2 [0; a] ;

then there exist tf 2 R
+ and a steering function

Æ 2 C0([0; tf ];R) such that the point Q exactly
covers the entire path �, i.e. Q([0; tf ]) = �.

The invertibility conditions appearing in the
above theorem have a simple geometrical inter-
pretation. In addition to the obvious necessary
condition of Q(0) to be equal to the starting point
of , the exact motion planning is possible, at
least for a while, if at the initial time the angle
between the vehicle's direction and the tangent
on the curve has absolute value less than �=2.
Moreover, if the maximum absolute value of the
curvature along  is less than 1=d, then the entire
path � can be followed and the suitable steering
input can be determined by the dynamic inversion
based generator exposed below, see equations (5).
The proof of Theorem 1 can be found in (Consolini
et al., 2001) where a more general condition on the
curvature is also given. A constructive procedure
to solve the posed motion planning problem is
exposed below.

Theorem 2. Let a curve  2 C2([0;+1[;R2 ) be
given with arc-length parameterization and such
that j�(�)j < 1=d; 8� 2 [0;+1[.If the following
initial state conditions are satis�ed:

Q(0) = (0); _(0)Tw(�0) > 0,

there exists a steering function Æ 2 C1([0;+1[;R),
given by the following "open-loop generator":8>>>>>>>><
>>>>>>>>:

_�(t) = v
1

_�(�(t)) cos(�(t)) + _�(�(t)) sin(�(t))

_�(t) =
v

d

_�(�(t)) cos(�(t)) � _�(�(t)) sin(�(t))
_�(�(t)) cos(�(t)) + _�(�(t)) sin(�(t))

Æ(t) = arctan(
l

v
_�(t))

�(0) = 0 ; �(0) = �0

(5)

such that

Q(t) = (�(t)) 8t � 0 ; Q([0;+1[) = ([0;+1[) ;

in other words, the front pointQ follows the entire
desired path exactly and inde�nitely.

Fig. 2. The dynamic inversion based generator.

It is worth noting that the internal states of the
generator (5) have a special meaning: �(t) is the
distance covered at time t by point Q along path
 and �(t) � �(t) 8t > 0. In such a way, the
given generator can be interpreted as a control
law based on a special open-loop observer of model
(4).

3. THE DYNAMIC INVERSION BASED
CONTROLLER

Consider the desired path be given by a curve  2
C2([0;+1[;R2 ) with arc-length parameterization
and denote by

E = E(Q;(�)) = Q� (�)

the "error" vector of Q with respect to the curve
point (�); then it is natural to name "absolute
error" the distance E(Q) between Q and the path
�(= ([0;+1[)), i.e.

E(Q) := inf�2[0;+1[ kE(Q;(�))k.

Now introduce the following uncertain model for
the car-like vehicle:8><

>:
_x(t) = v cos �(t) + ex(t)
_y(t) = v sin �(t) + ey(t)
_�(t) =

v

l
tan Æ(t) + e�(t)

(6)

with initial conditions x(0) = x0; y(0) =
y0; �(0) = �0, where the functions ex; ey; e� 2
C1([0;+1[) and satisfy the following bounds:

kexk1 �Mx; keyk1 �My; ke�k1 �M�: (7)

Since the coordinates of the front point Q are
given by (3), the perturbed motion of Q =
[xQ yQ]

T is governed by the following system:8>>>><
>>>>:

_xQ = v cos � �
dv

l
sin � tan Æ + ex � d(sin �)e�

_yQ = v sin � +
dv

l
cos � tan Æ + ey + d(cos �)e�

_� =
v

l
tan Æ + e�

(8)

Using the open-loop control strategy of the previ-
ous section, due to the modeling errors introduced
in (6), the actual position Q(t) of the front point
at time t may be di�erent from the estimate posi-
tion (�(t)) as shown in Figure 3. Therefore, in or-
der to decrease the distance of Q(t) from (�(t)),
we modify the equations of the generator (5) by



Fig. 3. The error vector and its components.

Fig. 4. Control architecture.

means of correcting feedback terms which use the
error components E� (t) and E�(t) de�ned with
respect to the moving frame f� (�(t));�(�(t))g:

E� = E� (t) = E(Q(t);(�(t)))T � (�(t))

E� = E�(t) = E(Q(t);(�(t)))T �(�(t))

The overall feedback strategy is then given by the
following dynamic inversion based controller:8>>>>><
>>>>>:

_� =
v

� (�)Tw(�)
+K�E�

_� =
v

d

� (�)T z(�)

� (�)Tw(�)
�K�E� +K�(� � �)

Æ = arctan(
l

v
(
v

d

� (�)T z(�)

� (�)Tw(�)
�K�E�))

(9)

with initial conditions �(0) = 0, �(0) = �0, where
K� ;K� ;K� are positive feedback-gain constants.
The corresponding control architecture is depicted
in Figure 4. The closed-loop system equations are
then given by:8>>>>>>>>><
>>>>>>>>>:

_xQ = v cos � � d(sin �)u+ ex � d(sin �)e�
_yQ = v sin � + d(cos �)u+ ey + d(cos �)e�
_� = u+ e�

_� =
v

� (�)Tw(�)
+K�E�

_� = u+K�(� � �)

u =
v

d

� (�)T z(�)

� (�)Tw(�)
�K�E�

(10)

with initial condition xQ(0) = x0 + d cos �0,
yQ(0) = y0 + d sin �0, �(0) = �0, �(0) = �0,
�(0) = 0.

Set �� = max�2[0;+1[fj�(�)jg the maximum ab-
solute value of the curvature of  and M =[Mx;My]

T
.

Theorem 3. In the previous hypotheses and nota-
tions, suppose that x0,y0, and �0 are such that:

Q(0) = (0) and _(0)Tw(�0) > 0.

If the following inequalities hold

2(M�d+M) < v;

d��+
3(M�d+M) +M�d

v � 2(M�d+M)
< 1 ;

(11)

then we can �nd a suitable constant �K� > 0
such that 8K� > �K�, 8K� > 0 and 8K� > 0
there exists one and only one solution de�ned
on [0;+1[ of the closed-loop system (10) and
with the time-varying errors satisfying (7), i.e. the
feedback control strategy (9) is well posed for the
entire family of uncertain models (6).

Moreover, for any given � > 0, there exist suitable
positive constants �K� and �K� such that, if K� >
�K� , K� > �K� , and K� > �K� then

sup
t>0

E(Q(t)) < � (12)

Remark 1. The above theorem guarantees a ro-
bust path following stability of the proposed con-
troller. Indeed, the front point Q remains arbi-
trarily near to the desired path � provided that
the feedback gains are suÆciently high and the
modeling errors obey to conditions (11).

Remark 2. It is interesting to note that the pro-
posed inversion based control architecture com-
bines the (feedforward) dynamic inversion and
the feedback action in a novel manner. Indeed,
the proposed control strategy uses feedback cor-
rections on the equations of the dynamic inver-
sion generator directly, whereas in analogous con-
trol scheme known in the literature (Devasia et
al., 1996; Hunt and Meyer, 1997) the inversion
based generator is not a�ected by the feedback.

In the proof of Theorem 3 we use the following
lemma whose proof is omitted for the sake of
brevity.

Lemma 1. Let it be given a solution of sys-
tem (10) de�ned in a closed interval [0; �t ], with
the error functions satisfying bounds (7) and R a
positive constant such that � (�(t))Tw(�(t)) � R
8t 2 [0; �t ]. Provided that K� > M�=R it follows
that 8t 2 [0; �t ]:

jE� (t)j �
1

K�

(
vM�

K�

(1 +
1

R
) +M�d+

+M)(1 +

dM�

K�

+ 1

R� M�

K�

)

jE�(t)j �

vM�

K�
(1 + 1

R
) +M�d+M

dK�(R � M�

K�
)

(13)



Proof of Theorem 3: By the given initial condi-
tions, it is easy to see that there exists a unique
local solution of system (10) and let [0; �t [ be
its maximum interval of existence; clearly, if we
show that �t = +1, the �rst part of the The-
orem is proved. This holds if we obtain that
9 �K� � 0, such that 8K� > �K�, 8K� > 0, 8K� >
0, we have that inf0�t<�tf� (�(t))

Tw(�(t))g =
inf0��<��f� (�)

Tw(�(��1(�))) g > 0, where �� =
sup�([0; �t[).

To this aim, set �(�) = �(��1(�)) � �(�),
�(�) = arg(� (�)), �M = maxfj�(0)j; arcsin(d�� +
3(M�d+M)+M�d

v�2(M�d+M) ) g; remark that 0 � �M < �
2

since � (0)Tw(�0) > 0 and by (11). Set �0 =

supfs < ��j cos(�(�)) � cos(�M )
2 ; 8� 2 [0; s]g,

clearly �0 > 0; we have to show that �0 = ��.
Suppose, by contradiction, that �0 < ��, then it
must be:

R = inf
0��<�0

f� (�)Tw(�(��1(�))) g =

= inf
0��<�0

fcos(�(�)) g =
cos�M

2

(14)

Now we �nd the expression for d�
d�
:

d�
d�

= d�
dt

d��1

d�
� d�

d�
=

� v

d
tan(�)�k�E�+e�
v

cos(�)
+K�E�

� �(�) =

� 1
d
sin(�) + cos(�) sin(�)K�E��dK�E�+de�

dv+K�E�d cos(�)
� �(�) :

We set M�

��
= hR, thanks to (11), applying

Lemma 2, the following inequality holds (remark
that R � 1):

d�
d�

� � 1
d
sin(�) + cos(�)�

�
(vh(R+1)+M�d+M)(1+ dhR+2

R�Rh
)+M�d

vd�d cos(�)(vh(R+1)+M�d+M)(1+ dhR+1
R�hR

)
+ ��

� � 1
d
sin(�) + cos(�)�

�
((2vh)+M�d+M)( dh+3

R�Rh
)+M�d

vd�d cos(�)(2vh+M�d+M)( (1�h)+dh+1
R�hR

)
+ ��,

for every h suÆciently small, that is, for K�

suÆciently big.

Now, applying Lemma 2 to be found at the end
of the section, we obtain, unless of decreasing h,
that �(�) � �h,8� 2 [0; �0[ where:

�h = arcsin

�
(2vh+M�d+M)( dh+3

1�h )+M�d

v�(2vh+M�d+M)(
(1�h)+dh+1

1�h )
+ d ��

�
.

In the same way we can prove that �(�) �
��h ;8� 2 [0; �0[ provided that h is suÆciently
small. Since limh!0 cos�h � cos�M , we can �nd
an �h such that 8h 2 [0; �h[, 8� 2 [0; �0[, cos�(�) �
cos�h � cos��h > cos(�M )

2 , therefore R > cos(�M )
2

which contradicts (14).

This concludes the the proof of the �rst part which
implies the proof of (12) by Lemma 2 and (13).2

Remark 3. (Setting of the feedback gains)
Relying on Theorem 3 and Lemma 1, the setting

of the feedback gains can be obtained by the
procedure below. This guarantees to keep the
path following absolute error smaller than a given
� > 0.

1) Find a suÆciently small h for which

(2vh+M�d+M)( h+3
1�h )+M�d

v�(2vh+M�d+M)( dh+2
1�h )

+ d �� < 1;

the existence of such h is guaranteed provided that
conditions (11) of Theorem 3 hold.

2) Set

R =

s
1�

�
(2vh+M�d+M)(dh+3

1�h )+M�d

v�(2vh+M�d+M)(
(1�h)+dh+1

1�h )
+ d ��

�2

.

3) Set the feedback gains according to:

K� �
p
2
�

�
(vh(1 +R) +M�d+M)(1 + 1+dhR

R(1�h) )
�

K� �
p
2
�

�
vh(1+R)+M�d+M

dR(1�h)

�
K� �

M�

hR
.

It is easy to prove the following Lemma.

Lemma 2. Let f : [0; Æ[! R be a function with
the following properties: there exist �y 2 [0; Æ[ such
that f(y) � 0; 8y 2 [�y; Æ[ and y 2 C1(I;R)
where I is a real interval. Suppose that _y �
f(y(t)); 8t 2 I such that y(t) 2]�y; Æ[. If there
exists t0 2 I such that y(t0) � �y then y(t) �
�y; 8t 2 I , with t � t0.

4. A SIMULATION EXAMPLE

Consider the uncertain model given by equa-
tions (8) with the following parameters v =
25 m/s, l = 2:67 m, d = 4 m (data are taken
from the ARGO car (Broggi et al., 1999a)) and
the perturbation functions are bounded as follows:

kexk1 = 2m/s = Mx, keyk1 = 2m/s = My,
ke�k1 = 2deg/s = M�.

With simulations the example examines the per-
formances of the proposed dynamic inversion
based controller for the path following of a com-
posite road path modelled by quintic G2-splines
(Piazzi and Guarino Lo Bianco, 2000) where the
maximum absolute value of the curvature is �� =
0:15 m�1 (see Figure 5). The maximum tolerable
absolute error for the path following has been
set to � = 0:1 m (see (12) of Theorem 3) and
the feedback gains of the controller have been
determined according to the procedure described
in Remark 3: speci�cally K� := 19:4, K� := 127,
K� := 5:6, h := 0:01. Figures 6 and 7 report the
results of the simulations by plotting the steering
control and the absolute error of the front point
Q with respect to the desired path respectively.



x [m]

y
[m

]

Fig. 5. The desired vehicle's path modelled with
quintic G2-splines.

Fig. 6. The steering control for the example.

Fig. 7. The absolute path following error for the
example.

5. CONCLUSIONS

Essentially, dynamic inversion is a control method-
ology to synthesize feedforward input signals to
achieve desired output functions or output path
planning. For the latter case, in the context of
autonomous car-like vehicles, a path following
controller has been devised by combining, in a new
way, the action of a feedforward dynamic inversion
with a feedback one. A key point of the paper is
the convergence result (Theorem 3) ensuring the
robust path following within a guaranteed bound
for an entire family of vehicle's uncertain models.
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