
A FAST SEARCH STRATEGY FOR TEMPLATE MATCHING

Escudero-Rodrigo D. (1) and Sánchez-Salmerón A.J. (2)

Departamento de Ingeniería de Sistemas y Automática.
Universidad Politécnica de Valencia.

Camino de Vera. Apdo. 22012, E-46071, Valencia, Spain.
(1) e-mail: dieesrod@inf.upv.es

(2) e-mail: asanchez@isa.upv.es

Abstract: An active vision system with two cameras has to be calibrated on-line to
perform stereo vision applications. A calibration of a binocular system is possible using a
small number of homologous features in both images. The correspondence problem can
be resolved by using traditional template matching algorithms but it has a high
computational cost. In this paper, some dynamic programming aspects are introduced to
deal with template matching in order to reduce the execution time. Some experimental
results demonstrate their viability and suggest other lines to improve its performance.
Copyright © 2002 IFAC

Keywords: Search methods, image matching, dynamic programming, calibration, stereo
vision.

1. INTRODUCTION

An active vision system with two cameras (Fig. 1)
has to be calibrated on-line to perform stereo vision
applications (Trucco and Verri, 1998). Camera
calibration in stereo vision is needed to extract metric
information from 2D images. Calibration has three
different phases: feature selection, correspondence
problem and parameter estimation of fundamental
matrix (Zhang, 1996; Sanchez and Calatayud, 2001).

0

1

2

3i

3d

4i

4d

5i

5d

x2 x1 x0
y0

y2 y1z0
z2 z1

x3i x4i x5i

y3i

z3i y4i y5i

z4i z5i

x3d x4d x5d

y3dz3d y4d y5d

z4d z5d

Fig. 1. Active vision binocular system called SiviS.

The main problem is to extract a set of n points from
each image and to match each point in the first image
to its corresponding point in the second one.

Feature selection involves extracting a valid set of
features that appear in both images. The selected
features for each image are windows (templates)
around corners detected by SUSAN algorithm (Smith
and Brady, 1997).

The second phase, correspondence problem, is most
costly because it has to match each feature in one
image with all features in the other. To overcome the
correspondence problem, several schemes have been
developed, which can be grouped into two
categories: area-based (Kanade and Okutomi, 1994)
and feature-based. In this work, the feature-based
scheme is used.

The template matching algorithm has very high
computational cost, the time spent in this phase is
nearly ¾ of the calibration process. In this paper, the
idea is to apply dynamic programming aspects to the
template matching algorithm in order to improve its
computational cost. If this cost is improved then the
time in correspondence problem decreases.
Therefore, the calibration process (Fig. 2) will be on-
line.

Fig. 2. Fundamental matrix: 0' =⋅⋅ mFm T .

Copyright © 2002 IFAC
15th Triennial World Congress, Barcelona, Spain

2. TEMPLATE MATCHING ALGORITHMS

To locate an image template T, with pxq dimensions,
in an mxn image I, it is necessary to find the
minimum distance D(p) among those of all possible
locations p that exist in an image. The possible
locations are each window of the image with pxq
dimensions that can be represented in it. The solution
s is the location p that has the minimum distance of
them all (1).

)(min
mxn

1
pDd

p=
= (1)

The traditional algorithm (Fig. 3) searches for the
best location in a unique scan of the image testing the
template and calculating the distance for each pixel.
Most template matching applications commonly use
the correlation or the sum-of-squared-difference
(SSD) as a distance measure to determine the best
match. Unfortunately, these measures are sensitive to
outliers and they are not robust to variations in the
template. New applications are based on ‘Hausdorff
distance’ measure (Huttenlocher et al., 1993) which
provides robustness to partial variations of the
template.

Fig. 3. Traditional algorithm.

It is assumed that the cost of calculating the distance
τ in the algorithms is worthless. Then, the
computational cost of the traditional algorithm is Ct

(2).
τ⋅⋅= pxqmxntC (2)

But it is not real because the search does not scan the
whole image. There is part of image where the
template does not fit. The real computational cost is
(m-p+1)x(n-q+1) x pxq. That means that the influence
of the template and the image is the same, and when
the size of the template or image increases, the cost
grows quickly.

Another important feature of this algorithm is that
the position of the template in the image does not
have an influence on its cost. The algorithm will scan
all the locations in the image even if it has already
found a local solution before completing the image.

In order to reduce the computational cost of the
traditional algorithm a ‘multi-resolution search’
technique is often used (Rosenfeld, 1984). Recently
new strategies, like ‘eigenspace approximation’
(Huttenlocher et al., 1999), have been introduced to
improve this cost.

3. PROPOSED SEARCH STRATEGY

This search strategy can be used in any multi-
resolution level and for any distance measure. The
strategy has the next key features:

1. Array of possible locations.
2. Pruning.
3. Ordering by ‘Quicksort’.

The proposed algorithm has been developed using
some dynamic programming aspects like the pruning.
So, it is necessary to change the way in which the
image and the template are processed respect to that
of the traditional one.

To calculate the distance from the possible locations
in the image to the template it is necessary to create
an array of possible locations (Fig. 4). This array
must contain information of all possible locations in
the image because the algorithm works with all the
possible locations at the same time. Each component
of the array contains the global position p(x0,y0) in
the image and a distance accumulator to calculate
D(p). This array must be dynamic because its size
changes; when a possible location cannot be the
solution it has to be pruned. The algorithm starts with
an array size of (m-p+1)x(n-q+1) elements, these are
the number of possible locations that can be in the
image.

Fig. 4. Data structures.

Fig. 5. Scheme of the algorithm.

-Initialise the array of possible location with d1.
-Initialise d.
For each pixel t in the template...

For each element p of the array...
-Update accumulator D(p) with dt.

 -Apply ‘Quicksort’ to the array.
 -Select most promising location s to
 calculate D(s).
 -Update solution: d=min (d, D(s)).
-Prune the rest of elements if the
accumulator is greater than or equal to the
actual distance d.

-Initialise first solution: d=D(1).
For each location p in the image...

For each pixel t in the template...
-Update accumulator D(p) with dt.

-Update solution: d=min (d, D(p)).

The proposed algorithm (Fig. 5) is not as easy to be
understood as the traditional one. The process
consists in two stages, width-accumulation and
depth-search. First it carries out a width-
accumulation in the array of possible locations and
then a depth-search only for the most promising
location s to update d which is used to prune.

The width-accumulation means that for each
processed pixel of the template, all the accumulators
of the array of possible locations are updated with
pixel distance dt. The distance accumulator is
updated by adding the distance dt from template
pixel t to the corresponding image pixel relative to
location p. To calculate the distance dt it is necessary
to know the pixel situation of the possible location in
the image; it is known by using its global position,
which is stored in the array, plus the relative
position, which is that of pixel of the template being
processed (Fig. 4).

After width-accumulation the array has to be ordered
by distances using ‘Quicksort’.

The depth-search consists in selecting the most
promising location, which is the first element of the
array because it has previously been arranged. Then
a possible solution is obtained: it is the most
promising location after having calculated the
distance for all the template of the image. This
possible solution is used to prune. Pruning is applied
to all possible locations whose stored distance is
greater than or equal to the distance of the current
solution. Because they cannot be better than the
current calculated solution.

0 5 10 15 20 25 30 35 40 45 50
0

1

2

3

4

5

6
x 10

4

P

t

Fig. 6. Pruning function. This function is an
estimation of the average amount of pruning
locations for all pixels in the template.

The pruning function P is an important factor of the
proposed search strategy because it is used to
eliminate all the possible locations that cannot be
improve the current calculated solution. This pruning
function is not regular. In the first processed pixels of
the template the number of possible pruned locations
is small, as the algorithm advances in the process of
the template the pruned elements grow exponentially
(Fig. 6). The more pixels of the template have been
processed the more probabilities for the current

solution to be the final one, due to the fact that the
number of possible pruned locations increases too.
Another important factor in the algorithm is
‘Quicksort’ because it is used to order the array of
possible locations. After ordering the array it is easy
to select the most promising location and to prune.

In the proposed algorithm, the same as in the
traditional one, the position of the solution in the
image does not influence on cost because the array of
possible locations is ordered.

3.1 Computational Cost

The idea is that of the cost of the proposed algorithm
is better than that of the traditional one because in the
worst case, when the algorithm has not pruned the
array, the cost of scanning all the pixels of the
template, and for any of them all the pixels of the
image, is the same as that of the traditional
algorithm. And by pruning only one possible location
the computational cost of the proposed algorithm is
being reduced. As it is not necessary to scan all the
possible locations of the image then the cost is
reduced in (pxq)-(kxl) for each possible location
pruned in the iteration kl. The cost of the algorithm
when it prunes Pkl possible locations is (pxq)x(m-
p+1)x(n-q+1) – (pxq-kxl)xPkl. The cost interval of the
algorithm can be determined analysing the extreme
cases. In the best case: all possible locations can be
pruned in the first iteration kxl = 1 then Pkl = (m-
p+1)x(n-q+1)-1 and the cost is pxq + (kxl)x[(m-
p+1)x(n-q+1)-1]. In the opposite case, the worst: no
possible location is pruned Pkl = 0 in all iterations
and the cost is equal to that of the traditional
algorithm. This theory seems great but it is not
completely true.

The computational cost of the proposed algorithm is
Cd (3).

()()[]

∑∑ ∑∑ ∑
= = = =

−+−+−=

=

⋅⋅++=

+=
p

1

q

1

p

'

q

'

1qn1pm

1

'log
k l kk ll

Pv

u
d

kl

vvC

PPP

τττ

(3)
where:

P is the pruning function;

Pkl is the amount of possible locations pruned in the
iteration kl;

v is the size of the array of possible locations;

∑∑
= =

p

1

q

1k l

is the size of the template;

∑∑
= =

p

'

q

'kk ll

τ is the cost of depth-search;

()()[]

∑
−+−+−=

=

Pv

u

1qn1pm

1

τ is the cost of width-accumulation.

Although everything explained before is true there is
one factor of the algorithm that has been ignored: to
sort the array of possible locations by ‘Quicksort’. It
makes the algorithm more efficient, because the most
promising location is always processed and the
probability of pruning is increased.

The only problem is the cost of ‘Quicksort’.
Although it has the minimum medium cost of all
sort-algorithms, its computational cost is vxlog(v),
when the array has v elements. That would not be a
problem if they had to be ordered only once: when
the first pixel of the template is processed. But they
have to be ordered for all the pixels of the template,
so the cost is pxq x vxlog(v). This is only in theory, in
practice the cost is lower. To order the array costs
vxlog(v) only the first time, the next ones the cost is
less because the array has already been ordered and
now it has fewer elements to be ordered. Also the
number of elements of the array decreases when the
pruning is applied.

With the ideas exposed above, it can be said that the
relation between the size of the array and the number
of the pruned elements is what defines the efficiency
of the proposed algorithm. Because of this the
proposed algorithm is not better than the traditional
one in all the cases; there are a few defined cases
where the traditional algorithm is more efficient (Fig.
7).

0 10 20 30 40 50 60 70 80 90 100
0

50

100

150

200

250

300

350

solid=traditional - dashdot=proposed

C

Fig. 7. It represents the cost functions of the
traditional and the proposed algorithm. The
functions are calculated for templates whose size
is from one pixel to one hundred pixels, with an
image with forty thousand pixels; for example an
image of 200x200.

4. EXPERIMENTAL RESULTS

This section shows some of the results obtained
using the described method. Experiments are
performed using C in 550 MHz Pentium III PC
running ‘Red Hat Linux 6.2’. A set of real images
has been tested using ‘NetPBM’ image library.

Table 1. Results of experimental tests. The third
column is the amount of experiments performed to

calculate the average costs
tC and

dC .

Image Template Experiments
tC sec.

dC sec.

50x50 10x10 1626 0.22 0.13
50x50 25x25 663 0.57 0.006

100x100 10x10 9311 0.93 0.10
100x100 45x45 3872 7.43 0.034
200x200 5x5 33787 1.15 1.43
200x200 50x50 22165 67.53 0.68
200x200 95x95 10721 121 0.23
300x300 5x5 79678 2.72 8.34
300x300 10x10 14768 10.23 8.72

Table 1 gives some running times of the algorithms
applied to different images and templates (Fig. 8). In
this case, the sum-of-squared-difference (SSD) is
used as a distance measure to determine the best
match.

Fig. 8. A processed image and three searched
templates.

5. CONCLUSIONS

Experimental results confirm that the proposed
algorithm is more efficient than the traditional one
but not in all the cases, as it has been stated before.
The cases where the traditional one is better are those
when the searched template is much smaller than the
image. An example of it is figure 7, where the
proposed algorithm has less cost than the traditional
one if it uses a template with more than twenty
pixels. Thus to use this algorithm is a good decision
in cases when it is necessary to match all templates in
an image except the small ones mentioned. Also with
experimental tests it is discovered that the best results
are obtained when the image size is twice the
template. The obtained benefit is enormous respect to
the traditional algorithm. It is because, if the
difference between the template size and the image
size is small, there are few possible locations for the
image and then applying ‘Quicksort’ to the array is
not as expensive as in other cases. This and the
pruning function reduce the algorithm global cost.

At the moment the investigation continues. A new
version of the algorithm can be implemented by
using these ideas to improve the cost exposed in this
paper. The image is divided to a number of sub-
images, called windows, whose dimensions are twice

the dimensions of the template. Once that is done,
the solution is only in one of the windows, because
of this the pruning is slower in the other windows.
Efficiency depends on which window the solution
is, because the sooner the algorithm get the window
where the solution is, the faster the pruning in the
other windows. So the cost depends on the solution
situation in the image. That is why it is necessary to
make the algorithm independent of the solution
situation in the image.

This problem would be solved if there was a slight
idea about in which window the searched solution is.
A ‘multi-resolution search’ could be a good
technique to solve it.

The proposed search strategy permits to resolve
efficiently the correspondence problem when the
template size is bigger enough. In this case the cost
of the correspondence problem is reduced and the
calibration process will be on-line.

REFERENCES

Huttenlocher D.P., Klanderman G.A. and Rucklidge
W.J. (1993). Comparing images using the
Hausdorff distance. In IEEE Trans. Pattern
Analysis and Machine Intelligence, 15(9), 850-
863.

Huttenlocher D.P., Lilien R.H. and Olson C.F.
(1999). View-based recognition using
eigenspace approximation to the Hausdorff
measure. IEEE Trans. on Pattern Analysis and
Machine Intelligence, 21(9), 951-955.

Kanade T. and Okutomi M. (1994). A stereo
matching algorithm with an adaptive window:
theory and experiment. IEEE Transactions of
Pattern Analysis Machine Intelligence, 16(9),
920-932.

Rosenfeld, A. (1984). Multiresolution Image
Processing and Analysis. Springer-Verlag, New
York.

Sanchez A.J. and Calatayud R. (2001). Auto-
calibración de un sistema binocular de visión
activa. In Jornadas de Automática 2001.

Smith S. M. and Brady J.M. (1997). SUSAN A new
approach to low level image processing.
International Journal Computer Vision, 23(1),
45-78.

Trucco E. and Verri A. (1998). Introductory
Techniques for 3-D Computer Vision, Prentice-
Hall, Englewood Cliffs, NJ.

Zhang Z. (1996). Determining the epipolar geometry
and its uncertainty: A review. Research Report,
No.2927, INRIA Sophia-Antipolis.

