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Abstract: Over the recent years many advances in the area of nonlinear model predictive
control have been made. However, with respect to the output feedback problem and predictive
control only a limited number of results are available. Most of the existing approaches do
only guarantee local stability. In this note we propose the use of a high gain observer in
combination with a sampled nonlinear predictive controller for a special MIMO system
class. The resulting output feedback leads to semiglobal practical stability and recovery of
performance of the state feedback controller. The results are valid for a wide class of NMPC
schemes. Thus they can be considered as a special separation principle for NMPC.
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1. INTRODUCTION

Model predictive control (MPC) for systems described
by nonlinear ODEs (shortly NMPC) has received
considerable attention over the past years. Several
schemes that guarantee stability if full state infor-
mation is available exist, see for example (Mayne et
al. 2000, Allgöwer et al. 1999) for recent reviews.
Fewer results are available in the case when not all
states are directly measured. In (Michalska and Mayne
1995) an optimization based moving horizon observer
is designed, that together with the NMPC scheme pro-
posed in (Michalska and Mayne 1993) is shown to
lead to (semiglobal) closed loop stability. In (Magni
et al. 1998, Magni et al. 2001), see also (Scokaert et
al. 1997), local asymptotic stability for observer based
discrete-time nonlinear MPC for “weakly detectable”
systems is obtained. However, these results are of local
nature, i.e. stability is guaranteed only for a suffi-
ciently small observer error and no exact information
about the required “level of smallness” is available.
To overcome this problem we follow along the lines
of “separations principles” for nonlinear systems (Teel
and Praly 1995, Atassi and Khalil 1999) and propose
the use of high gain observers in conjunction with
NMPC. In comparison to (Imsland et al. 2001b) we

derive results for the sampled case, i.e. we do not
assume that the state feedback is continuously recalcu-
lated. Instead we apply open loop control inputs over
the sampling intervals which are recalculated at the
sampling instances. We show that the resulting control
scheme does lead to semiglobal practical stability of
the closed loop. We also show that the output feedback
control scheme allows for recovery of performance
of the state feedback controller if the observer gain
is increased and the sampling time is decreased suffi-
ciently. With recovery of performance we mean recov-
ery of the region of attraction and that the rate of con-
vergence of the output feedback scheme approaches
that of the state feedback scheme. The results are valid
for a wide class of stabilizing NMPC schemes. Thus
for the considered system class the result can be seen
as a special separation principle for NMPC.
The key ideas are based on recent investigations of
the output feedback control problem for nonlinear
systems. Based on the output feedback results for
fully input-output linearizable systems (Esfandiari and
Khalil 1992) different versions of the so called non-
linear separation principle for a rather wide class of
systems have been established (Teel and Praly 1995,
Atassi and Khalil 1999, Shim and Teel 2001, Mag-
giore and Passino 2000). Our result is related to the re-

Copyright © 2002 IFAC
15th Triennial World Congress, Barcelona, Spain



sults of (Teel and Praly 1995, Atassi and Khalil 1999)
in the sense that we also use a high gain observer
for the state recovery and that we use the same key
steps in the proof. However the consideration of a
sampled control scheme makes some inherent changes
necessary.
This note is structured as follows: In Section 2 we
briefly state the considered system class. Section 3
contains a description of NMPC state feedback and
the high gain observer used. In Section 4 we derive
the results on the recovery of the state feedback per-
formance and on semiglobal practical stability of the
closed loop.
In the following blockdiag�A1� � � � �Ar� denotes a block
diagonal matrix with the matrices A1� � � � �Ar on the
“diagonal”, while diag�α1� � � � �αr� denotes a diagonal
matrix with the scalars α1� � � � �αr on the diagonal.

2. SYSTEM CLASS

We consider continuous time nonlinear systems of the
following form:

ẋ �Ax�Bφ�x�u� (1a)
y �Cx� (1b)

x � X � �
n are the system states, the control input

is u � U � �
p and the measured output y � � p . We

consider the control of (1) under bounded control
action and state constraints, i.e. the system input is
required to lie in the set U and the system states must
lie in the set X with:
Assumption 1 U ��

p is compact, X ��
n is con-

nected and �0�0��X�U.
The matrix A,B and C are given by:

A � blockdiag � A1� ��� Ap � � Ai �

�
�

0 1 ��� 0
0 0 ��� 0...

...
0 ��� 0 1
0 ��� ��� 0

�
�

ri�ri

B � blockdiag� B1� ���� Bp � � Bi � � 0 ��� 0 1 ��ri�1

C � blockdiag�C1� ����Cp � � Ci � � 1 0 ��� 0 �1�ri
�

i.e. the dynamics consists of p integrator chains, with
n � r1 � � � �� rp. Furthermore we assume, that the
following holds:
Assumption 2 The function φ : �n �U � �

p is as-
sumed to be locally Lipschitz in its arguments over
the domain of interest with φ�0�0� � 0, φ�x�u� is well
defined for all x��n and u�U 1 and φ is globally
bounded.
The considered system class has an (invertible) ob-
servability map that does not depend on the input.
The typical source of systems of this class, is an input
affine nonlinear system

ẋ � f �x��g�x�u� y � h�x�

with full (vector) relative degree �r1�r2� � � � �rp�, i.e.,
∑p

i�1ri � n. Then, it is possible to find a coordinate
transformation (Isidori 1995) such that the system is
described by (1) with φ�x�u� linear in u.
Remark 2.1 In the SISO case, our approach could be
expanded to systems of the general form

ẋ � f �x�u��y � h�x�

1 This is necessary, since the observer estimate can leave the set X

with �y�u���2 if the observability map Ψ
Y �Ψ�x�u� u̇� ü� � � � �u�qu���

with Y � �y� ẏ� � � � �yqy �� is known and invertible for x.
Then one would have to know the derivatives of y and
u to recover the state. These can be easily obtained by
adding a chain of integrators to the input and using
a high gain observer to recover the derivatives of y
and u (Teel and Praly 1994). However, then we must
assume that the state feedback controller stabilizes
the expanded system. The original constraints on the
inputs become state constraints and additional con-
straints on the quth derivative of the input have to be
added to guarantee compactness of the feasible set of
“new” inputs.

3. SETUP

The output control feedback scheme is given by a
nonlinear model predictive state feedback and a high
gain observer for recovery of the system states.

3.1 State feedback NMPC

In the framework of predictive control, the input is
defined by the solution of an open loop optimal con-
trol problem that is solved at sampling instants. For
simplicity we denote the sampling instants by t i, with
ti	ti�1 � δ being the sampling time. For a given t, t i
should be taken as the nearest sampling time t i � t.
���i denotes the value of the corresponding variable at
the sampling instance i, i.e. xi � x�ti�. The open loop
optimal control problem solved at any t i is given by:
NMPC open loop optimal control problem:
Solve min ū���J� ū���;xi�
subject to: ˙̄x�A x̄�Bφ� x̄� ū� x̄�τ�0��xi (3a)

ū�τ��U� x̄�τ��X τ� �0�Tp� (3b)
x̄�Tp��E (3c)

where the cost functional is given by:

J� ū���;xi� :�
� Tp

0
F� x̄�τ�� ū�τ��dτ�E� x̄�Tp���

The bar denotes internal controller variables, x̄��� is
the solution of (3a) driven by the input ū��� : �0�Tp��
U with initial condition xi. The stage cost to be
minimized over the control horizon Tp is given by
F� x̄� ū�. We assume that F satisfies:
Assumption 3 F : �n�U� � is locally Lipschitz
with F�0�0�� 0 and F�x�u�� 0 
 �n�U � �x�u� ��
�0�0�.

The solution to the optimal control problem is denoted
by ū���;xi� in the following. If the optimal control
problem is solved at time ti, then the system input
between two sampling instants at time s � �ti� ti �δ�
is given by:

u�s;xi�� ū��s	ti;xi�� (4)

The constraint (3c) in the NMPC open loop optimal
control problem forces the final predicted state at time
τ�TP to lie in a terminal region denoted by E and is
thus often called terminal region constraint. In the cost
functional J, the deviation from the origin of the final
predicted state is penalized by the final state penalty
term E. We further assume, that:



Assumption 4 The system (1) has an unique contin-
uous solution for any initial condition in the region
of interest and any piecewise continuous and right-
continuous input function u��� : �0�Tp��U.

If Tp, E, F are chosen suitably, stability can be guaran-
teed. Several NMPC concepts that guarantee stability
and that are similar to this setup have been proposed
e.g. see (Mayne et al. 2000, Allgöwer et al. 1999) for
a review. We will use the following result, which is a
slight modification of Theorem 4.1 in (Chen 1997):
Theorem 3.1 Suppose
(a) that Assumptions 1-4 are satisfied,
(b) E is C1, E � X is closed and connected with

the origin contained in E and there exists a
continuous control law k :�n ��

p with k(0)=0
such that k�x� �U 
x � E and

∂E
∂x

f �x�k�x���F�x�k�x�� 
 0� 
x � E �

(c) the NMPC open-loop optimal control problem
has a feasible solution for t�0.

Then for any sampling time 0 � δ� Tp the closed-
loop system is asymptotically stable with the region of
attractionR being the set of states for which the open-
loop optimal control problem has a feasible solution.

Notice, that assumption (c) is, as usual in NMPC,
an implicit controllability assumption. Additionally to
the given assumptions, we will later need that the state
feedback defined via the NMPC open loop optimal
control problem and (4) is uniformly locally Lipschitz:
Assumption 5 The optimal control ū��τ;x�t�� is uni-
formly locally Lipschitz in x in the region of attraction
R

� ū��τ;x1�	 ū��τ;x2��
Lu�x1	x2� 
τ � �0�Tp��

In words, this (quite frequently made) assumption
means that two “close” initial conditions must lead
to “close” optimal input trajectories. Note that this
does not exclude piecewise continuous input signals
as is often used in NMPC. The assumption is rather
strong, for example it excludes systems that can only
be stabilized by discontinuous feedback (as state feed-
back NMPC can stabilize, (Fontes 2000)). From the
assumptions made, we can easily deduce that the value
function V �x� � J� ū���;x�;x� satisfies the following:
Proposition 3.1 The value function V �x��
J� ū���;x�;x� is locally Lipschitz for all x�R .

To simplify the derivations, we state some properties
of V �x� as given in (Chen 1997):
Lemma 3.1 The value function V �x�, V :R ��, has
the following properties:

� V �0� � 0 and V �x�� 0 for x �� 0
� Along trajectories starting from any x�t0��R ,

for t0
s1
s2
∞

V �x�s2��	V �x�s1��
	

� s2

s1

F�x�τ��u�τ;xi��dτ

holds with u�s;xi� given by (4).

Later on we show recovery of performance with re-
spect to an arbitrary compact set S�R . We need, that
for any set S we can find a compact outer approxima-
tion Ω�S� that contains S and is invariant under state
feedback. Thus we assume:

Assumption 6 (Blanket assumption) For all compact
sets S �R containing the origin, there is a constant
c � maxx�S V �x�, such that the compact set Ω�S� �
�x�X �V �x�
c� � S .

The assumption on the existence of such a set Ω�S�
for all compact sets S �R is strong and difficult to
check a priory. If this assumption is not fulfilled, the
recovery of the region of attraction will be limited to
sets contained in the largest level set of V contained in
R . Further work will investigate in relaxing the above
assumption.
Note that since S is a real subset of R and the
input is bounded, it is always possible to find a small
sampling time δ̃ such that for sampling times δ
 δ̃ the
state trajectory starting with initial condition x�0� �
S , controlled during the first sampling interval with
“open loop” control u��τ; x̂�0�� for x̂�0� � Q , where
Q is a compact subset of �n , does not leave Ω�S�.
Fact 3.1 From the compactness of Ω�S� for all S�R
and Assumption 3 it follows, that there exist finite
constants LFu and LFx, such that:

�F�x1�u1�	F�x2�u2�� 
 LFx�x1	x2�

�LFu�u1	u2� 
x1�x2 �Ω�S�� u1�u2 �U�

3.2 High gain observer

The observer used is a high gain observer as in (Atassi
and Khalil 1999, Teel and Praly 1995, Tornambè
1992). It is given by:

˙̂x �Ax̂�Bφ�x̂�u��H�y	Cx̂�

where H�blockdiag�H1� � � � �Hp� with

HT
i �

�
α�i�1 �ε� α�i�2 �ε2� � � � �α�i�n �εri

�
�

The α�i�j s are such, that the polynomial

sn�α�i�1 sn�1�� � ��α�i�n�1s�α�i�n �0� i�1� � � �� p

is Hurwitz . 1
ε is the high-gain parameter.

Remark 3.1 Notice that the use of an observer makes
it necessary that the open loop input is also defined
and bounded for (estimated) states that are outside of
the feasiblity region of the controller. We simply define
the open loop input for x̂ �� R as fixed to an arbitrary
value u f �U:

u�s; x̂i��u f � 
x̂i ��R � s� �t� t�δ�� (5)

Note that the input constraints take care of the peaking
of the observer (Esfandiari and Khalil 1992).

4. STABILITY AND RECOVERY OF
PERFORMANCE

In this section the main results, i.e. semiglobal prac-
tical stability of the closed loop, recovery of the re-
gion of attraction and convergence of trajectories is
established. We follow in principle the lines of (Atassi
and Khalil 1999). In the first step we establish, that
for any compact set of initial conditions of the state
that is a subset of the region of attraction of the state
feedback and any compact set of initial conditions
of the observer the closed loop states stay bounded



for a small enough ε and enter in finite time a pos-
itively invariant region (which is arbitrarily small in
the direction of the observer states). In a next step
semiglobal practical stability in the sense that the tra-
jectories come arbitrarily close to the origin (in finite
time) is established. Additionally, it is shown that the
trajectories of the state and output feedback controller
can be made arbitrarily close for small enough ε and δ.
The main difference to (Atassi and Khalil 1999) lies in
the fact that we use a sampled NMPC scheme and thus
can not fall back to standard Lyapunov and converse
Lyapunov arguments. Instead decreasing properties of
the value function along solution trajectories for small
enough ε and δ are used.

4.1 Setup

Define η as the scaled observer error,

η� �η11�����η1r1
�����ηp1�����ηprp � �with ηi j �

xi j 	 x̂i j

εri� j

Hence we have x̂�x	D�ε�η with

D�ε� �blockdiag �D1�D2� � � � �Dp� �

Di �diag
�
εri�1� � � � �1

�

The closed loop system is given by

ẋ�t� � Ax�t��Bφ�x�t��u�t;xi	D�ε�ηi��

εη̇�t� � A0η�t�� εBg�t�x�t��xi�D�ε�η�t��D�ε�ηi�

with g�t�x�t��xi�D�ε�η�t��D�ε�ηi�

� φ�x�t��u�t�xi	D�ε�ηi��	

φ�x�t�	D�ε�η�t��u�t;xi	D�ε�ηi��

and A0 � εD�1�ε��A	HC�D�ε� where A0 is Hurwitz.
In the following the initial states are x�0� � S , where
S is any compact set in the interior of R . The observer
initial states are in x̂�0��Q . Q is any compact subset
of �n .
Similar to (Atassi and Khalil 1999), for simplicity, we
will write the closed loop as

ẋ�τ;ε� � fr�τ�x�τ;ε��xi �D�ε�ηi��

The trajectories of the closed loop output feedback
system will be denoted �x��;ε��η��;ε��, starting from
�x�0��η�0��. The closed loop under state feedback is
denoted by ẋr�τ� � fr�τ�xr�τ��xi�0� with trajectories
xr���. The resulting (sampled) open-loop control based
on the observed state, will be denoted u�τ;ε�, and the
control based on the real state will be denoted ur�τ�.

4.2 Preliminaries

Before we move to the main results we establish
the existence of an invariant region for the observer
for all system states Ω�S�. Furthermore we show,
that the integrated error between the state feedback
and output feedback can be made sufficiently small
by decreasing ε and δ if the observer error starts
in a sufficiently small region. This implies, that the
“difference” between the “resulting” value functions
can be made sufficiently small. Let ρ � 16k2

1�P0�
3,

W �η� � ηT P0η and P0 the solution of the Lyapunov
equation P0A0�AT

o P0 �	I. Furthermore let k1 be a

bound for the “observer error” nonlinearity for all
η � �n and x �Ω�S�:

�g�t�x�t��xi�D�ε�η�t��D�ε�ηi�� 
 k1�

Due to the assumptions made and the fact, that U
is compact we know that such a k1 exist. Then the
following can be established:
Lemma 4.1 The set �η�W �η�
ρε2� is invariant for
the observer error if x�Ω�S�.
The proof is similarly to (Atassi and Khalil 1999).
Lemma 4.2 Consider any ξ�

1 � 0. Then there exists
an ε�1 �0 and δ�

1 �0 such that for all 0 � ε
 ε�

1 and
0�δ
δ�

1 for η�t���η�W �η�
ρε2�, x�t��S

�
� t�T

t
F�x�τ;ε��u�τ;ε��dτ	

� t�T

t
F�xr�τ��ur�τ��dτ�
Tξ�

1

holds for any T � �0�T �� where T � � δ is finite, such
that x�t � τ;ε� � R 
τ � �t�T ��.
Lemma 4.3 Consider T � �0�T �� where T � � δ is
finite, and such that x�t � τ;ε� � R and xr�t � τ� �
R 
τ � �t� t �T��, both starting at x�t��Ω�S�. Then
for every ξ�

2 � 0 there exists ε�2 � 0 and δ�

2 � 0 such
that for every 0 � ε � ε�2 and 0 � δ � δ�

2 and η�t� �
�η�W �η�
 ρε2�,

�V �x�t �T ;ε��	V �xr�t �T ��� 
 Tξ�

2�

4.3 Boundedness

Theorem 4.1 Under the Assumptions 1-5, there ex-
ists an ε�2�0 such that, for every 0�ε
ε�

2, the trajec-
tories �x�τ;ε��η�τ��, starting at �x�t��η�t��� S �Q ,
are bounded for all τ� t.

Proof. Let Λ � Ω�S���η � Q � W �η� 
 ρε2�. We
show that for small enough ε and δ, the compact set
Λ is positively invariant, and that trajectories starting
in S �Q enter it in finite time.

Invariance of the set Λ: Define ∂Ω�S� as the boundary
of Ω�S�. For �x�t��η�t�� � ∂Ω�S���η�W �η�
ρε2�
and all T � �0�T �� where T � � δ is finite, we have that

V �x�t �T ;ε��	V �x�t��

V �xr�t �T��	V �x�t��
��V �x�t �T ;ε��	V �xr�t �T���


 	

� t�T

t
F�xr�τ��ur�τ��dτ

� �V�x�t �T ;ε��	V �xr�t �T ���


 	

� t�T

t
F�x�τ;ε��u�τ;ε��dτ

�

				
� t�T

t
F�x�τ;ε��u�τ;ε��	F �xr�τ��ur�τ��dτ

				
� �V�x�t �T ;ε��	V �xr�t �T ���

We note, that since Ω�S�� R �T � such that 
T 
 T �

x�t � T ;ε� � R , so we can apply Lemma 4.2 and
Lemma 4.3

V �x�t �T ;ε��	V �x�t��


	

� t�T

t
F�x�τ;ε��u�τ;ε��dτ�T ξ�

1 �Tξ�

2

Since x�t� �� 0 and T � 0 is finite, we know that
� t�T

t
F�x�τ;ε��u�τ;ε��dτ � Tκ1



for some κ1 � 0. It follows that there exists ε�

1 � 0,
ε�2 � 0 and δ�

1 � 0, such that for 0 � ε � min�ε�

1�ε�2�
and 0 � δ � δ�

1, we have 	κ1 � ξ�

1 � ξ�

2 
 0, and
V �x�t � T ;ε��	V �x�t�� 
 0� This shows that x�t �
T ;ε��Ω�S��R , hence this holds for all T � �0�T ��.
If, for some time t �T �, x�t�ε� should reach the border
of Ω�S� again, we can reapply the above reasoning.
Further, for �x�t��η�t�� �Ω�S���η�W�η� � ρε2� we
have from Lemma 4.1 that Ẇ 
 0 if ρ � 16�P0�

3k2
1.

We conclude that for 0 � ε
min�ε�

1�ε�2� and 0 � δ

δ�

1, the set Λ is positively invariant.
Finite time attractivity of Λ: The same way as in
(Atassi and Khalil 1999), consider �x�0��η�0�� � S �
Q . There exists a time T0 such that x�τ�ε� does
not leave Ω�S� on the interval �0�T0�. Also, the set
�η�W �η� 
 ρε2� is reached by η in time T �ε� where
T �ε�� 0 as ε� 0, and η�t� is bounded on the time
interval. Choose ε2 such that for ε 
 ε2, T �ε� 
 T0.
Then �x�T �ε�;ε��η�T �ε��� � Λ, and the trajectories
stay bounded, since Λ is positively invariant.

4.4 Semiglobal Practical stability

We show that for any small ball around the origin there
exists a observer gain and a sampling time, such that
trajectories will reach the ball in finite time and that
the ball is invariant.
Theorem 4.2 Let the conditions of Theorem 4.1 hold.
Then, for any ξ � 0, there exists ε�

3 �0, δ�

3�0 and T1
such that for every 0� ε� ε�3 and 0�δ�δ�

3, we have
�x�t;ε����η�t;ε�� 
 ξ� 
t � T1�

Proof. Given ξ. As shown in (Atassi and Khalil 1999)
we can find ε3 
 ε�1 such that for all 0 � ε � ε3 we
have �η�t;ε�� 
 ξ�2� 
 t � T �ε3�� Then, since V �x�
is continuous at the origin and V �0� � 0, it follows
that it is possible to find a c1 such that�x�V�x� 

c1� � �x��x� 
 ξ�2�� With the same reasoning as in
Theorem 4.1, we can show that for 0 � ε� ε3 and
0�δ�δ3

V �x�t�T �;ε��	V �x�t��
	
� t�T �

t
F�x�τ;ε��u�τ;ε��dτ

�T ��ξ�

1�ξ�

2��

Note that there exists a κ2�0 such that F�x�u��κ2 for
x � Ω�S�	�x�V �x� 
 c1�, u � U. Assume now that
x�τ;ε�, t 
 τ 
 t � T � is not in �x�V�x� 
 c1�. Then,
we have that

V �x�t �T �;ε��	V �x�t��
	κ2T ��T �ξ�

1 �T �ξ�

2

Choose ε and δ such that ξ�

1 � ξ�

2 	 κ2 � 0. If now
T � is large enough (we can choose it as large as
we want, Lemma 4.2 and 4.3 will hold since we
are in the invariant region Λ), we have that V �x�t �
T ;ε�� 
 c1 for some T 
 T �. Then, by contradiction,
we must have x�t�T ;ε�� �x�V�x�
 c1�. By the same
reasoning as in Theorem 4.1, this set is invariant, and
we can choose T1 � max�T �ε3��T ��.

This establishes our main result. The closed loop
system is semiglobal practically stable in the sense,
that for any S�R and any ball around the origin there
exists observer gain and sampling time, such that we
reach the ball from any point in S in finite time and
that the ball is positively invariant.
Further we can show, that the trajectories of the output
feedback converges, uniformly in t, to the trajectories
of the state feedback as ε�0, δ�0:

Theorem 4.3 Given any ξ�0. Under the conditions
in Theorem 4.1, there exists ε�

4 and a δ�

4 such that
for every 0� ε
 ε�4 and 0�δ
δ�

4 �x�t;ε�	 xr�t�� 

ξ� 
t � 0.

Proof. Follows from Theorem 4.2, on the inter-
val �T1�∞�, and the same on the (peaking) interval
�0�T �ε��. On the interval �T �ε��T1� it follows from
the continuous dependence of solutions of differential
equations on parameters and initial conditions over
compact time intervals. See (Atassi and Khalil 1999)
for further details.

5. EXAMPLE: PENDULUM ON A CART

We examplify the approach considering the control of
an inverted pendulum on a car, as shown in Fig. 5.
The angle of the pendulum is measured and denoted

u�t�
M

m� l

z1�t�

Fig. 1. Pendulum on a cart

in the following by z1. The input to the system is
given by u which acts on the cart’s translation and
is limited to 	10 
 u�t� 
 10. The control objec-
tive is to stabilize the angle z1 � 0 (upright position)
while the cart’s position is not limited. The result-
ing model is of second order and fits the consid-
ered system class (Imsland et al. 2001a). As NMPC
control scheme, the so called quasi-infinite horizon
NMPC scheme (Chen and Allgöwer 1998) is used.
The choice of the terminal region/terminal penalty and
the other controller parameters are given in (Imsland
et al. 2001a). We show the recovery of the region of
attraction and the recovery of performance for a fixed
sampling time δ� 0�05s. Figure 5 shows a part of the
region of attraction for different values of ε � 0�03,
0�07 and 0�09 in comparison to the state feedback
case. As can be seen, the region of attraction of the
output-feedback controller converges to the state feed-
back for decreasing ε. This is in correspondence to
the result of Theorem 4.2. Figure 5 shows the closed
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z 2

�1�5
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state feedback

state feedback

ε � 0�09

ε� 0�07

ε � 0�03

Fig. 2. Recovery of region of attraction.

loop pendulum angle z1 and the applied input u for an
initial disturbance for ε� 0�03, 0�09 in comparison to
the state feedback case. The observer was initialized
with a zero initial estimate of the states. As for the
region of attraction, the performance is recovered for
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Fig. 3. Recovery of the performance.

decreasing values of epsilon. Notice also that for the
shown initial conditions in the state feedback case the
input constraints are not hit, while for the output feed-
back the NMPC controller hits the input constraints.
This is due to the “observer” peaking in the initial
phase. The presented results underpin the stability and
performance properties derived in Section 4.

6. CONCLUSIONS
In recent years significant progress in the area of
nonlinear model predictive control has been made.
With respect to the output feedback case, however no
significant progress has been made so far. The existing
solutions are either of local nature (Scokaert et al.
1997, Magni et al. 1998, Magni et al. 2001) or difficult
to implement (Michalska and Mayne 1995). In this
paper we have shown, that using a high-gain observer
and a “sampled” NMPC controller for a special system
class semiglobal practical stability and recovery of
performance for the closed loop can be achieved. The
results are valid for a wide class of stabilizing NMPC
schemes. Thus they can be considered as a special
separation principle for NMPC. However there remain
a couple of open question and problems. For example
the properness assumption on the value function of
the state feedback controller in the region of attraction
are difficult to check and limits the applicability. Also
the class of systems the approach is applicable to is
limited. Further work will investigate these problems
and try to overcome them as well as consider the
question of asymptotic stability of the closed loop.
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