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Abstract: This paper deals with the study of a line balancing problem. The
considered problem is issued from the automotive industry. It consists in gradually
assembling vehicles which go through a line. Assembly operations are made by
workstations placed along the line. The goal is to assign operations to these
workstations in order to minimize different criteria while satisfying several
constraints. To solve this problem, stochastic algorithms are applied, namely
stochastic descent and simulated annealing, for which two neighboring systems are
proposed. They are applied on generated data and industrial data and provide
interesting results.  Copyright © 2002 IFAC
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1. INTRODUCTION

The line balancing problem is a very well-known
problem in the automotive industry. This kind of
industry uses assembly lines for manufacturing
vehicles. The density (number of considered
vehicles) and the diversity (number of types of
vehicle) of the production require an optimization.
The literature lists four classical models: the “single-
model” (only one type of vehicle is considered), the
“mixed-model” (several types of vehicle are
considered), the “multi-model” (vehicles issued from
the same type are manufactured in fixed batches) and
the “batch-model” (a multi-model where the
dimensions of batches must be computed). All these
models have been studied, for instance, in
(Bhattacharjee and Sahu, 1987; Van Zante-de
Forkkert, 1997; Scholl, 1999; Rekiek, 2001).

The line balancing problem consists in searching a
good assignment of operations to workstations. This
optimization is difficult due to the combinatory
(number of workstations, operations and types of
vehicle) of this industrial problem and the number of
constraints.

The problem is NP-complete (Scholl, 1999) even if
there is one type of vehicle and no precedence
constraints. It is solved, in the literature, with exact
methods for small instances (Van Zante-de Forkkert,
1997) and with heuristics (Bhattacharjee and Sahu,

1987; Palekar, 1998; Scholl, 1999) for large
instances (more than 50 operations).

To solve the line balancing problem, stochastic
algorithms have been used: stochastic descent and
simulated annealing. In this paper, two kinds of
neighboring system are presented, used in the
stochastic algorithms. Different objective functions
have been tested, such as economical criteria.

In the first part, the industrial problem is presented.
In the second part, a formalization of this problem is
proposed. In the third part, two neighboring systems
for stochastic algorithms are given. In the fourth part,
computational results are presented, based on
generated data and on two industrial cases.

2.PROBLEM PRESENTATION

The line is divided into several sections (figure 1),
which contain several workstations (at most, 5
workstations); a workstation is assimilated to one
operator. An operator realizes a set of operations on
the vehicles; these operations depend on the type of
the vehicle. Vehicles go through a line, with a
constant speed, to be assembled. So the vehicle is
available on each section during a same duration, all
operations assigned to operators placed on the
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Fig. 1. Description of a line.

section must be realized during this period. An
operation has its own execution time.

Different types of vehicle are considered; so the
studied problem is a mixed-model. The set of
operations required by a vehicle differs according to
the type. So the load of an operator can considerably
change according to the type of vehicle.

The realization of an operation requires different
pieces and tools and containers for pieces. They must
be placed along the line, on each side of the section
containing the workstation (i.e. the operator)
realizing the operation. So there is a storage area on
each side of the section, for placing pieces and tools.
As the storage area is limited and pieces and tools
use place, the number of operations which can be
assigned to a section (assigned to any workstation
placed on the section) is limited.

For a better comprehension of the problem, the figure
2 shows the UML diagram (UML, 1997) of a line, in
which it is shown that:
- a line is divided in several sections, which contain

several workstations (a section may be empty),
- a workstation is used by one and only one operator

and realizes several operations,
- an operation realization requires tools and pieces;

pieces are stored in racks or carriages.

So operations have to be assigned to workstations in
order to satisfy the following constraints:

- C1: the cycle time
On a section, a vehicle is available for a
workstation, during a certain time called the
cycle time. This duration represents the time
between the exits of two consecutive vehicles
from the line (Rekiek, 2001), i.e. the time
between the arrivals of two consecutive
vehicles on a section. Each workstation has to
realize all its assigned operations during the
cycle time, for any vehicle.

- C2: the length of sections
The assignment of an operation to a
workstation induces the storage of pieces and
tools (required for the operation realization) on
the section containing the workstation.
However, pieces and tools have to use a
distance inferior to twice the length of the
section.

- C3: the operator time
Each day, a list of vehicles must be assembled.
So the workstation has to realize all his
assigned operations on all the considered
vehicles. All these operations must be realized
during the operator time which represents the
daily work time of the workstation.

- C4: the incompatibility between two operations
It can happen that two operations cannot be
realized by the same workstation. This is a
dissociative constraint.

Fig. 2. Domain analysis UML classes diagram of an assembly line.



- C5: the precedences between two operations
It can happen that an operation must be
realized before another one (on a previous
section).

- C6: the impossible / obligatory assignments
It can happen that an operation must be (not
be) assigned to a particular workstation.

Two cases are considered:
- non existing balancing: an initial solution (a

balancing) is randomly generated. It necessarily
satisfies constraints C4 to C6 but can be unfeasible
for C1 to C3,

- existing balancing: a solution corresponding to a
previous period. So the goal is to find a new line
balancing corresponding to the next period. The
previous balancing can be unfeasible for this next
period (possible violation of C1, C2 or C3; but C4,
C5 and C6 are not violated). So this balancing has
to be modified to obtain a new one, which must be
good and feasible. This modification is obtained by
moving operations to other workstations.

So operations have to been assigned to workstations
in order to satisfy all the constraints. The assignments
are made in order to minimize a criterion such as, for
instance:
- the number of used workstations (used means that

the workstation realizes at least one operation),
- the number of used sections (used means that the

section contains at least one used workstation),
- the number of moved operations in the case of an

existing line (for an initial existing solution which
is feasible or not),

- a linear combination of the three previous criteria
(in order to make hierarchical optimization).

When a linear combination of the criteria is chosen,
costs for each criterion are used, in the way of
privilege one or more criteria (maintenance of
workstations and/or sections, number of moved
operations, …).

3.PROBLEM FORMALIZATION

3.1 Notations

- OW: matrix linking operations to workstations
OWi, j = 1 if the operation i is assigned to the
workstation j, 2 if it can not be assigned to this
workstation and 0 otherwise

- OWI: the initial OW matrix (associated to the
initial solution )

- WS: matrix linking workstations to sections
WSj, k = 1 if the workstation j is placed on the
section k, and 0 otherwise

- OT: matrix linking operations to types of
vehicle. OTi, m = 1 if the operation i is realized
on vehicles of the type m, and 0 otherwise

- IN: matrix linking incompatible operations.

21 i,iIN = 1 if the operations i1 and i2 are

incompatible, and 0 otherwise
- PR: matrix linking operations with a precedence

relation. 
21 i,iPR = 1 if the operation i1 must

precede the operation i2, and 0 otherwise
- TDi: timed duration of the operation i
- ADi: allocated duration of the operation i

(ADi = Ce .TDi, where Ce is the effort
coefficient, equal for instance to 1.2)

- LSk: length of the section k
- Tl: type of the vehicle l
- Nm: number of vehicles issued from the type m
- Di: distance used by the operation i for placing

pieces and tools required for the operation
realization

- WOR = {workstations}
- SEC = {sections}
- OPE = {operations}
- TYP = {types of vehicle}
- VEC = {vehicles}
- Aj = {i ∈  OPE / OWi, j = 1 }
- Ajm = {i ∈  OPE / OWi, j . OTi, m = 1}
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- nmov: number of operations moved from a
workstation to another one

- costmov: cost of an operation moving
- nwork: number of used workstations
- costwork: cost of a workstation maintenance
- nsection: number of used sections
- costsection: cost of a section maintenance
- cyctime: cycle time
- opertime: operator time

3.2 Constraints formalization

Then, using these notations, the six previous
constraints can be formalized as follows:
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- C6:  this last constraint is included in all the other
constraints with the factor )OW2( j,i− .

All these constraints are used in the proposed
stochastic algorithms to test the feasibility of
solutions. The obtained model is on linear.

4.NEIGHBORING SYSTEMS PROPOSITION

In this part, are presented neighborhoods for
stochastic algorithms for solving the line balancing
problem. The implemented methods are stochastic
descent and simulated annealing.

4.1 Proposition of two neighboring systems.

A solution is an assignment of operations to
workstations. So a neighboring solution is built by
moving an operation to another workstation. From a
current solution, this solution is slightly modified to
obtain a new one, which is neighbor from the first
one.

A randomly neighboring system.

With this neighboring system, the operation to move
and the final workstation are randomly chosen. The
algorithm of this system is:

- an operation i is randomly chosen
among all operations
- let be j1 the workstation which presently
realizes the operation i
- a workstation j2 ≠ j1 is randomly chosen
- the operation i is assigned (moved) to
the workstation j2

A guided neighboring system.

This second neighboring system consists in not
choosing randomly the operation to move, the
starting and the recipient workstations: the chosen
operation is the one with the highest execution time.
And the workstations are chosen among the used
workstations (workstations which realize one or more
operations). So the associated algorithm is:

- a workstation j1 is randomly chosen
- the operation i is the one with the highest
execution time, presently realized by the
workstation j1

- a workstation j2 ≠ j1 is randomly chosen
- the operation i is assigned (moved) to the
workstation j2

When a new solution is built (by using R or G), not
all the six constraints are used. So the neighboring
systems can be applied for any industrial balancing
problem.

4.2 The algorithm.

The presented algorithm concerns the stochastic
descent and the simulated annealing. The normal text
is for the stochastic descent and the simulated
annealing requires also the bold text. The used
neighboring system must be chosen between R and G
previously presented. It is fixed during the algorithm
execution.

The general algorithm is as follows:
- let be OWI an initial solution which is feasible or

not. OWI is read or randomly created,
- let be OWB the matrix giving the best found

solution
- let be HX the value of criterion (to minimize) for

the present solution
HX = nmov . costmov + nwork . costwork +

nsection . costsection,
- let be HY the value of the criterion for the

neighboring solution OW,
- let be HBX the value of the criterion for the best

solution let be nbitermax the maximal number of
iterations,

- let be f a non increasing function
- at the beginning: OWB = OWI and HBX = HX

(HX = value of the criterion associated to OWI),
- initialization of the temperature T0

- for nbiter = 1, …, nbitermax do
! Tnbiter = f (Tnbiter-1)
! generation of a neighboring solution OW using

R or G, and computation of HY
! if all constraints (C1 to C6) are satisfied then
" if HY ≤ HX then
# OWB = OW
# if HY < HX then

∂ HX = HY
∂ if HY < HBX then.

€ HBX = HY
∂ end if

# end if
" else
# choose randomly q between 0 and 1
# let be p = exp (

T

HXHY−− )

# if q < p then
∂ OWB = OW
∂ HX = HY

# else
∂ OW = OWB

# end if
" end if

! end if
- end for

5.COMPUTATIONAL RESULTS

In this part, are presented computational results based
on generated data and industrial examples. The table
1 describes the three studied generated examples.

R

G



Table 1 Description of the data

Examples 1 2 3

Number of operations 40 100 500
Number of workstations 10 41 100
Number of sections 6 9 24
Number of types of vehicle 10 10 25
Number of vehicles 100 100 250

In the stochastic algorithms, three types of initial
solution are used:

- feasible (I)
- violation of the constraint C1 (II)
- violation of the constraints C1, C2 and C3 (III)

In the following tables, the used notations are:
- SD_R: stochastic descent with the randomly

neighboring system
- SD_G: stochastic descent with the guided

neighboring system
- SA_R: simulated annealing with the

randomly neighboring system
- SA_G: simulated annealing with the guided

neighboring system

The objective function is chosen among those:
- the number of used workstations and the number

of moved operations (HX1: costsection=0,
costmov=1, costwork=1000)

- the number of used sections (HX2:
costsection=1, costmov=0, costwork=0)

The tables 2 to 4 show results obtained with a
stochastic descent and a simulated annealing
implemented with the randomly neighboring system
R, for the three generated examples. The initial
solutions are not necessarily feasible but the final
solutions, given by the methods, are always feasible.
Best results are bold.

The guided neighboring system G has been also
tested. The table 5 shows results obtained with a
feasible initial solution, by using the two neighboring
systems. It can be noticed that the guided
neighboring system provides better results: the
number of workstations is divided by around three.
And the quality of results increases as the
combinatory of the problem grows.

Table 2 Results for the example 1

SD_R SA_Rinitial
soltion

goal
function nwork nsection nmov nwork nsection nmov

HX1 5 4 28 5 3 16
I

HX2 10 4 1 10 4 1
HX1 5 4 33 5 4 15

II
HX2 10 4 1 10 4 1
HX1 5 4 26 5 4 16

III
HX2 10 4 1 10 4 1

Table 3 Results for the example 2

SD_R SA_Rinitial
soltion

goal
function nwork nsection nmov nwork nsection nmov

HX1 11 6 90 11 7 71
I

HX2 14 7 98 14 7 98

HX1 13 8 90 41 9 0
II

HX2 25 8 99 41 9 0
HX1 14 7 91 14 9 58

III
HX2 25 8 99 25 8 99

Table 4 Results for the example 3

SD_R SA_Rinitial
solution

goal
function nwork nsection nmov nwork nsection nmov

HX1 60 22 486 59 24 200
I

HX2 74 22 491 56 21 496
HX1 56 23 485 53 23 486

II
HX2 100 24 1 63 21 496
HX1 100 24 0 100 24 0

III
HX2 100 24 0 100 24 0



Table 5 Results with the guided neighboring system

SD_R SA_R SD_G SA_G
Examples

goal
function nwork nsection nmov nwork nsection nmov nwork nsection nmov nwork nsection nmov

HX1 6 4 28 5 3 16 4 4 37 4 4 33
1

HX2 10 4 1 10 4 1 6 3 29 6 3 29
HX1 11 6 90 11 7 71 11 6 88 10 7 80

2
HX2 14 7 98 14 7 98 16 6 68 13 5 92
HX1 60 22 486 56 23 230 40 18 439 39 20 598

3
HX2 74 22 491 74 22 491 41 18 438 41 18 438

The table 6 concerns industrial data and the table 7
shows results. The conclusion is that the guided
neighboring system gives best results.

Table 6 Description of industrial examples

Examples Line 1 Line 2
Number of operations 310 861
Number of workstations 26 76
Number of sections 16 22
Number of types of vehicle 935 2012
Number of vehicles 17021 14280

6. CONCLUSION

In this paper, the line balancing problem has been
studied and two neighboring systems (a randomly
one and a guided one) have been implemented in
stochastic algorithms. Best results have been
obtained by using a guided neighboring system. But
It can be noticed that these methods take a long time
(approximately 6 hours with a PIII 800 Mhz) to solve
a problem with a consequent combinatory (around
500 operations to assign to 50 workstations). So they
have to be improved in order to treat real data.

The same problem has been also solved with
heuristics (Boutevin and Norre, 2002). In the future,
it will be motivating to study couplings between
these heuristics and stochastic algorithms.

Now it is interesting to study the smoothing of the
load of the line, which consists in distributing
operations to workstations in order that there is an
equivalent workload between each workstation and

between each section. A first approach is actually
studied using an heuristic.

It is also interesting to study the planning problem
which is the distribution of operations among several
lines and the operations sequencing on each line.
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