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Abstract: In this paper aModel Predictive ControlRelevantIdentification (MRI) method
is applied to a general class of PEM models and the effect of bias distribution on the
multi step ahead predictions is studied. Good multi step ahead predictions are essential
for model predictive controllers. Therefore it is important to distribute the bias in such a
way that it is compatible with the predictive control objective. This paper deals with the
analysis of use of MRI methods on the bias distribution and its effect on the control loop
performance.
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1. INTRODUCTION

It is well known that Model Predictive Controllers
(MPCs) require models which can provide good multi
step ahead predictions, as opposed to, one step ahead
predictions (Shook et al. (1992); Huang and Wang
(1999); Rossiter and Kouvaritakis (2001)). If the struc-
tures of the true process model and the noise model are
knowna priori then the maximum likelyhood estimate
which gives optimal multistep ahead predictions is the
true process and noise models. However, in practice it
is not possible to know the model structures accurately
and moreover most of the real processes are nonlinear.
Therefore models tuned for multi step ahead predic-
tions are vital for good closed loop performance when
using predictive controllers. It is important to empha-
size that MPC relevant identification (MRI) methods
are useful only when certain amount of bias either
in the process model or the noise model is expected.
Hence the MRI problem reduces to that of distributing
the bias in process and noise models accordingly.

Huang and Wang (1999) discuss this method in the
context of data prefiltering. They show that the MRI

algorithm can be reduced to that of one step ahead
prediction error method by filtering the inputs and
outputs with a filter that depends on the noise model.
Expressions for closed loop multi step ahead predic-
tors are also derived in this paper. They also pro-
vide simulation examples to show that a predictive
controller under no constraints would perform better
with a model developed for multistep ahead predic-
tions. Though there is no clear proof, as yet, to show
that MRI models indeed perform better under closed
loop, certain heuristic and quantitative arguments are
presented in Shook et al. (1992) and Gopaluni et al.
(2001).

Rossiter and Kouvaritakis (2001), on the other hand,
use multiple models for multi step ahead predic-
tions. They develop an optimalk-step ahead prediction
model for eachk ∈ {1,2, · · · ,P} whereP is the con-
troller prediction horizon. Then all theP models are
simultaneously used for predictions. Even though this
method provides “optimal" multi step ahead predic-
tions for ARX type models, the number of parameters
involved in estimating the models can be quite large.
In fact, it is well known that the asymptotic parameter
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variance is proportional to the ratio between the or-
der of the process model and the data length (Ljung
(1999)). Since, ARX type models are used in their
paper the parameter variance is proportional to the
number of parameters and therefore a large data set
is required to get reasonably good parameter estimates
with acceptable uncertainty. Moreover, for multi-input
and multi-output processes the number of parameters
can be large.

This paper discusses the MRI method from the point
of view of distributing the bias in the process model.
It is common knowledge that the noise model and the
input spectrum determine the bias distribution. Hence,
a “good" noise model is essential for good predictions.
In fact, if there is no noise model (i.e., if the noise is
white) then there is no need for MRI. It is known that
the MRI methods differ from the traditional one step
ahead prediction error methods in the choice of a filter
that depends on the noise model. An analysis of this
filter is presented in this paper.

This paper is organized as follows: Section 2 presents
the general setting and in Section 3 the factors affect-
ing the bias distribution under open loop conditions
are discussed. In Section 4, certain issues related to
bias distribution under closed loop conditions are elu-
cidated. Simulation examples illustrating the results
discussed in the previous sections are presented where
appropriate, followed by concluding remarks in Sec-
tion 5.

2. PRELIMINARIES

In order to assess the accuracy of an identified model
and to evaluate its statistical properties it is necessary
to assume certain properties of the true model. In this
paper we are going to assume that the true process is

S : y(t) = G(q)u(t)+H(q)e(t) (1)

wheree(t) is white noise with varianceσ2
e . u(t) repre-

sents the input andy(t) is the output. It is assumed
that the input is persistently exciting. For the sake
of simplicity the process is assumed to be SISO.q
represents the forward shift operator. In the rest of this
paper we refer toG0(q) as the true process model and
to H0(q) as the true noise model. The estimated model
consists of an estimated process model represented by
Ĝ(q,θ) and an estimated noise model,Ĥ(q,θ) where
θ is the parameter vector. It is also assumed thatĤ and
its inverse are both stable.

Then thek-step ahead optimal predictor is given by
(Ljung (1999))

ŷ(t +k|t) = ŴkĜu(t +k)+(1−Ŵk)y(t +k)

where

Ŵk = F̂kĤ
−1

F̂k =
k−1

∑
i=0

ĥ(i)q−i ; F̂1 = ĥ(0) = 1

andĥ(i) are the impulse response coefficients ofĤ. It
is assumed that all the inputs and the outputs are quasi-
stationary signals.The following standard notation is
adopted through out this article. Given a stochastic
function f (t), we define

Ē f(t) ∆= lim
N→∞

1
N

N

∑
t=1

E f(t) (2)

where E is the expectation operator (expectation is
taken only with respect to the noise). It is assumed
that the above limit exists wherever the operatorĒ is
used. This limit must exist for the signals considered
in this paper due to the assumption that they are all
quasi-stationary Ljung (1999).

We also assume that̂G andĤ are independent of the
data length by defining the identified models as

Ĝ= lim
N→∞

ĜN (3)

Ĥ = lim
N→∞

ĤN (4)

whereĜN andĤN are models identified from a data of
lengthN. In the rest of this paper all transfer functions
with a subscript ‘N’ denote the identified models from
a data set of length ‘N’. Transfer function estimates
without the superscript are the model estimates as
N→ ∞.

The following additional notation is introduced for
convenience.

G̃(q) := G− Ĝ and H̃ := H− Ĥ (5)

The data collected from identification experiments on
the real process are denoted by

ZN = {u(1),y(1), · · · ,u(N),y(N)} (6)

3. BIAS IN OPEN LOOP

Under open loop conditions, all the traditional identi-
fication methods try to minimize either one step ahead
prediction errors ork-step ahead prediction errorsi.e.,
an objective function of the form

Vk
N(θ ,ZN) =

1
N

N

∑
t=1

ε2
k (t,θ) (7)

where thek-step ahead prediction errors are given by

εk(t,θ) = y(t +k)− ŷ(t +k|t,θ). (8)

It is straightforward to show that



Ē
[
Vk

N(θ ,ZN)
]

=
1

2π

∫ π

−π

∣∣ŴkG̃
∣∣2 Φu(ω)

+
∣∣ŴkH

∣∣2 Φe(ω)dω (9)

whereΦu(ω) and Φe(ω) are input and noise spec-
tra respectively. In this case the filter on the bias
is |Ŵk|2Φu(ω) := L̂k(eiω)Φu(ω). However, predic-
tive controllers minimize an objective function of the
form1 (see Fig.6 for notation)

Jmpc=
P

∑
j=1

[r(t)− ŷ(t + j|t)]2 . (10)

Hence, intuitively speaking, an identification algorithm
that can minimize the sum of multi step ahead pre-
diction errors should give better models for predictive
controllers (see Shook et al. (1992) and Gopaluni et al.
(2001) for rigorous arguments). The MRI objective
function is then defined as

VN(θ ,ZN,P) =
1

(N−P)P

N−P

∑
t=1

P

∑
k=1

ε2
k (t,θ) . (11)

Note that the objective function depends explicitly on
the controller prediction horizon,P. It is easy to show
that (using Parseval’s theorem)

Ē
[
VN(θ ,ZN,P)

] ∆= V̄(θ ,P)

=
P

∑
k=1

1
2π

∫ π

−π

[|ŴkG̃|2Φu(ω)

+ |ŴkH|2Φe(ω)
]
dω (12)

Hence under open loop conditions the optimal weight-
ing on the model bias,̃G, must be

Wb
∆= L̂(eiω)Φu(ω) ∆=

P

∑
k=1

|Ŵk|2Φu(ω). (13)

Clearly, the bias distribution depends to the noise fil-
ter and the input spectrum. Notice that it is only the
product between the filter,L(eiω), and the input spec-
trum, Φu, that determines the bias distribution. Their
individual values are immaterial. Only the properties
of the filterL̂(eiω) are studied.

As mentioned earlier, ak-step ahead predictor has a
similar filter (see (9)). In this case as the prediction
horizon increases (i.e., ask increases) the filter tends
to unity. Mathematically,

lim
k→∞

Ŵk = lim
k→∞

F̂k

Ĥ
→ 1. (14)

or equivalently, for any givenδ > 0, there exists an
N(δ ) ∈ N such that for allk≥ N(δ )

1 For the sake of simplicity we have assumed that there are no time
delays.

|Ŵk(eiω)−1|< δ ∀ ω. (15)

Consequently, for anyk < P and a correspondingδ
and for allω,

(1−δ )2 ≤
L̂(eiω)−

k

∑
j=1

L̂ j(eiω)

P−k
≤ (1+δ )2 (16)

Notice that the upper and lower bounds of the above
quantity are independent of the prediction horizon,P
and the frequency,ω. Hence, the difference between
the lower and upper bounds ofL̂(eiω) is (P− k)(4δ ).
Now for anyε > 0, it is possible to choose aP and a
δ satisfying

k < P≤
⌊
k+

ε
4δ

⌋
(17)

δ ≤ ε
4

(18)

such that(P− k)(4δ ) < ε. Where b.c denotes the
largest integer less than its argument. Therefore, for
any arbitrarily smallε there exists a prediction horizon
such that the magnitude of the filterL̂(eiω) is uniform
up to a constantε.

For small values ofk, the filters,L̂k, generally tend
to give more weighting on high frequencies and as
k increases, weighting in the low frequency range
improves (Ljung (1999)).

On the other hand, MPC relevant filter,L̂, provides
a weighting that is “optimal" in some sense for
multi step ahead predictions by suitably increasing the
weighting in the low frequency range depending on
the prediction horizon (see Fig.1 ). As the prediction
horizon tends to infinity, the weighting tends to be
approximately uniform at all frequencies. Typically,
the effect of using the MRI filter in identification is to
increase the weighting on the bias term in the low fre-
quency range compared to one step ahead prediction
models2 . Naturally, this would result in a better model
in the low frequency range. In fact, a good model in
the low and mid frequency ranges is essential for good
control performance.

Generally, the drawback of large weighting in the high
frequency region and small weighting in the low fre-
quency region when using one step ahead prediction
error methods is overcome by sufficient input excita-
tion in the low frequency region. MRI methods, in the-
ory should perform better even if the input excitation
in the low frequency region is not “sufficient".

3.1 Fixed/known noise model

In case the noise model is knowna priori (which
is rarely the case) then the MRI problem reduces to

2 Note that this is not true for all types of noise models.



that of minimizing a modified form of the objective
function

V̄m(θ ,P) :=
P

∑
k=1

1
2π

∫ π

−π

[|ŴkG̃|2Φu(ω)
]
dω. (19)

Traditional identification methods minimize only the
first term in the above equation but on the other hand
(11) shows that it is important to minimize other terms
as well to reduce variance in the prediction errors. If
G lies in the set,G , of models over which the opti-
mization is done, then the estimated model is going to
be same as the true model and therefore there are no
incentives in using MRI models. For example, if FIR
models are used,G∈ G and therefore the noise model
plays a vital role in determining the performance of
the predictor and therefore the controller (Gopaluni
et al. (2001)). Nevertheless, it is impractical to assume
that G ∈ G since reduced complexity models are of
interest and that is when MPC relevant identification
method helps us in distributing the bias. An example
showing the effect of the MRI filter when the noise
model is known is presented below.

Example1. The following process and noise models
are used in the simulations (from Huang and Wang
(1999)).

G=
0.0077q−1 +0.0212q−2 +0.0036q−3

1−1.9031q−1 +1.1514q−2−0.2158q−3

H =
1

(1−0.8q−1)
(20)

The noise variance is0.1 and the input signal is a
white RBS signal with variance1. Also, note that the
settling time of this process model is about 40 seconds.
An estimated model with the following structure is
assumed

Ĝ=
b1q−1 +b2q−2

1−a1q−1 . (21)

As explained in the previous section, it is easy to
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Fig. 1. Magnitude plot of the bias filter for multi step

ahead predictions -L(eiω )
P

see from the Fig.1 that the filterL(eiω) improves the

weighting in the low frequency region with increasing
prediction horizon. Note thatP = 1 corresponds to
the traditional one step ahead prediction error based
identification. The Bode plots of the estimated models
for various prediction horizons are shown in Fig.2. It
is clear that there is a marked improvement of the fit
in the low frequency region. Huang and Wang (1999)
used an approximation for the MRI filter based on
spectral factorization. No approximations for the filter
are used in this paper. The original objective function
is minimized directly, instead of filtering the data. The
question that comes to one’s mind is: Why use MRI
method? One can instead use OE structure (Ĥ = 1)
in identification which naturally is going to result in
uniform weighting on the bias term and therefore pro-
vides a good fit in the low frequency region. The MRI
method “optimally" adjusts the weighting for multi
step ahead predictions. In other words, it provides a
good balance between the low and high frequency
ranges for better multi step ahead predictions.
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Fig. 2. Example 1 - Magnitude plot of the estimated
first order model forP = {1,2,5,10,25,50}.
Magnitude plot of the true process is also shown

3.2 Unknown noise model

If the noise model is not known, and ifG∈ G , the set
of models over which the optimization is performed,
then the optimization problem can be solved in two
steps : 1) Choose an arbitrary noisee.g.., Ĥ = 1 and
identify an unbiassed estimate ofG. 2) Then identify
a noise model by minimizing

P

∑
k=1

1
2π

∫ π

−π

[|ŴkH|2Φe(ω)
]
dω. (22)

In any practical situation, it is impossible to know the
true structures of the process and noise models. In
such a case, the MRI estimator has to be minimized
with respect to both the noise and process models.
Clearly, the structure of the process and noise models
chosen are going to influence the bias distribution of
the estimated process model.

Example2. The aim of this example is to show that
a bias distribution that is suitable for multi step ahead



predictions is going to be different from the distribu-
tion suitable for one step ahead predictions.

Consider the process model used in the previous ex-
ample and a new noise model

H =
1

(1−0.8q−1)2 (23)

But a noise model with the following structure is
assumed to show that the structure of the noise model
determines the bias distribution in the process model.
All the other parameters are same as those in the
previous example.

Ĥ =
1

1−a2q−1 (24)

A plot showing the bias distribution is shown in Fig.3
and in Fig.4 the optimal MRI noise pole is plotted
against the prediction horizon. Notice that as in the
previous example there is a significant improvement
in the process model accuracy around low and mid
frequency regions at the expense of poor modelling
in the high frequency region. The cost function in
(11) is evaluated for various values of the prediction
horizon using the models obtained from the one step
ahead prediction error method and the MRI method.
Their ratio is plotted in Fig.5. There is a significant
improvement in the accuracy of the multi step ahead
predictions obtained using the MRI method when
compared with the predictions obtained using the one
step ahead prediction error model.
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Fig. 3. Example 2 - The bode magnitude plot of
the estimated and true process models forP ∈
{1,2,5,10,25,50}

4. BIAS IN CLOSED LOOP

There is extensive literature on closed loop identifica-
tion (Forssell and Ljung (1999); MacGregor and Fogal
(1995); Huang and Shah (1997)) based on minimizing
one step ahead prediction errors. In this paper closed
loop identification based on minimizing multi step
ahead prediction errors is of concern. The expressions
for the objective function have to be modified under
closed loop to account for the correlation between the
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Fig. 4. The estimated noise pole as a function of
prediction horizon
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input and the noise. The MRI objective function under
closed loop is

V̄c(θ ,P) =
1

2π

P

∑
k=1

∫ π

−π

∣∣ŴkG̃p
∣∣2 |CS|2 Φr(ω)

+
∣∣ŴkGL

∣∣2 |S|
2

ˆ|S|2
Φe(ω)dω (25)

whereS and Ŝ are the true and designed sensitivity
functions defined by

S
∆=

1
1+CG

Ŝ
∆=

1

1+CĜ
. (26)

andΦr is the set point spectrum.



As in the open loop case if the noise model is fixed, in
this case toŜ (i.e., Ŵk = Ŝ), 3 and if G ∈ G , then the
optimal solution of this objective function is the true
model (this is equivalent to the two step closed loop
identification (Forssell and Ljung (1999))). Therefore,
one step ahead prediction error methods and the MRI
method result in the same optimal solution. On the
other hand, ifG 6∈ G then the model bias has to be
distributed in such a way that the above objective
function is minimum.

The weighting on the bias term under closed loop is :

Wc
b

∆= L̂c(eiω)Φr(ω) ∆=
P

∑
j=1
|Ŵj |2|CS|2Φr(ω). (27)

Since experiment design is not dealt with in this paper,
it is assumed that the set point spectrum is uniform at
all frequencies. The nature of the filterL̂c is then going
to determine the bias in the process model.

Most of the commonly used controllers have an inte-
grator and as a result the weighting on the bias term
in the low frequency region is, typically, close to the
inverse of the plant gain (for direct closed loop iden-
tification). Therefore, the effect of MRI method on
the bias distribution of the process model in the low
frequency region may not be significantly different
from that in the open loop. On the other hand, if the
excitation signal is introduced at the input (also called
dither signal) then the bias filter is going to be :

Wc
b

∆= L̂c(eiω)Φr(ω) ∆=
P

∑
j=1
|Ŵj |2|S|2Φd(ω). (28)

where Φd(ω) is the spectrum of the dither signal.
Clearly, in this case the MRI filter results in a sig-
nificant improvement in the low and mid frequency
weighting.

Example3. An IMC controller is designed based on
the first order approximation of the original process
model in (20). A plot of the filter in (27) is shown
in Fig.7 for various prediction horizons. This filter
distributes the bias under direct closed loop identifi-
cation. For other types of closed loop identification
viz., indirect and join input-output methods, the bias
distribution may depend on different types of filters.

5. CONCLUDING REMARKS

The nature of the filter obtained by minimizing multi
step ahead predictions, as opposed to, one step ahead
predictions is discussed in detail. The difference be-
tween the two filters lies in improving the weighting

3 Strictly speakingŴk 6= Ŝ for all j but this substitution helps
in decoupling the noise model from the process model in the
identification step.
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Fig. 7. The filter, Wc
b, in (27) is shown forP ∈

{1,2,5,10,25,50} with Φr(ω) = 1 ∀ ω

on the bias term in the low and mid frequency ranges.
MRI method improves the bias weighting in the low
frequency region in an “optimal" way taking into ac-
count the prediction horizon of the controller. MRI
methods showed a significant improvement in the ac-
curacy of multi step ahead predictions compared to the
traditional methods. MRI methods, depending on the
noise model chosen, can do away with the need for
exclusively low frequency excitation. Certain analysis
of closed loop systems is also presented in this article.
Further investigation into the effect of MRI filter on
the bias distribution under closed loop is needed. The
effect of MRI models on the closed loop performance
also needs to be studied further. There is also a need
to study the effect of input spectrum on the bias distri-
bution.
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