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AbstractFault detection, fault isolation and fault diagnosis are addressed within a statistical
framework. The corresponding inference problems are stated. Several statistical tools for
solving these inference problems are described. Particular emphasis is put on dealing with
nuisance parameters and deciding between multiple hypotheses. How to use these tools for
solvingFDI problems is discussed. An example illustrates some of the proposed methods.
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1. INTRODUCTION

Monitoring complex structures and processes is nec-
essary for fatigue prevention, aided control and
condition-based maintenance. Many industrial pro-
cesses rely on physical principles, which write in
terms of (differential) equations and thus (dynamical)
models. Moreover, the use of (physical) parameters is
mandatory for fault isolation and diagnosis. Faults can
thus often be modeled as deviations, w.r.t. a nominal
reference value, in the parameter vector of a stochastic
system. A crucial issue is to state the significance of
the observed changes w.r.t. noises, uncertainties, and
changes in the environment of the monitored process.

On the other hand, there exist mathematical statistics
theories and tools for solving hypotheses testing prob-
lems. Key features of these methods are their ability
to handle noises and uncertainties, to reject nuisance
parameters, to select one among several hypotheses.
The purpose of this paper is to describe the key com-
ponents of these theories and to explain how to use
these tools for fault detection, isolation and diagnosis
(FDI).

The paper is organized as follows. Several inference
problems are introduced in section 2. Section 3 is
devoted to major statistical tools for solving these
hypotheses testing problems. Composite hypotheses,
nuisance parameters and multiple hypotheses are dis-

cussed, minimax, invariant, and most stringent tests
are introduced, and some asymptotic approaches are
described. The use of these hypotheses testing tools
for solving fault detection, isolation and diagnosis
problems is addressed in section 4. An example illus-
trating the relevance of some of the proposed tools is
described in section 5. Some discussions and conclu-
sions are drawn in section 6.

2. SEVERAL INFERENCE PROBLEMS

We introduce the detection, isolation and diagnosis
problems, stated in a statistical framework, distin-
guishing the test of hypotheses for a whole data sam-
ple and the test for the presence of a change within the
sample. It is assumed throughout that the signature of
the faults on the model of the monitored system is a
changein its parametervector. The models considered
in this paper are described, and two change types are
defined. Then several assumptions on the parameter,
corresponding to different types of monitoring prob-
lems, are introduced.

2.1 Parameterized model

The measured dataY are viewed as the output of a
continuous-time system, which, ignoring the dynam-
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ics for a while, we write

Y (t) = h(X(t), U(t), θ) + ξ(t) (1)

whereX is an unknown variable (typically a state),
U the input vector,θ the parameter vector,Y the
measured output,h a known function, andξ a white
noise. Sampling the data at periodδ results in the
discrete-time model

Yk = H(Xk, Uk, θ) + ξk (2)

with Yk = Y (kδ), Uk = U(kδ). At time n, the data
sample is(Y0, . . . , Yn, U0, . . . , Un) if the inputU is
measured, or(Y0, . . . , Yn) if U is unknown.

Emphasis is put throughout on the simpler model

Y = HX +Mθ + ξ , ξ ∼ N(0,Σ) (3)

where Y ∈ R
r, X ∈ R

p, θ ∈ R
m, with p +

m ≤ r, matricesH andM are full column rank
(f.c.r.), andξ is a zero mean Gaussian noise. In this
static model, it is assumed that the processed dataY
are Gaussian vectors, and that the faults affect their
mean value. As explained in section 4, the relevance
of this assumption is of much wider scope than it
seems to be: a large class ofFDI problems indynamic
systems can be reduced to the universalstaticproblem
of monitoring the mean value of a Gaussian vector.
This is achieved with the aid of a convenient residual
generation.

2.2 Two change situations

The two following situations are distinguished.

Hypotheses testing.In the first situation, parameter
vectorθ is assumed to beconstantwithin the entire
data sample. Thenull hypothesisH0 corresponds to
the fault-free case, and thus to the nominal valueθ0 of
the parameter, possibly within a setΘ0:

H0 : θ ∈ Θ0 ⊂ R
m (4)

Thealternative hypothesesHi correspond to different
fault modes:

Hi : θ ∈ Θi ⊂ R
m, (i = 1 : K) (5)

whereΘi

⋂
Θj = ∅ for i 6= j. In case of a single fault

mode, the only problem to solve is the detection one.
WhenK > 1, the isolation and diagnosis problems
have to be solved also.

Occurrence of a change.In the second situation,
parameterθ canchangewithin the data sample at an
unknown instantυ (1 ≤ υ ≤ n), and thus is a function
of time: for one fault modei (i = 1 : K),

θ(t) ∈
{

Θ0 if t < υ
Θi if t ≥ υ

(6)

These two situations lead to different formal state-
ments of the hypotheses and of the criteria to be used

for the design and performance evaluation of the de-
cision algorithms. In this paper, we concentrate on
the first situation. The interested reader is referred to
(Nikiforov, 2002) for the second one.

2.3 Hypotheses testing problems forFDI

The following testing problems are central toFDI.

Detection. Detection refers to deciding whether the
monitored system is in its nominal (safe) state or not.
This amounts to testing the null hypothesisH0 in (4)
against aglobal alternativehypothesisH1. In case of
no information about the fault modes, the alternative
hypothesis writes

H1 : θ ∈ Θc
0

def= R
m \ Θ0 (7)

When some information about the fault modes is avail-
able under the form (5), the alternative writes

H1 : θ ∈ (∪Ki=1 Θi

)
(8)

Several statistical testing tools are described in 3.2
and 3.3. This detection problem refers to the case
of two hypotheses. Any detection procedure should
perform a tradeoff between two incorrect decisions:
false alarm (false rejection of the null hypothesis)
and non detection (missed acceptance, or equivalently
false rejection, of the alternative hypothesis). Ifa
priori probabilities of the safe and fault modes are
available, the probabilities of these two errors can
be weighted and combined into a single performance
index for evaluating the detection scheme. If not, both
errors are handled, as made precise below.

Isolation. In case of two fault modes or more, iso-
lation refers to deciding which fault mode occurred.
Two basic approaches can be undertaken for this pur-
pose. The first one consists in deciding in favor of one
fault mode while considering the other fault modes as
nuisance information. Isolating faulti then amounts
to testing the null hypothesisH0 in (4) against the
alternativeHi in (5). For handling nuisances, minimax
andinvariant tests are shown in 3.4 to provide us with
algorithms which detect (isolate) a given faulti while
being insensitive to the other faults. As explained in
section 4, running simultaneously several isolation
tests can make up a diagnosis procedure for simulta-
neous faults.

Multiple hypothesestesting is the second approach,
when a single fault at a time is assumed. Here, the
null hypothesisH0 is tested againstK alternatives
H1, . . . ,HK . Efficient solutions for this are described
in section 3.5.

Any isolation procedure should balance all the pos-
sible combinations of errors in making the decision.
Shoulda priori probabilities of the fault modes be



available or not, handling simultaneously all the er-
rors is a hard issue. To mention but one point, is it
preferable to put a constraint on the probability of at
least one false rejection, or on the expected number
of false rejections ? Several performance indexes are
investigated below.

3. HYPOTHESES TESTING APPROACHES

Hypotheses testing methods are now described. Prob-
lem statements and criteria are introduced in 3.1.
In 3.2, several approaches to the design of optimum
tests for composite hypotheses are discussed. Asymp-
totic approaches for dealing with large data samples
are described in 3.3, where a reparameterization result
of Wald turns out to be powerful and relevant toFDI.
Dealing with nuisance parameters is the topic of 3.4,
based on some of the approaches presented before.
The case of multiple hypotheses is discussed in 3.5.
This forms the algorithmic basis of statisticalFDI.

3.1 Problem statement and criteria

A (fixed) n-size sample of independent observations
Y1, . . . , Yn is available and supposed to be gener-
ated by one among(K + 1) probability distributions
P0, . . . , PK . Possible inputsU1, . . . , Un are assumed
non random; the corresponding data sample is denoted
by Y1, . . . , Yn, U1, . . . , Un though. The hypotheses
testing problem consists in deciding which distribu-
tion Pi is the true one. To each distributionPi cor-
responds an hypothesisHi. A statistical testfor test-
ing between theHi’s is any measurable mappingδ :
(Y,U) → {H0,H1, . . . ,HK} from the observation
space onto the set of hypotheses. We concentrate on
parameterized distributionsPθ with densityfθ.

Two types of hypotheses have to be distinguished. A
simple hypothesisHi is defined by a unique value
of the parameter vector:Hi : θ = θi. A composite
hypothesisrefers to a set of parameters

Hi : θ ∈ Θi (9)

with Θi ⊂ Θ ⊆ R
m. We assume thatΘi

⋂
Θj = ∅ for

i 6= j. Composite hypotheses are more relevant than
simple ones in practice, because of limited available
amount of information, especially for the alternatives
(fault modes).

The quality of a statistical test is defined with a set of
error probabilities:

αi = Pi (δ 6= Hi) , i = 0 : K,

where Pi stands for observationsY1, . . . , Yn being
generated by distributionPi. The power is defined
with a set of probabilities of correct decisions:

βi = Pi (δ = Hi)

For a non-randomized test, thecritical function is
π(Y ) = i whenδ(Y ) = Hi.

Until 3.5, we assumeK=1 alternative hypothesis. The
pair (α def=α0, β

def= β1) is then a sufficient performance
index, and thedecision function

δ(Y ) =
{

H0 if Λ(Y ) < h(α)
H1 if Λ(Y ) ≥ h(α) , (10)

is defined by thestatisticsΛ and the thresholdh.

3.2 Composite hypotheses testing

For composite hypotheses, tests are searched within
the class of tests with upper-bounded maximum false
alarm probability

Kα =
{
δ : sup

θ∈Θ0

P0(δ 6= H0) ≤ α

}
, (11)

and a testδ is evaluated with thepower function:
∀θ ∈ Θ1, βδ(θ) = Pθ (δ = H1) = 1 − αδ(θ).
A test δ∗ is saiduniformly most powerful(UMP) in
the classKα if:

∀δ ∈ Kα, ∀θ ∈ Θ1 : βδ∗(θ) ≥ βδ(θ) (12)

Unfortunately, UMP tests scarcely exist, except when
parameterθ is scalar, the family of distributionsP =
{Pθ, θ ∈ Θ} has a monotone likelihood ratio, and
the test is one-sided, namely:H0 : {θ ≤ θ0} and
H1 : {θ > θ1} with θ1 ≥ θ0 (Lehmann, 1986;
Borovkov, 1987).

In case of a vector parameterθ, the crucial issue is
to find an optimal solution over a set of alternatives
which is rich enough. Actually, a UMP test often exists
only for a subsetΘ1 ⊂ Θ1 but not for the whole
setΘ1. For example, a UMP test exists if this subset is
defined by a straight line in the parametric space and
the alternative is one-sided.

To overcome this difficulty, and find an optimal test
for multidimensional composite hypotheses, several
approaches exist.

• Bayesian approach:Assume thatθ is a random
vector and introduce somea priori information
on the distribution ofθ.

• Minimax approach:Consider only the worst case
situation, which often amounts to consider the
closest alternatives.

• Invariant tests:Take advantage of an invariance
of the distributions under some transformations,
and impose the corresponding restrictions on the
class of statistical tests in order to simplify the
initial problem and find an optimum (invariant)
test.

• Constant power approach:Impose some addi-
tional constraints on the classKα, in order to
avoid tests UMP over a subsetΘ1 of Θ1 and very
inefficient overΘ1 \ Θ1. For instance, require
the bestconstant powerover a family of surfaces
defined onΘ1.



• Most stringent tests:Find a test δ in Kα

which minimizes a convenient difference be-
tweensupδ∈Kα

βδ(θ) andβδ(θ).

Bayesian approach. The Bayesian approach exploits
somea priori information on the distribution ofθ, e.g.
P(Hj)=qj , q0 + q1 =1. It leads to relatively simple
and well investigated theoretical schemes, which im-
plementation involves only tuning parameters which
are functions of thea priori information (Borovkov,
1987). The drawbacks forFDI lay in that thea priori
information on the faults may be not reliable; and
that, for safety-critical applications or when inten-
tional faults should be considered, the risk function

R(Q, π) = 1 − q0E0(1 − π(Y )) − q1E1(π(Y ))

is not a convenient criterion.

Nevertheless, the Bayesian approach is useful at a
preliminary stage in the design ofFDI algorithms,
in order to obtain optimal schemes, usinginvariant
properties or minimax approaches. An example is
given in 3.5.

Minimax approach. It consists in optimizing the
worst case situation (Lehmann, 1986; Borovkov,
1987). A testδ is minimaxin Kα if it maximizes the
minimum power in this class:

∀δ ∈ Kα : inf
θ∈Θ1

β δ(θ) ≥ inf
θ∈Θ1

βδ(θ) (13)

This often amounts to consider the closest alternatives
(Borovkov, 1987). Actually, for model:

Y = M θ + ξ, ξ ∼ N(0,Σ) (14)

and the two setsΘ0 ={θ : θTMTΣ−1Mθ≤a2} and
Θ1={θ : θTMTΣ−1Mθ≥ b2} (a2 < b2), it is easy to
show that the worst parameters lay on the boundaries
of Θ0 andΘ1, and the minimax testδ writes as in (10)
with:

Λ def= Y TΣ−1M(MTΣ−1M)−1MTΣ−1Y (15)

and thus is based on aχ2 statistics.

In more general cases, the design of minimax tests
(13) is often more complex. One reason is the lack
of invariance property for exhibiting the worst case
parameters (Wald, 1943; Borovkov, 1987).

Invariant tests. Let G be a group of transformations
of R

r. A parametric family of distributionsP =
{Pθ, θ ∈ Θ} is invariant underG if (Lehmann, 1986;
Borovkov, 1987) :

∀g ∈ G, ∀θ ∈ Θ, ∃ θg def= g(θ) ∈ Θ :
Pθ(g(Y ) ∈ A) = Pg(θ)(Y ∈ A)

The transformationsg form a groupG on Θ. An
hypotheses testing problem, betweenH0 andH1 as
in (9), is said to beinvariant if :

• the familyP remains invariant underG;
• the subsetsΘi remain invariant underG.

A test δ is said to be invariant if its critical function
π(Y ) remains invariant underG:

∀Y ∈ R
r, ∀g ∈ G : π(Y ) = π(g(Y ))

The design of invariant tests is based onmaximal
invariant statistics. A statisticsΛ is maximal invariant
underG if it is invariant and if

Λ(X) = Λ(Y ) ⇒ ∃ g ∈ G : Y = g(X)

The important feature of this approach is the possi-
bility to reduce a more general (and mathematically
more complex) statistical problem to another one less
general and often less complex (Bernshtein, 1980;
Lehmann, 1986; Borovkov, 1987; Scharf, 1991; Porat
and Friedlander, 1993; Scharf and Friedlander, 1994;
Burgess and Veen, 1996; King, 1996). For instance, all
the results presented in subsection 3.2 for the case of
knowncovariance matrixΣ can be directly obtained
from the case of unit covariance matrix by using the
invariance of the Gaussian distributionN(θ, I) under
the group of linear transformationsg(Y ) = Σ̄Y ,
whereΣ̄Σ̄T = Σ.

Using the invariance of a parametric familyP =
{Pθ, θ ∈ Θ} under a suitable group of transforma-
tions is a powerful and efficient method to solve an
hypotheses testing problem when a UMP test does not
exists. This is especially relevant in case of nuisance
parameters, as discussed below.

Constant power approach.The constraint of con-
stant power over a family of surfaces can be intro-
duced as follows. Assume a simple null hypothesis :
H0 : {θ = θ0}, and the alternativeH1 : {θ 6= θ0},
and define a parametric family of surfacesS = {Sc}
around the pointθ0. A test δ∗ ∈ Kα is said to be
UMP with constant powerover a familyS = {Sc}
of surfaces, if:

∀θ1, θ2 ∈ Sc : βδ∗(θ1) = βδ∗(θ2) (16)

∀δ ∈ Kα s.t.∀θ1, θ2 ∈ Sc : βδ(θ1) = βδ(θ2),

then: βδ∗(θ) ≥ βδ(θ).

The rationale is depicted on Fig. 1 for model (14)
whereθ0 = 0. SurfacesSc are ellipsoids:

Sc : θTMTΣ−1Mθ = c2 (c > 0) (17)

The upper part of the figure is devoted to the scalar
caser=1 with σ2 =1. The dotted line is the power
function of a UMP one-sided test, whereas the solid
line is the best constant power functionβδ∗(θ) over
a family of surfacesS = {Sc : |θ| = c|c > 0}.
It can be seen that the one-sided UMP test outper-
forms the UMP test with constant power, only for
the alternatives (θ > 0), but is very inefficient for
other alternatives (θ < 0). Therefore, constant power
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Figure 1. Best constant power function over a family
of surfaces.

constraint (16) eliminates tests like UMP one-sided
ones, for achieving a uniform performance over the
surfacesSc in the alternativeΘ1. The lower part of
Fig. 1 is devoted to a higher dimensional case with
M = Σ = I, and a surface (17) is depicted. For
any direction defined by a unit vectord, a one-sided
UMP test can be designed for testingH0 : {θ = 0}
against a limited alternative, saỹH1 :{θ = cd|c > 0}.
As before, this directional UMP test outperforms the
UMP test with constant power ifθ = cd, c > 0, but
is inefficient for other directions. In the general case
of model (14) (Σ 6= I), the test with the best constant
power over the family of surfaces (17) is given by (15).

Most stringent tests. Let

β(θ, α) = sup
δ∈Kα

βδ(θ)

be the maximum power among the tests in the
classKα. A testδ∗ is said to bemost stringentin Kα

if it minimizes a convenient difference between this
maximum power and its own one

sup
θ∈Θ1

{β(θ, α) − βδ∗(θ)} ≤ sup
θ∈Θ1

{β(θ, α) − βδ(θ)}

This is illustrated in Fig. 2. In the Gaussian case (14), a
remarkable fact is that the most stringent test is given
again by (15). The (involved) proof can be found in
(Wald, 1943).

3.3 Asymptotic approaches

When the number of observations is large, several
asymptotic approaches can be used to design tests
between composite hypotheses.

0

1

θ

β(θ)

β(θ, α)

βδ(θ)

βδ∗(θ)
Θ1

supθ∈Θ1
{β(θ, α) − βδ∗(θ)}

supθ∈Θ1
{β(θ, α) − βδ(θ)}

Figure 2. Most stringent test.

Likelihood ratio tests. Assume a simpleH0 : {θ =
θ0}, and the compositeH1 :{θ 6= θ0}. Let

F(θ) = Eθ(∂ log fθ(Y )/∂θ)·(∂ log fθ(Y )/∂θ)T (18)

be Fisher information matrix, and letS = {Sc},

Sc : (θ − θ0)T F(θ0) (θ − θ0) = c2 (c > 0),

be the family of surfaces, counterpart of (17). The def-
initions of asymptotic optimality are somewhat com-
plex (Wald, 1943). All asymptotic results are asso-
ciated with a sequence of tests{δn}, and should be
interpreted as a limit whenn→ ∞. In the independent
case, it can be shown (Wald, 1943; Rao, 1973; Za-
cks, 1971; Hall and Mathiason, 1990) that both the
test with asymptotically best constant power over the
family of surfacesSc and the asymptotically most
stringent testδ are given by rule (10) with

Λ(Y1, . . . , Yn) = n(θ̂n − θ0)TF(θ0)(θ̂n − θ0) (19)

whereθ̂n = arg supθ fθ(Y1, . . . , Yn) is the maximum
likelihood estimate (MLE) ofθ. Note that Wald’s test
(19) is the generalization of the minimax test (15). It
also writes as the generalized likelihood ratio (GLR)
testδ̃ defined by (10) with

Λ̃(Y1, . . . , Yn) = log
supθ fθ(Y1, . . . , Yn)
fθ0(Y1, . . . , Yn)

(20)

The testsδ andδ̃ are asymptotically equivalent (Wald,
1943; Rao, 1973).

Reparameterization. Another approach uses a repa-
rameterization for imposing some additional con-
straints and simplifying the testing problem (Wald,
1943). LetP = {Pθ, θ ∈ Θ ⊆ R

m} be a family
of distributions, and thecomposite null hypothesis

H0 : {θ ∈ Θ : η(θ) = 0} (21)

where η is a l-dimensional vector-valued function,
l < m. The existence of (m − l) additional functions
over R

m is enforced, for the extended vector-valued
function η̃ = (η1, . . . , ηl, ηl+1, . . . , ηm) to play the
role of a reparameterization. This is depicted in Fig. 3,
where hypothesisH0 is the shading surface. As ex-
plained below, the degrees of freedom therein can be
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Figure 3. The general null composite hypothesis.

exploited to deal with nuisance parameters. The alter-
native hypothesisH1 is {θ ∈ Θ : η(θ) 6= 0}. Under
some regularity conditions on functioñη : R

m →
R
m, both the test with the asymptotically best constant

power and the asymptotically most stringent test can
be shown (Wald, 1943) to be given by (10), with:

Λ(Y1, . . . , Yn) = n η(θ̂n)T F̃−1
l (θ̂n) η(θ̂n) (22)

whereθ̂n = arg supθ fθ(Y1, . . . , Yn) is the MLE ofθ,
matrix F̃l is the l × l-dimensional upper-left block
of matrix JF−1JT andJ is them × m-dimensional
Jacobian matrix∂η̃/∂θ. The sensitivity method dis-
cussed in (Basseville, 1997) is a particular case of this
approach.

Local approach. In case ofdependentobservations,
another asymptotic approach can be used for de-
signing optimal tests between composite hypotheses
(Roussas, 1972; Le Cam, 1986; Le Cam and Yang,
1990). This approach assumes that the setsΘi(n) are
getting closer asn → ∞, namely :Θi(n) = θ∗ +
ϑi/

√
n, whereϑi ⊂ R

m. For testingH0(n):{θ= θ∗}
againstH1(n) : {θ = θn

def=θ∗ + Υ/
√
n}, the local

approach replaces the log-likelihood ratio

S(Υ) = log(fθn(Y1, . . . , Yn)/fθ∗(Y1, . . . , Yn))

by the expansion (Roussas, 1972; Le Cam, 1986;
Le Cam and Yang, 1990)

S(Υ) ' ζTn (θ∗)Υ − 1/2 ΥTF(θ∗)Υ, where

ζn(θ) = 1/
√
n

n∑
k=1

∂ log fθ(Yk)/∂θ (23)

is the efficient scoreand Fisher informationF(θ) is
positive definite (∀θ ∈ Θ). Vectorζn is asymptotically
Gaussian distributed under both hypotheses

ζn(θ∗) →
{N (0,F(θ∗)) if Pθ∗
N (F(θ∗)Υ,F(θ∗)) if Pθ∗+Υ/

√
n

(24)

The GLR test betweenH0(n) and H1(n) is easily
found to be based onΛ(ζ) = ζTn F−1(θ∗)ζn. More-
over, testing betweenK local hypothesesHi can be
reduced to testing betweenK Gaussian hypotheses

defined by the mean vector of the efficient score (23).
This approach has been extended to other parameter
estimating functions than the efficient score (Basawa,
1985; Benvenisteet al., 1987). The application of
these approaches to fault detection and isolation is
discussed in (Basseville and Nikiforov, 1993; Bas-
seville, 1998).

3.4 Dealing with nuisance parameters

The parameter vector is now partitioned as:

θT=(φT , ψT ), φ∈R
mφ, ψ∈R

mψ,mφ+mψ=m (25)

whereφ (resp.ψ) is the informative (resp. nuisance)
parameter. Assume the hypotheses:

H0 :{φ=φ0, ψ∈R
mψ},H1 :{φ 6=φ0, ψ∈R

mψ} (26)

aboutφ, while consideringψ as anunknownvector.
Since fault isolation can be viewed as distinguishing
subsets of components ofθ, testing hypotheses with
nuisance parameters is an importantFDI issue. There
are several approaches to dealing with nuisance pa-
rameters.

Minimax approach. This consists in maximizing the
minimum powerβ over the unknown vectorψ. Since
the power is an increasing function of Kullback-
Leibler “distance” between the two densitiesfφ0,ψ0

andfφ1,ψ1 (Lehmann, 1986):

ρ(φ1, φ0, ψ1, ψ0) =
∫

log
fφ1,ψ1(Y )
fφ0,ψ0(Y )

fφ1,ψ1(Y )dY,

this amounts to search for two least favorable val-
uesψ∗

0 andψ∗
1 which minimizeρ, and to compute

the optimal GLR test (20) for these values. For linear
Gaussian models (14), this boils down to a quadratic
minimization problem. In this case, partition ma-
trix M and Fisher information

M=(MφMψ),F def=MTΣ−1M=
(

Fφφ Fφψ
Fψφ Fψψ

)
(27)

Assume a null hypothesis (26) and the simple alterna-
tive H1 :{φ = φ1, ψ ∈ R

mψ}. The expectationϕj of
the observationY underHj , and assuming a constant
nuisanceψj , is

ϕj = E(Y ) = Mφφj +Mψψj , j = 0, 1.

Then Kullback-Leibler information writes:

ρ(φ1, φ0, ψ1, ψ0) = (ϕ1 − ϕ0)TΣ−1(ϕ1 − ϕ0)/2.

Since ρ is a function of the differencex = ψ1 −
ψ0, its minimum should be searched w.r.t.x. It is
reached atx∗ = −F−1

ψψFψφ(φ1 − φ0) and is equal

to ρ∗ = (φ1 − φ0)TF∗
φ(φ1 − φ0)/2, whereF∗−1

φ is
the upper left term ofF−1. Last, the LR for the least
favorable valuex∗ of the nuisance is

Λ(Y ) = log
fφ1,ψ∗

1
(Y )

fφ0,ψ∗
0
(Y )

= (φ1 − φ0)TMT
φ Σ̄−TP

M̃
Σ̄−1(Y −Mφφ0)

−(φ1 − φ0)TF∗
φ(φ1 − φ0)/2



whereP
M̃

= I − Σ̄−1Mψ(MT
ψ Σ−1Mψ)−1MT

ψ Σ̄−T

andΣ̄Σ̄T=Σ. This minimax test is independent of the
unknown valuesψ1 andψ0, and coincides with the
LR test where the likelihoods are maximized w.r.t. the
nuisance parameterψ:

Λ(Y ) = Λ̃(Y ) = log
supψ fφ1,ψ(Y )
supψ fφ0,ψ(Y )

For a composite alternativeH1 : {φ 6= φ0}, the
minimax test coincides with the GLR test (20) based
also on the maximized likelihoods:

Λ(Y ) = Λ̃(Y ) = log
supφ,ψ fφ,ψ(Y )
supψ fφ0,ψ(Y )

Invariance. Since the nuisance parameterψ ∈ R
mψ

is completely unknown, the decision functionΛ(Y )
should be independent of its value. To obtain a statis-
tics which is independent of the nuisance parameter,
the theory of invariance can be used. For instance, if
the distribution of the observationY depends ong(ψ),
whereg is a vector-valued function, then it is natural to
state the hypotheses testing problem as invariant under
the group of transformationsG = {g : ψg = g(ψ)}.
To show how this principle works, we consider the
simplest partitioning in (14):

Y = Mφφ+ 1rψ + ξ, ξ ∼ N(0,Σ) (28)

whereψ ∈ R. The statistics which remains invariant
under the group of translationsG = {Y 7→ g(Y ) =
Y + 1rψ} is (Lehmann, 1986):

Z =


z1
z2
...

zr−1

 def=V Y =


1 0 · · · 0 −1
0 1 · · · 0 −1
...

...
...

...
...

0 0 · · · 1 −1



y1
y2
...
yr


and it is maximal invariant. MatrixV plays the role
of a rejector of the nuisance parameterψ, and such an
invariant vectorZ corresponds to aparity vectorin the
FDI literature (see 4.2). The familyP = {N(Mφφ +
1rψ,Σ), φ∈R

mφ} remains invariant underG, and the
groupG is defined by:g(φ) = Mφφ + 1rc (c ∈ R).
The testing problem betweenH0 : {VMφφ=0} and
H1 : {VMφφ 6= 0} remains invariant underG. From
(28), we obtain:

Z
def=V Y = VMφφ+ V ξ, V ξ ∼ N(0, V ΣV T ).

It results from formula (19) applied to model (14), that
the invariant statistics is:

Λ(Y ) = Y TV T (V ΣV T )−1VMφ

·(MT
φ V

T (V ΣV T )−1VMφ)−1

·MT
φ V

T (V ΣV T )−1V Y

and the invariant testδ with best constant power over
the family of surfaces

Sc :φTMT
φ V

T (V TΣV )−1VMφφ=c2

is given by (10) with this statisticsΛ. In this case the
model is linear-Gaussian and Wald’s theory can be
applied non asymptotically.

Reparameterization. The approach described for the
null hypothesis (21) can be used for testing the hy-
potheses with nuisance parameters in (26). For the
model:Y = Mθ + ξ = Mφφ + Mψψ + ξ, whereθ
is partitioned as in (25), constraint (21) writes, for
l = mφ: η(θ) = 0 ⇐⇒ θi − φ0,i = 0 (i = 1 : mφ).
The application to fault isolation and diagnosis is in-
vestigated in section 4.

3.5 Multiple hypotheses testing

Testing betweenK ≥ 2 hypotheses is a difficult
problem, for which few theoretic results exist.

Bayesian approach. Assume(K + 1) simple hy-
pothesesHi (i = 0 : K), defined by known den-
sities fi(Y ). Let the a priori distribution Q over
the hypotheses be defined byP(Hj) = qj , with∑K

j=0 qj = 1. Let π(Y ) be the vector of critical
functions (Ferguson, 1967; Borovkov, 1987)

π(Y ) = (π(j | Y ))(j=0:K),

K∑
j=0

π(j | Y ) = 1, with

π(j | Y )=

 0 if qjfj(Y ) ≤ max
i6=j

qifi(Y )

1 if qjfj(Y ) > max
i6=j

qifi(Y ) (29)

The Bayesian decision minimizes the risk function

R(Q, π) = 1 −
K∑
j=0

qj Ej(π(j | Y )).

When distributionQ is difficult to obtain, this is not
a convenient criterion. Sometimes the invariance ap-
proach allows to circumvent this difficulty and to de-
sign a test optimal in some sense.

Slippage problem - Invariant tests.Assume that the
observation isY = (y1, . . . , yr), where the scalaryi’s
are independent. Assume also that the simple null hy-
pothesis isH0 : {y1, . . . , yr ∼ P0} andr simple al-
ternatives state that only one distribution has switched:
Hj : {y1, . . . , yj−1, yj+1, . . . , yr ∼ P0, yj ∼ P1}.
This problem is invariant under the group of permuta-
tions of theyi’s, or equivalently theHi’s (i = 1 : r).
Thea priori distribution invariant under that group is
q0 = 1 − rq andqj = q for j = 1 : r. It can be
shown (Ferguson, 1967) that the corresponding invari-
ant Bayesian rule, optimal over the classKα (11), is:

δ̂(Y )=


H0 if max

i=1:r

f1(yi)
f0(yi)

<h

Hj if j = arg max
i=1:r

f1(yi)
f0(yi)

≥h
(30)

where h = h(α) and α = 1 − E0(π(0|Y )). It
maximizes the common powerβ = Pi(δ = Hi) =
Pj(δ = Hj), ∀i, j 6= 0.



Turning back to model (28), for testingH0 : {θi =
0 (i = 1 : r)} againstr alternativesHj : {θj =
a, θi = 0 (i = 1 : r, i 6= j)} where a > 0,
the Bayesian test (30) invariant under the group of
translationsG = {Y 7→ g(Y ) = Y + 1rx} writes

δ̂(Y )=

{
H0 if max

i=1:r
(yi − y)<h

Hj if j = arg max
i=1:r

(yi − y)≥h ,

wherey =
∑r

i=1 yi/r. It is worth noting that this test
is independent of the value ofa.

4. FROM HYPOTHESES TESTING TO FDI

How the hypotheses testing methods introduced above
can be used forFDI is addressed now. First we explain
to reduceFDI problems in dynamic systems to the
static problem of monitoring the mean of a Gaussian
vector. Then the application of the methods of sec-
tion 3 to fault detection, fault isolation and fault di-
agnosis problems is investigated. Finally, the compu-
tation of the performance indices (error probabilities)
is illustrated on a specific test instance.

4.1 ReducingFDI to a static problem

ReducingFDI problems in dynamic systems to the
universal static problem of monitoring the mean value
of a Gaussian vector can be achieved with the aid of
a convenient residual generation. For additive faults
(affecting the mean value of the measured outputs),
a non-asymptotic reasoning suffices. For component
faults (affecting the dynamics of the system), the
asymptotic point of view introduced above under the
name of local approach can be used to this end.

Additive faults. The argument for problem reduc-
tion, which applies to both linear and nonlinear sys-
tems, is based on an off-line point of view, assuming
that measured observationsY and known inputsU are
given over a finite time-window with size%. Assuming
that the system is perturbed by Gaussian noises, the
argument is simply to use repeated equations, as done
for the design of a dead-beat observer.

Let an observable linear dynamic system be subject to
faults acting additively as modeled in{

Xk+1 = FXk + GUk + Γ Υx + Wk

Yk = HXk + JUk + Ξ Υy + Vk
(31)

where(Wk)k and (Vk)k are two independent white
noise sequences, with positive definite covariance ma-
tricesQx andQy respectively,Υx andΥy are the as-
sumed additive faults, and the fault gainsΓ andΞ are
full column rank matrices. Such a model is appropriate
for sensors and actuators faults.

Let Yk,% contain the stacked measured outputs
Yk, . . . , YK+%−1. Introducing the input-adjusted out-
putsYk,% = Yk,% − M%(G, J) Uk,% and the noise

Vk,% = M%(In, 0) Wk,% + Vk,%, whereM%(G, J) is
the lower triangular block-Toeplitz matrix associated
with the system impulse response, we can write% suc-
cessive equations (31) as theregression model(Lou et
al., 1986)

ζk,%(Υ) def= Yk,% = O% Xk +MΥ + Vk,% (32)

whereO% is the observability matrix of order(% −1),

M
def=

(
M%(Γ) (1% ⊗ Ξ)

)
, Υ def=

(
Υx

Υy

)
, andM%(Γ)

is a matrix function which depends onΓ and on the
system dynamics in a known fashion. Under conve-
nient assumptions, regression model (32) has three
basic properties. First, the (unknown) state vectorXk

is independentof noise Vk,%. Second, the failure
gain matricesM%(Γ) and (1% ⊗ Ξ) are f.c.r. Third,
noiseVk,% is Gaussian, with a covariance matrixΣ%
which is generallynot block-diagonal(Basseville and
Nikiforov, 1993; Basseville, 1997).

The FDI problem for additive faults (31) is thus re-
duced to a static problem for the Gaussian vector
in (32):ζk,%(Υ) ∼ N (O% Xk +M Υ,Σ%).

Component faults. The argument for reducing the
FDI problem for component faults indynamicsystems
to the problem of monitoring the mean of a Gaussian
vector(14) is based on the local approach introduced
at the end of 3.3. The idea is to build a primary
residual from a parameter estimating function (e.g.
the efficient score), and then to define an improved
residual, of which the evaluation is much easier, since
it is Gaussian distributed with the same covariance
matrix in both safe and faulty cases as in (24). The
details of this approach are outside the scope of the
present paper. The interested reader is referred to
(Basseville and Nikiforov, 1993; Basseville, 1998).

From now on we concentrate on the static Gaussian
model (3), possibly reduced to (14), and on the pa-
rameter partition (25). The processed data are either
the measurements themselves or some residuals. Note
that, in all cases, the termMθ captures the signature of
the fault on the processed data, and matrixM depends
on the system (and possibly the residual generator)
dynamics.

4.2 Fault detection

Model (3) can be re-written as:

Y = H̃ζ + ξ, H̃ = (M H), ζ =
(
θ
X

)
(33)

where ther × (m + p)-dimensional matrixH̃ is
assumed to be f.c.r. To simplify the formulas, from
now on the covariance matrix ofξ is assumed to be:
Σ = σ2I. The hypotheses are

H0 : {θ = 0}, H1 : {θ 6= 0}



It should be obvious that the solution to this detection
problem is a direct consequence of the solution to
problem (26) for model (14) investigated in 3.4, where
Mψψ stands forHX andMφφ stands forMθ.

Using the reparameterization approach to dealing with
the nuisanceX , we defineηi(ζ) = ζi(i = 1 : m+ p).
The hypotheses can be re-written as:

H0 : {ηi(ζ) = ζi = 0; i = 1 : m}
andH1 : {ηi(ζ) = ζi 6= 0; i = 1 : m}.

The Jacobian matrix writesJ = Im+p and matrix
JF−1J is equal toF−1 = σ2(H̃T H̃)−1. Finally, the
MLE of ζ is given byζ̂ = (H̃T H̃)−1H̃TY . Let Fm
be them×m-dimensional upper-left block of matrix
F−1 and ζ̂m contain the firstm components of̂ζ. It
results from (22) that Wald’s statistics writes:

Λ(Y ) = η(ζ̂)T F̃−1
m (ζ̂) η(ζ̂) = ζ̂Tm F̃−1

m ζ̂m. (34)

The test based on this statistics has optimality proper-
ties analogous to the test based on (22). It is equivalent

to the GLR test based onlog supθ,X fHX+Mθ(Y )

supX fHX (Y ) and to
the minimax test. Sometimes the equationsη(θ) = 0
result from some structural (geometric) properties of
the system, energy or mass balance equations for in-
stance. If the balance equations involve the only ob-
servationsY , some additional work should be done
to carry the relation from the observations to the pa-
rametersθ andX . For linear systems, such equations
are known under the name of analytical redundancy
relations in theFDI literature (Potter and Suman, 1977;
Chow and Willsky, 1984; Louet al., 1986; Pattonet
al., 1989; Frank, 1990; Patton and Chen, 1991).

4.3 Fault isolation

As mentioned in 2.3, in case of two fault modes or
more, isolation refers to deciding which fault mode
occurred. Two basic approaches can be undertaken for
this purpose. The first one consists in partitioningθ
as in (25), withφ scalar, and deciding in favor of
the fault modeφ, while considering the other fault
modes collected inψ as nuisance information. Model
(3) writes as in (33) withH̃

def=(Mφ Mψ H). Ther ×
(mφ + mψ + p)-dimensional matrixH̃ is assumed
to be f.c.r. Fault isolation can thus be seen as fault
detection in the presence of a nuisance parameter. The
test to be used is (34) withm = mφ and thisH̃ .
The problem of detecting and isolating faults in the
presence of disturbances modeled exactly as the faults
can be handled in a similar manner.

The second approach is multiple hypotheses testing.
In model (3), ther × 1-dimensional matrixM is now
the fault direction and the scalar valueθ the fault
magnitude. Hence, the problem is to testH0 : {Y ∼
N(HX,σ2Ir); X ∈ R

p} against

Hj : {Y ∼ N(HX+Mjθj , σ
2Ir); X ∈ R

p, θj 6= 0}

(j = 1 : K). Unfortunately, this hypotheses testing
problem is not invariant under the group of permuta-
tions of theHj ’s. For this reason, in the absence of
a priori information on the alternatives, we assume
equal prior probabilities:P(Hj)

def= qj = (1 − q0)/K,
where q0 is the prior on the null hypothesis. The
corresponding Bayesian test is not optimal over the
classKα (11). It results from (29) that this test is:

δ̂(Y )=


H0 if max

i=1:K

fHX+Miθi(Y )
fHX(Y )

<h

Hj if j = arg max
i=1:K

fHX+Miθi(Y )
fHX(Y )

≥h
(35)

wherefθ(Y ) is the density of the Gaussian distribu-
tion N(θ, σ2Ir) andh = h(q0). There are two un-
known parameters in (35): the nuisanceX and the
fault magnitudeθ. To reject the effect of the nui-
sanceX , the test statistics should remain invariant
under the group of translationsG = {Y 7→ g(Y ) =
Y + HX}. Let W the (r − p) × r matrix which
rows span the left null space of matrixH , namely
such thatWH = 0,WWT = Ir−p,WTW =
Im − H(HTH)−1HT . Vectorε

def=WY is known as
the parity vector in the analytical redundancy ap-
proach (Potter and Suman, 1977). From (3), we get
the model:

ε
def=WY = WMθ +Wξ

that remains invariant under the group of transla-
tionsG. Of course, it is assumed thatr − p > 1 and
that the cross products(WMj)× (WMl) are nonzero
for every1 ≤ j 6= l ≤ K. Next, to cope with the
unknown fault magnitudeθj , the MLE can be plugged
into (35), which results in:

δ̂(Y )=


H0 if max

i=1:K

f
WMiθ̂i

(ε)

f0(ε)
<h

Hj if j = arg max
i=1:K

f
WMiθ̂i

(ε)

f0(ε)
≥h

(36)

wherefθ(ε) is the density ofN(θ, σ2Ir−p) and

θ̂j = arg min ‖ε−WMjθj‖2 =
MT
j W

T ε

MT
j W

TWMj
.

Decision rule (36) has a simple geometric inter-
pretation. Assume that the unit vectorsVj =

WMj/
√
MT
j W

TWMj defineK different directions

in R
r−p. Then, the inner productVj · ε represents the

projection of the parity vectorε along Vj . Finally,
for testing the alternativesH1, . . . ,HK against the
null H0, we have to compute the differencesε −
(Vj · ε) Vj and to choose the indexj that mini-
mizes the norm‖ε − (Vj · ε)Vj‖. This is equivalent
to minimize the angle betweenε andVj in R

r−p. If
the ratiof

WMj θ̂j
(ε)/f0(ε) is greater thanh, then the

hypothesisHj is chosen.



4.4 Fault diagnosis

At this point, some comments are in order on different
types of faults.

A single faultaffects a single component of the fault
vector θ or several components of this vector in a
specific direction or subspace. When a single fault
at a time is assumed, for isolating - or diagnosing -
the faulty component, the multiple hypotheses testing
approach described above is to be preferred: precise
criteria (performance indexes) can be defined and al-
gorithms exist.

Two basic types ofmultiple faults can be distin-
guished : embedded multiple faults with causality
constraints, which we do not address here, and inde-
pendent multiple faults. The latter type assumes no
causality between the faults on the individual compo-
nents, which can occur simultaneously in any manner.
In this case, and assuming that the number of failed
components is known, running simultaneously sev-
eral isolation tests can make up a diagnosis procedure
for simultaneous faults. Actually, viewing all but one
faults as nuisance parameters and exploiting possi-
ble invariance properties is a relevant approach, for
which some optimality property has been established
(Spjotvoll, 1972; Basseville, 1997). Roughly speak-
ing, the set of all ‘individual’ tests maximizes both
the minimum and the sum of the individual powers.
Running these tests in parallel has proven useful in
practice (Bassevilleet al., 1994).

Inferring the (generally unknown) number of failed
components inθ is beyond the scope of this paper. The
interested reader is referred to (Bassevilleet al., 1994)
for a discussion of and a possible solution to this
problem.

4.5 Statistical properties

For computing the performance indices, we have to
define the distributions of the test statistics under
the hypothesesHj , j = 0, . . . ,K. Wald’s statistics
(19), which should be used for fault detection in the
absence of nuisance parameter, isχ2-distributed with
m degrees of freedom. Thisχ2 distribution is central
underH0 and noncentral underH1. Hence, we get

α0 =P0(δ 6=H0)=P0

(
Λ(Y )≥ h

)
=

∫ ∞

h

p0(x)dx (37)

where p0(x) = xm/2−1e−m/2
2m/2Γ(m/2)

is the density of the

centralχ2(m) and Γ(x) =
∫ ∞
0
ux−1e−udu is the

gamma function, and

α1 =P1(δ 6=H1)=Pθ

(
Λ(Y )<h

)
=

∫ h

0

pλ(x)dx (38)

wherepλ(y) = p0(y) e−
λ
2 G

(
n
2 ,

λy
4

)
, andG is the

hypergeometric functionG(a, y) =
∑∞

i=0
Γ(a)yi

Γ(a+i)i! .

The error probabilities in (37) and (38) are also valid
for fault detection in the presence of a nuisance pa-
rameter and for the first approach to fault isolation.
In both cases, Wald’s statistics (22) isχ2-distributed
with m (respectivelymφ) degrees of freedom. It is
a difficult problem to compute the error probabilities
in case of multiple hypotheses (36). Some asymp-
totic results and particular cases can be found in
(Nikiforov, 1997; Lai, 2000).

5. EXAMPLE

How to apply some of the above methods to an in-
tegrity monitoring problem is now discussed. Integrity
monitoring, a major issue for the Global Positioning
System (GPS) in many safety-critical applications, re-
quires that a navigation systemdetects, isolatesfaulty
measurement sources, andremovesthem from the
navigation solution before they significantly contam-
inate the output.

The GPS is based on accurate measuring of the dis-
tance (range) from several satellites with known loca-
tions to a user (vehicle). Assumer satellites located at
known positionsXj = (xj , yj , zj)T (j = 1 : r) and
a user atXu = (xu, yu, zu)T . The distance from the
j-th satellite to the user is defined as

dj = ‖Xj −Xu‖,
and thepseudorangerj from thej-th satellite to the
user writes:

rj = dj + cs+ ξj ,

wheres is a user clock bias,c is the light speed andξj
is an additive pseudorange error at the user position.
The pseudorangerj is thus a function ofXu ands. Let
X = (XT

u , s)
T be the state, andR = (r1, . . . , rn)T

be the measurement. Linearizing the functionR(X)
around the working pointX0 = (XT

u0
, s0)T , we get

the measurement equation

Y
def=R−R0 ' H0(X −X0) + ξ,

whereR0 = (r10 , . . . , rn0)T , with

rj0 = ‖Xj −Xu0‖ + cs0,

ξ = (ξ1, . . . , ξn)T , and where

H0 =
∂R

∂X

∣∣∣∣
X=X0

is the(n×4)-dimensional Jacobian matrix. Hence the
GPS model with a fault is given by:

Y = H0(X −X0) +Mjθj + ξ, ξ ∼ N(0, σ2Ir)

where θj is an additional bias (fault) on the pseu-
dorangerj and where the fault direction isMj =
(0, . . . , 0, 1, 0, . . . , 0)T (j = 1 : r). Assume that
only one measurement vectorY is available to the ob-
server, situation often called snapshot. In this case, the
problem of fault detection/isolation is solved by using
the decision rule (36) withK = r. If the integrity



monitoring problem is to be solved in real time, the
performances of the decision algorithm can be cru-
cially improved using statistical sequential methods.
The interested reader is referred to (Nikiforov, 2002).

6. DISCUSSION

We now discuss some methodological features of the
methods presented above.

A priori information. The first step in designing a
FDI algorithm is the derivation of the model and the
integration of the availableprior information. The
model design includes the definition of the model’s
structure and the partition of the parameter vectorθ
into the informative parameterφ and the nuisanceψ.
The integration ofa priori information on the hy-
pothesesHi includes,

• For Bayesian approaches: thea priori probabil-
ities P(Hi) and the probability distributions of
the parametersθi. The existence of theP(Hi) is
especially important in case of multiple faults, as
shown in section 3;

• For non Bayesian approaches: the parametric
domainsΘi, typically given by points, curves or
ellipsoids inR

m.

The prior information on the nuisance parameter vec-
torψ is usually its dimensionmψ .

Optimality criteria. The second design step is the
choice of an optimality criterion. This should achieve
a tradeoff between the practical needs and the existing
theoretical results. Here the model structure plays a
crucial role: the geometric properties of the monitored
system (energy or mass balance equations and other
deterministic - static or dynamic - properties) not only
affect the termHX in (3), but also the natural pa-
rameter (the mean) of the processed data distribution
through the termMθ, signature of the fault.

The possible criteria usually result from the prior in-
formation on the hypotheses. For instance, in case
of binary decision scheme, if the alternative hypoth-
esisH1 is defined as the outside of an ellipsoid, then
the power function is defined over a family of closed
ellipsoidal surfaces.

Theoretical tools. Some comments are in order on
the design approaches presented in section 3. The
minimax approach can often be used, because it is not
very demanding: there is no constraint on the shape
of the setsΘi, and this method can thus be applied to
deal with nuisance parameters. But, finding the least
favorable valuesψ∗

0 andψ∗
1 might not be that easy. In

general (non linear) cases, it might not be sufficient for
the resulting test be optimal in the classKα either.

The constant power and the most stringent test ap-
proaches are much more demanding. First, the alterna-
tive hypothesisH1 should be given as the outside of an
ellipsoid defined by Fisher information matrix. In the
Gaussian or asymptotic cases, the three methods (min-
imax, constant power and most stringent test) lead to
the same (Wald’s) statistics. Second, the invariance
theory and reparameterization approaches to deal with
nuisance parameters in this context have the following
properties. The invariance theory does not warrant any
optimal property of the resulting (invariant) test; but
it can be used to reduce the initial problem to an-
other one, usually simpler or having a known solution.
Instead, the reparameterization approach warrants an
optimality in the sense given in 3.2. But this approach
should be supplied with the definition of a compos-
ite null hypothesis (21), namely with a vector-valued
functionθ 7→ η(θ). The role of the invariance theory is
to investigate the invariant properties of the hypothe-
ses testing problem under a group of transformations
and to prepare some variants of the above function
η(θ). This investigation should be finalized by using
the reparameterization approach to design an optimal
decision rule.

It is worth to note that the two approaches, (statistical)
invariance theory and (engineering) analytical redun-
dancy, are actually very close to each other. Both ap-
proaches exploit the model structure at a preliminary
stage in order to define the functionη(θ), whereθ
contains e.g. the additive faults and the nuisance state.

Conclusion. The FDI problem has been addressed
from a statistical point of view, with faults modeled as
deviations in the parameter vector of a stochastic sys-
tem. Fault detection, isolation and diagnosis have been
stated as hypotheses testing problems. Several major
statistical tools for solving these testing problems have
been introduced. Particular emphasis has been put on
nuisance rejection and deciding between multiple hy-
potheses. The application to GPS integrity monitoring
has been described. The advantages and drawbacks of
the different methods have been discussed.
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