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AbstractFault detection, fault isolation and fault diagnosis are addressed within a statistical
framework. The corresponding inference problems are stated. Several statistical tools for
solving these inference problems are described. Particular emphasis is put on dealing with
nuisance parameters and deciding between multiple hypotheses. How to use these tools for
solvingFDI problems is discussed. An example illustrates some of the proposed methods.

Keywords: Hypotheses testing, nuisance parameters, multiple hypotheses, fault isolation and
diagnosis.

1. INTRODUCTION cussed, minimax, invariant, and most stringent tests
are introduced, and some asymptotic approaches are

Monitoring complex structures and processes is nec-described. The use of these hypotheses testing tools
essary for fatigue prevention, aided control and for solving fault detection, isolation and diagnosis
condition-based maintenance. Many industrial pro- problems is addressed in section 4. An example illus-
cesses rely on physical principles, which write in trating the relevance of some of the proposed tools is
terms of (differential) equations and thus (dynamical) described in section 5. Some discussions and conclu-
models. Moreover, the use of (physical) parameters issions are drawn in section 6.
mandatory for fault isolation and diagnosis. Faults can
thus often be modeled as deviations, w.r.t. a nominal
reference value, in the parameter vector of a stochastic 2. SEVERAL INFERENCE PROBLEMS
system. A crucial issue is to state the significance of
the observed changes w.r.t. noises, uncertainties, andVe introduce the detection, isolation and diagnosis
changes in the environment of the monitored process.problems, stated in a statistical framework, distin-
guishing the test of hypotheses for a whole data sam-

On the other hand, there exist mathematical statisticsple and the test for the presence of a change within the
theories and tools for solving hypotheses testing prOb_sample. It is assumed throughout that the signature of

. ir abilit ) .
lems. Key features of these methods are their a ythe faults on the model of the monitored system is a

to handle noises and uncertainties, to reject nuisancechan an its parameterector. The models considered
parameters, to select one among several hypotheses. 9 P '

The purpose of this paper is to describe the key com-" this paper are described, anq two change types are
ponents of these theories and to explain how to usedefmed. Then several assumptions on the parameter,

these tools for fault detection, isolation and diagnosis corresponding to different types of monitoring prob-
(FDI). lems, are introduced.

The paper is organized as follows. Several inference

problems are introduced in section 2. Section 3 is 2.1 Parameterized model

devoted to major statistical tools for solving these

hypotheses testing problems. Composite hypothesesThe measured datd are viewed as the output of a
nuisance parameters and multiple hypotheses are diseontinuous-time system, which, ignoring the dynam-



ics for a while, we write

Y(t) = h(X(t),U(t),0) + &(t) 1)
where X is an unknown variable (typically a state),
U the input vector,f the parameter vectody the
measured outpufy a known function, and a white

noise. Sampling the data at periédresults in the
discrete-time model

Y, = H(Xk, Uk, 0) + & (2

with Yy, = Y (kd), U, = U(kd). At time n, the data
sample is(Yo, ... , Yy, Uy, ... ,Uy,) if the inputU is
measured, ofYp, ... ,Y;,) if U is unknown.

Emphasis is put throughout on the simpler model
Y=HX+MO+E, E~N(0,X) 3)

whereY € R", X € RP, § € R™, with p +

m < r, matricesH and M are full column rank
(f.c.r), and¢ is a zero mean Gaussian noise. In this
static model, it is assumed that the processed Hata

for the design and performance evaluation of the de-
cision algorithms. In this paper, we concentrate on
the first situation. The interested reader is referred to
(Nikiforov, 2002) for the second one.

2.3 Hypotheses testing problems fewi

The following testing problems are centralApI.

Detection. Detection refers to deciding whether the
monitored system is in its nominal (safe) state or not.
This amounts to testing the null hypothe%is in (4)
against gylobal alternativehypothesisH; . In case of
no information about the fault modes, the alternative
hypothesis writes

Hi : 6 €6 LrRm \ O (7)

When some information about the fault modes is avail-

are Gaussian vectors, and that the faults affect theirgpje under the form (5), the alternative writes

mean value. As explained in section 4, the relevance

of this assumption is of much wider scope than it
seems to be: a large classrai problems indynamic
systems can be reduced to the univessaticproblem

of monitoring the mean value of a Gaussian vector.
This is achieved with the aid of a convenient residual
generation.

2.2 Two change situations

The two following situations are distinguished.

Hypotheses testing.In the first situation, parameter
vectord is assumed to beonstantwithin the entire
data sample. Thaull hypothesisH, corresponds to
the fault-free case, and thus to the nominal valyef
the parameter, possibly within a g@:

Ho : 0 €Oy CR™ 4)

Thealternative hypothesek; correspond to different
fault modes:

}CileegiCRm,(i:1:K) (5)

where©; (©, = () fori # j. In case of a single fault
mode, the only problem to solve is the detection one.
When K > 1, the isolation and diagnosis problems
have to be solved also.

Occurrence of a change.In the second situation,
parametef) canchangewithin the data sample at an
unknowninstant (1 < v < n), and thusis a function
of time: for one fault mode (: = 1 : K),

o(t)e{eo ift<w

These two situations lead to different formal state-

(6)

Hi : 0 e (UL, 0;) (8)

Several statistical testing tools are described in 3.2
and 3.3. This detection problem refers to the case
of two hypotheses. Any detection procedure should
perform a tradeoff between two incorrect decisions:
false alarm (false rejection of the null hypothesis)
and non detection (missed acceptance, or equivalently
false rejection, of the alternative hypothesis).alf
priori probabilities of the safe and fault modes are
available, the probabilities of these two errors can
be weighted and combined into a single performance
index for evaluating the detection scheme. If not, both
errors are handled, as made precise below.

Isolation. In case of two fault modes or more, iso-
lation refers to deciding which fault mode occurred.
Two basic approaches can be undertaken for this pur-
pose. The first one consists in deciding in favor of one
fault mode while considering the other fault modes as
nuisance informationlsolating fault: then amounts

to testing the null hypothesi¥(y in (4) against the
alternativeH; in (5). For handling nuisances, minimax
andinvarianttests are shown in 3.4 to provide us with
algorithms which detect (isolate) a given faiiwhile
being insensitive to the other faults. As explained in
section 4, running simultaneously several isolation
tests can make up a diagnosis procedure for simulta-
neous faults.

Multiple hypothesesesting is the second approach,
when a single fault at a time is assumed. Here, the
null hypothesisH, is tested againsk alternatives
Hq,...,Hgk. Efficient solutions for this are described
in section 3.5.

Any isolation procedure should balance all the pos-
sible combinations of errors in making the decision.

ments of the hypotheses and of the criteria to be usedShoulda priori probabilities of the fault modes be



available or not, handling simultaneously all the er- Until 3.5, we assumé&'=1 alternative hypothesis. The
rors is a hard issue. To mention but one point, is it pair (o ® ag, 324, ) is then a sufficient performance
preferable to put a constraint on the probability of at index, and thelecision function

least one false rejection, or on the expected number )

of false rejections ? Several performance indexes are 5(Y) = { Ho it A(Y) < h(a) 7 (10)
investigated below. Hy it A(Y) = h(a)

is defined by thetatisticsA and the threshold.
3. HYPOTHESES TESTING APPROACHES

Hypotheses testing methods are now described. Probs 5 Composite hypotheses testing
lem statements and criteria are introduced in 3.1.

In 3.2, several approaches to the design of optimume, . ¢omnosite hypotheses, tests are searched within
tests for composite hypotheses are discussed. ASyMpy,q ¢|as5 of tests with upper-bounded maximum false
totic approaches for dealing with large data samplesalarm probability

are described in 3.3, where a reparameterization result
of Wald turns out to be powerful and relevantrbi.
. . . . . = : <
Dealing with nuisance parameters is the topic of 3.4, Xa {5 OSE%)O Po(6 # Fo) < a} ’ (11)
based on some of the approaches presented before. ) ) )
The case of multiple hypotheses is discussed in 3.5.2nd @ tesb is evaluated with theower function

This forms the algorithmic basis of statisticab. V6 € O1, B5(0) =Py (6 = I1) = 1 — as(0). ,
A test* is saiduniformly most powerfu{UMP) in

the classk,, if:
3.1 Problem statement and criteria V6 € Ko, VO €Oy : B5-(0) > B5(0) (12)
A (fixed) n-size sample of independent observations Unfortunately, UMP tests scarcely exist, except when
Yi,...,Y, is available and supposed to be gener- parametef is scalar, the family of distribution® =
ated by one amongK + 1) probability distributions  {P,0 € ©} has a monotone likelihood ratio, and
Py, ..., Pg.Possible input#/y, ... U, are assumed the test is one-sided, namel¥t, : {6 < 6y} and

non random; the corresponding data sample is denoted{; : {# > 6;} with 8, > 6y (Lehmann, 1986;
by Yi,...,Y,,Us,...,U, though. The hypotheses Borovkov, 1987).

testing problem consists in deciding which distribu-
tion P; is the true one. To each distributid® cor-
responds an hypothesis;. A statistical tesffor test-
ing between thé{;’s is any measurable mappirg:

In case of a vector parametéy the crucial issue is
to find an optimal solution over a set of alternatives
which is rich enough. Actually, a UMP test often exists

(Y. W) — {Ho,Hy,...,H} from the observation only for a subse®®; C ©; but not for the whole

spaceano h < of Iypotheses. We concetite o T AT S P o oXee s e s
parameterized distributiorf® with density fy. y 9 P P

the alternative is one-sided.
Two types of hypotheses have to be distinguished. A
simple hypothesi§{; is defined by a unique value
of the parameter vectoft(; : § = ;. A composite
hypothesisefers to a set of parameters

To overcome this difficulty, and find an optimal test
for multidimensional composite hypotheses, several
approaches exist.

H - 0eo, ) e Bayesian approachAssume that is a random
t ' vector and introduce somee priori information
with @,‘ C © C R™, We assume th@t ﬂ @j = (Z)for on the distribution ob.
i # j. Composite hypotheses are more relevant than o Minimax approachConsider only the worst case
Simple ones in praCtice, because of limited available Situation, which often amounts to consider the
amount of information, especially for the alternatives closest alternatives.
(fault modes). e Invariant tests:Take advantage of an invariance

of the distributions under some transformations,
and impose the corresponding restrictions on the
class of statistical tests in order to simplify the

The quality of a statistical test is defined with a set of
error probabilities

@ =P;i(0#£5), 1=0:K initial problem and find an optimum (invariant)
whereP; stands for observationg, ... ,Y,, being test.
generated by distributiod®;. The poweris defined e Constant power approachimpose some addi-
with a set of probabilities of correct decisions: tional constraints on the clask,,, in order to

avoid tests UMP over a subget of ©, and very
Bi =P (0=30) inefficient over®,; \ ©,. For instance, require
For a non-randomized test, theitical function is the bestonstant poweover a family of surfaces
m(Y) =iwhend(Y) = H,. defined oro;.



e Most stringent tests:Find a testo in X, e the familyP remains invariant undej;
which minimizes a convenient difference be- e the subset®,; remain invariant undeg.

tweensupseqc, Os(0) andgs(©). A test§ is said to be invariant if its critical function

7(Y") remains invariant undey:

Bayesian approach. The Bayesian approach exploits VY €R", Vg€ § : n(Y)=mn(g9(Y))
somea priori information on the distribution of, e.g. ) . ) ) )
P(H;)=q;,q0 + q1 =1. It leads to relatively simple The Qe5|gn _of_mvananF t_ests_ls bas_ed qnaxmal
and well investigated theoretical schemes, which im- invariant statisticsA statisticsA is maximal invariant
plementation involves only tuning parameters which Under§ if itis invariantand if
are functions of the priori information (Borovkov, AX)=A(Y)= Fge§:Y =gX)
1987). The drawbacks fai lay in that thea priori ) ) ) )
information on the faults may be not reliable; and The important feature of this approach is the possi-
that, for safety-critical applications or when inten- bility to reduce a more general (and mathematically
tional faults should be considered, the risk function ~MOre complex) statistical problem to another one less
general and often less complex (Bernshtein, 1980;
R(Q,m) =1 = qoEo(1 = 7(Y)) = uEa(m(Y)) Lehmann, 1986; Borovkov, 1987; Scharf, 1991; Porat
is not a convenient criterion. and Friedlander, 1993; Scharf and Friedlander, 1994;
) ) Burgess and Veen, 1996; King, 1996). For instance, all
Nevertheless, the Bayesian approach is useful at &he results presented in subsection 3.2 for the case of
preliminary stage in the design @f1 algorithms,  knowncovariance matrixs can be directly obtained
in order to obtain optimal schemes, usimyariant  from the case of unit covariance matrix by using the
properties or minimax approaches. An example is jnvariance of the Gaussian distributidf(, I) under
givenin 3.5. the group of linear transformationgy) = XY,
wherexy” = 3.

Minimax approach. It consists in optimizing the Using the invariance of a parametric family =
worst case situation (Lehmann, 1986; Borovkov, {F%,6 € ©} under a suitable group of transforma-
1987). A testy is minimaxin K, if it maximizes the  tions is a powerful and efficient method to solve an
minimum power in this class: hypotheses testing problem when a UMP test does not
. ) exists. This is especially relevant in case of nuisance
Vo € Ko pulS p5(0) = Anf Ps(9) (13)  parameters, as discussed below.

This often amounts to consider the closest alternatives

(Borovkov, 1987). Actually, for model: Constant power approach.The constraint of con-

Y=MO+¢& £~N0,X) (14) stant power over a family of surfaces can be intro-
T ) duced as follows. Assume a simple null hypothesis :
and the two ?,et‘f)l“:{o M X M<a tand g0 19 = gy}, and the alternative(; : {6 # 6o},
©1={0:0"M"E"" MO =>b7} (a” <b7), itiseasylo g define a parametric family of surfacks= {5}
show that the worst parameters lay on the boundaries, ;4 ,nd the pointy. A testd* € K, is said to be

of ©¢ and©,, and the minimax test writes as in (10) UMP with constant poweover a family$ = {S.}

with: of surfaces, if:
AEYTS I MMTS M) ' MTE"Y  (15)
and thus is based omg statistics. V01,02 € Sc: Bs-(01) = Bs-(62)  (16)

In more general cases, the design of minimax tests V0 € Ko S.LY01, 05 € S = B5(01) = B5(62),

(13) is often more complex. One reason is the lack then: 35-(0) > 35(0).

of invariance property for exhibiting the worst case

parameters (Wald, 1943; Borovkov, 1987). The rationale is depicted on Fig. 1 for model (14)

wheref, = 0. SurfacesS, are ellipsoids:

Invariant tests. Let G be a group of transformations Se: OTMTETIMO = ¢? (¢>0)  (17)

of R". A parametric family of distributions? = Tne upper part of the figure is devoted to the scalar

{F,0 € O} isinvariant underg if (Lehmann, 1986;  caser =1 with o2 =1. The dotted line is the power

Borovkov, 1987) : function of a UMP one-sided test, whereas the solid
e50c0 30 Eyg o inei e bes consant poner iy ) o
Po(g(Y) € A) = Pye)(¥ € 4) y = {5 : 16| =cle > O}.

It can be seen that the one-sided UMP test outper-
The transformationg form a groupG on ©. An forms the UMP test with constant power, only for
hypotheses testing problem, betwekpy and H; as the alternativesd > 0), but is very inefficient for
in (9), is said to benvariantif : other alternativesf( < 0). Therefore, constant power



SUPgeo, {800, ) — 85(0)}

§=cd, c€Ry, |ld2=1

7 Figure 2. Most stringent test.

Likelihood ratio tests. Assume a simplé{; : {6 =
6o}, and the composité(; : {6 # 6y }. Let

F(0) = Eo(0log fo(Y)/00)(0og fo(Y)/00)" (18)

be Fisher information matrix, and 18t= {S.},

0

Figure 1. Best constant power function over a family
of surfaces. S.: (0 —00)T F(6o) (0 —00) =c* (c>0),

constraint (16) eliminates tests like UMP one-sided be the family of surfaces, counterpart of (17). The def-
ones, for achieving a uniform performance over the initions of asymptotic optimality are somewhat com-
surfacesS, in the alternative®,. The lower part of  plex (Wald, 1943). All asymptotic results are asso-
Fig. 1 is devoted to a higher dimensional case with ciated with a sequence of tess, }, and should be
M = ¥ = I, and a surface (17) is depicted. For interpretedas alimitwhem — oo. Inthe independent
any direction defined by a unit vectdy a one-sided  case, it can be shown (Wald, 1943; Rao, 1973; Za-
UMP test can be designed for testifify : {6 = 0} cks, 1971; Hall and Mathiason, 1990) that both the
against a limited alternative, say; : {6 = cd|c > 0}. test with asymptotically best constant power over the
As before, this directional UMP test outperforms the family of surfacesS. and the asymptotically most
UMP test with constant power ff = cd,c > 0, but  Stringent test are given by rule (10) with
is inefficient for other dlrectlons_. In the general case A(Yi,...,Y) = n(B, — 00)TF(00) (B — o) (19)
of model (14) £ # I), the test with the best constant
power over the family of surfaces (17) is given by (15). whered,, = argsupy fo(Y1,...,Y,)isthe maximum
likelihood estimate (MLE) of).. Note that Wald's test
(19) is the generalization of the minimax test (15). It
also writes as the generalized likelihood ratio (GLR)
tests defined by (10) with

B0, a) Sup Bs(0) AV V) = log S22 fo(Y1,... Vo)
be the maximum power among the tests in the N Joo (Y1, ¥)
classX,. A testd* is said to bemost stringenin X, The tests) andé are asymptotically equivalent (Wald,
if it minimizes a convenient difference between this 1943; Rao, 1973).
maximum power and its own one

Most stringent tests. Let

(20)

sup {0(6, @) — Bs-(0)} < sup {B(0, ) — Bs(6)} Reparameterization. Another approach uses a repa-
o€ o€ rameterization for imposing some additional con-
Thisisillustrated in Fig. 2. In the Gaussian case (14), a straints and simplifying the testing problem (Wald,
remarkable fact is that the most stringent test is given 1943). Let? = {Py, § € © C R™} be a family
again by (15). The (involved) proof can be found in of distributions, and theomposite null hypothesis

(Wald, 1943). Ho : {# €0 :n(0) =0} (21)

where n is a [-dimensional vector-valued function,

I < m. The existence ofrf — [) additional functions
3.3 Asymptotic approaches overR™ is enforced, for the extended vector-valued

function = (m1,...,m,Mt1,--. ,7m) tO play the
When the number of observations is large, severalrole of a reparameterization. This is depicted in Fig. 3,
asymptotic approaches can be used to design testsvhere hypothesi&{, is the shading surface. As ex-
between composite hypotheses. plained below, the degrees of freedom therein can be



defined by the mean vector of the efficient score (23).
This approach has been extended to other parameter
estimating functions than the efficient score (Basawa,
1985; Benvenisteet al, 1987). The application of
these approaches to fault detection and isolation is
discussed in (Basseville and Nikiforov, 1993; Bas-
seville, 1998).

05
Surfacen(d) =0

0

? 3.4 Dealing with nuisance parameters

The parameter vector is now partitioned as:
07=(¢",¥1), peR™ Y ER™ my+my=m (25)

where¢ (resp.t) is the informative (resp. nuisance)
parameter. Assume the hypotheses:

01

Figure 3. The general null composite hypothesis.

exploited to deal with nuisance parameters. The alter;, . - ) my

native hypothesi§; is {# € © : (0) # 0}. Under Ho:{o=0o, v ER™"}, H1:{¢# do, v ER™"} (26)
some regularity conditions on functiopn : R™ — about¢, while consideringy as anunknownvector.
R™, both the test with the asymptotically best constant Since fault isolation can be viewed as distinguishing
power and the asymptotically most stringent test can Subsets of components 6f testing hypotheses with

be shown (Wald, 1943) to be given by (10), with: nuisance parameters is an important issue. There

_ N p A —~ are several approaches to dealing with nuisance pa-
AYr,....Yn) =nn(0)" F(0n)n6n) (22)  rameters.

wheref,, = argsup, fo(Y1,... ,Y,)isthe MLE of,

matrix J; is thel x [-dimensional upper-left block  Minimax approach. This consists in maximizing the
of matrix J¥~'.J7 and.J is them x m-dimensional  minimum powers over the unknown vectap. Since
Jacobian matrixdn/06. The sensitivity method dis- the power is an increasing function of Kullback-
cussed in (Basseville, 1997) is a particular case of thisLeibler “distance” between the two densitigs, .,
approach. andfy, 4, (Lehmann, 1986):

1 1 Y
et = [ty .
Local approach. In case ofdependenbbservations, f00(Y)

another asymptotic approach can be used for de-this amounts to search for two least favorable val-

signing optimal tests between composite hypothesesues; and«; which minimize p, and to compute

(Roussas, 1972; Le Cam, 1986; Le Cam and Yang,the optimal GLR test (20) for these values. For linear

1990). This approach assumes that the €g{a) are Gaussian models (14), this boils down to a quadratic

getting closer as — oo, namely :0;(n) = 6* + minimization problem. In this case, partition ma-

9;/+/n, whered; C R™. For testingHo(n):{60 =60*} trix M and Fisher information

againstH;(n) : {6 = Hnd:efe* + Y /y/n}, the local defy Te—1 Fso Fo

approach r(ep>lac{es the Iog-likelihoc/)d\/r_a}tio M=(My My), 5 =M% M = (?zz ?Z,Z) (27)
S(T) =log(fo, (Y1, Yn)/fo-(Y1,... . Yn)) Assume a null hypothesis (26) and the simple alterna-

. tive Hy: {¢ = ¢1, ¢ € R+ }. The expectatiopp; of
by the expansion (Roussas, 1972; Le Cam, 1986ithe observatiod” under}(;, and assuming a constant
Le Cam and Yang, 1990) nuisancey;, is

S(Y) =~ ¢r(O)Y —1/2YTF(6*)Y, where @; =B(Y) = Mgp; + Mytpj, j=0,1.
Then Kullback-Leibler information writes:

n(0) =1/vn Zalog fo(Yx)/00  (23) p(h1, b0, Y1, %0) = (1 — o)1 — o) /2.

| N k=1_ _ _ _ Sincep is a function of the difference = v —
is the efficient scoreand Fisher informatio(¢) is 4 its minimum should be searched w.iit. It is

gositivg dec];i'nit?t;?e ed @).dVecgorﬁnhis aS)r/]mptotically reached atr* — 79@1} Fuo(dr — ¢o) and is equal
aussian distributed under both hypotheses 10 p* = (61 — 60)TT5 (1 — b0)/2 wheres—";” is

(07 — N(0,F(6%)) if Po- the upper left term off 1. Last, the LR for the least
" N(@FO")Y,507)) if Py v/ ym favorable valuer* of the nuisance is

The GLR test betweefi(y(n) and 3, (n) is easily A(Y) = logM

found to be based on(¢) = ¢ZF~1(6*)¢,. More- fooa (Y)

over, testing betweei local hypothese§(; can be (¢1 — o) MIETP=S7H(Y — Mydh)
reduced to testing betweeld Gaussian hypotheses —(¢1 — qu)TfF;j((z)l — ¢0)/2

(24)



where P =1 — S~ My (M %" My) ' MJE~T Reparameterization. The approach described for the
andSE7=%. This minimax test is independent of the MUl hypothesis (21) can be used for testing the hy-
unknown values);, and, and coincides with the potheses with nuisance parameters in (26). For the
LR test where the likelihoods are maximized w.r.t. the Model:Y" = M6 + & = My¢ + My + &, whered

nuisance parameter. is partitioned as in (25), constraint (21) writes, for
l:m¢:77(9):O<:>9i7¢071-:0(i: 1:m¢).
A(Y) = A(Y) =1lo supy fouu(Y) The application to fault isolation and diagnosis is in-
supy, foo,u(Y) vestigated in section 4.

For a composite alternativé(; : {¢ # ¢o}, the
minimax test coincides with the GLR test (20) based
also on the maximized likelihoods: 3.5 Multiple hypotheses testing

SuPg Jo (Y)

AY) =AY) =log b, Fona(7)

Testing betweenk > 2 hypotheses is a difficult
problem, for which few theoretic results exist.

Invariance. Since the nuisance parametee R™v _ _

is completely unknown, the decision functig(y) ~ Bayesian approach. Assume(K + 1) simple hy-
should be independent of its value. To obtain a statis-POthesesit; (i = 0 : K), defined by known den-
tics which is independent of the nuisance parameter Siti€s fi(Y). Let the a priori distribution @ over
the theory of invariance can be used. For instance, ifthi( hypotheses be defined (3(;) = g¢;, with
the distribution of the observatidn depends og(v), >i—04j = 1. Letw(Y) be the vector of critical
wherey is a vector-valued function, theniitis natural to functions (Ferguson, 1967; Borovkov, 1987)

state the hypotheses testing problem as invariant under K
the group of tran_sforr_na';ior@ ={g: ¢y = g(_q/))}. (V) = (7(j | Y))(j=0:1) Zﬁ(j |Y) =1, with
To show how this principle works, we consider the =0
simplest partitioning in (14):
Y = Myp+ 1,4+ €~NO,T) (28) 0if q;f;(Y) < max 0. fi(Y)
. . o TG 1Y)=9 N (29)
wherey € R. The statistics which remains invariant Lif g f3(Y) > max qi fi(Y)
under the group of translatioris = {Y — g(Y) = . . o _ _
Y + 1,4} is (Lehmann, 1986): The Bayesian decision minimizes the risk function
2 10---0—1 i K ,
29 ot 01---0—=1 Yo R(Q,ﬂ')zl—qu Ej(m(j|Y)).
: DU ' When distribution( is difficult to obtain, this is not
21 00---1-1 Yy

a convenient criterion. Sometimes the invariance ap-
and it is maximal invariant. Matri¥” plays the role  proach allows to circumvent this difficulty and to de-
of a rejector of the nuisance parametefand such an  sign a test optimal in some sense.
invariant vectotZ corresponds to parity vectorin the
FDI literature (see 4.2). The family = {N(My¢ +
1,9, %), ¢ € R™# } remains invariant unde®, and the Slippage problem - Invariant tests Assume that the
groupG is defined byg(¢) = Myp + 1,.c (c € R). observationi§” = (y1,... ,y,), where the scalay;’s
The testing problem betweeH, : {V M,¢ =0} and are independent. Assume also that the simple null hy-
H, : {VM4p+#0} remains invariant undef. From  pothesisisio : {y1,... ,y» ~ Py} andr simple al-
(28), we obtain: ternatives state that only one distribution has switched:
Hy s Ay, Y1, Y1 U ~ Po, yj ~ P}
def T 7 9 »J] yJ] ) 9 y I

Z=VY =VMyp+VE, VE~NQ,VEVT). This problem is invariant under the group of permuta-

It results from formula (19) applied to model (14), that tions of they;’s, or equivalently the}(;'s (i = 1 : r).

the invariant statistics is: Thea priori distribution invariant under that group is
AY) = YTVT(VEVT)—IVM¢ g = 1—-rgandg; = gforj =1 : r. It can be
.(MTVT(VZVT)—IVM¢)—1 shown (Ferguson, 1967) that the corresponding invari-
. fVT(VEVT)‘1VY ant Bayesian rule, optimal over the cldsg (11), is:
and the invariant test with best constant power over R Ho if max h (y’:) <h
the family of surfaces (V)= =t %Z% (30)
Se: T MIVT(VISV) "V Myp=c? T4 if j = argmax S =

is given by (10) with this statisticA. In this case the whereh = h(a) anda = 1 — Eo(x(0[Y)). It
model is linear-Gaussian and Wald’s theory can be maximizes the common powegr = P;(§ = H;) =
applied non asymptotically. P;(0 =H;), ¥i,j#O.



Turning back to model (28), for testirn®f, : {0; = Vio = Mo(In,0) Wy o + Vi o, WhereM, (G, J) is

0 (¢ = 1 : r)} againstr alternativesH; : {0; = the lower triangular block-Toeplitz matrix associated
a,0; =0 (i =1 : ri # j)} wherea > 0, with the system impulse response, we can wiselc-
the Bayesian test (30) invariant under the group of cessive equations (31) as tiegression modgLou et
translations? = {Y — ¢g(Y) =Y + 1,2} writes al., 1986)
1 . def
AT DAL = Gro(T) E = 0p Xi + MY +2y, (32)
H it j = argmax(y; —7) >h where0,, is the observability matrix of orddp — 1),

wherey = 37, y:/r. Itis worth noting that this test 37 &' (M, (I') (1, @ E)), T Te ) and),(I")
is independent of the value of T,

is a matrix function which depends dhandon the
system dynamics in a known fashion. Under conve-
4. FROM HYPOTHESES TESTING TO FDI nient assumptions, regression model (32) has three
basic properties. First, the (unknown) state vecfgr
How the hypotheses testing methods introduced aboves independentof noise V, ,. Second, the failure
can be used forDI is addressed now. First we explain gain matricesM,(I') and (1, ® Z) are f.c.r. Third,
to reducerD! problems in dynamic systems to the noiseV, , is Gaussian, with a covariance matbiy,
static problem of monitoring the mean of a Gaussian which is generallynot block-diagona(Basseville and
vector. Then the application of the methods of sec- Nikiforov, 1993; Basseville, 1997).
tion 3 to fault detection, fault isolation and fault di-
agnosis problems is investigated. Finally, the compu-
tation of the performance indices (error probabilities)
is illustrated on a specific test instance.

The FDI problem for additive faults (31) is thus re-
duced to a static problem for the Gaussian vector
in (32)CkQ(T) ~ N(Og X+ M T,Zg).

Component faults. The argument for reducing the
FDI problem for component faults tlynamicsystems

to the problem of monitoring the mean of a Gaussian
vector(14) is based on the local approach introduced
at the end of 3.3. The idea is to build a primary
residual from a parameter estimating function (e.g.

4.1 ReducingrDI to a static problem

ReducingFDI problems in dynamic systems to the
universal static problem of monitoring the mean value
of a Gaussian vector can be achieved with the aid of

a convenient residual generation. For additive faults the efficient score), and then to define an improved

(affecting the mean value of the measured outputs), . . Lo . .
) . i residual, of which the evaluation is much easier, since
a non-asymptotic reasoning suffices. For component.

faults (affecting the dynamics of the system), the it is Gaussian distributed with the same covariance

. ; S matrix in both safe and faulty cases as in (24). The
asymptotic point of view introduced above under the details of this approach are outside the scope of the
name of local approach can be used to this end.

present paper. The interested reader is referred to
(Basseville and Nikiforov, 1993; Basseville, 1998).

Additive faults. The argument for problem reduc-

tion, which applies to both linear and nonlinear sys- From now on we concentrate on the static Gaussian
tems, is based on an off-line point of v_iew, assuming model (3), possibly reduced to (14), and on the pa-
that measured observatiorisand knowninputé/ are  rgmeter partition (25). The processed data are either
given over a finite time-window with siz& Assuming the measurements themselves or some residuals. Note
that the system is perturbed by Gaussian noises, thgngat, in all cases, the terff ¢ captures the signature of
argument i_s simply to use repeated equations, as dongne fault on the processed data, and matfixiepends

for the design of a dead-beat observer. on the system (and possibly the residual generator)

Let an observable linear dynamic system be subject todynamics.
faults acting additively as modeled in

Xiy1 = FX, + GU, + T YT, + Wy
Y. = HX, + JU, +ETy+Vk

where (W), and (Vi) are two independent white  Model (3) can be re-written as:

noise sequences, with positive definite covariance ma- ~ ~ 9

tricesQ,, andQ, respectively', andY, are the as- Y=H(+¢ H=(MH), (= <X> (33)
sumed additive faults, and the fault gainend= are

full column rank matrices. Such a model is appropriate where ther x (m + p)-dimensional matrixH is
for sensors and actuators faults. assumed to be f.c.r. To simplify the formulas, from
now on the covariance matrix @fis assumed to be:
¥ = ¢2I. The hypotheses are

(31) 4.2 Fault detection

Let Y., contain the stacked measured outputs
Y, ..., Yk4o-1. Introducing the input-adjusted out-
putsy , = Yk, — M,(G, J) Uk, and the noise Ho: {0 =0}, Hy:{0+#0}



It should be obvious that the solution to this detection (; = 1 : K). Unfortunately, this hypotheses testing
problem is a direct consequence of the solution to problem is not invariant under the group of permuta-
problem (26) for model (14) investigated in 3.4, where tions of theJ{;'s. For this reason, in the absence of
Myt stands fotd X and M ¢ stands ford/6. a priori information on the alternatives, we assume

Using the reparameterization approach to dealing with €dual prior probabilities(; ) g =(1- 0)/K,
the nuisanceX, we definen; (¢) = ¢;(i = 1 : m + p). where g is the prior on the _nuII hypo_the5|s. The
The hypotheses can be re-written as: corresponding Bayesian test is not optimal over the
classX, (11). It results from (29) that this test is:
Ho:{ni(Q) =G =0; i=1:m}

andJ; : {n;(¢) = G #0; i =1:m}. 3o if may JEXM0 )
. . . : S(Y)= =LK fux(Y) (35)
The Jacobian matrix writed = I,,,;, and matrix GO = fax+m0.(Y) -
JF1J is equal toF ! = o2(H” H)~". Finally, the s = e e T e (Y) ©

MLE of ¢ is given byl = (HTH) " *HTY. Let%,, . _ o
be them x m-dimensional upper-left block of matrix  Where fo(Y') is the density of the Gaussian distribu-
F-1 and(,, contain the firstn components of. It~ tion N(6,0%1;) andh = h(go). There are two un-

results from (22) that Wald’s statistics writes: known parameters in (35): the nuisangeand the
~ fault magnituded. To reject the effect of the nui-

_ Nt
AY) =0(Q)" F,. (O () = Tt Gm- (34)  sanceX, the test statistics should remain invariant

The test based on this statistics has optimality proper-under the group of translatiors = {Y — g(Y) =

ties analogous to the test based on (22). Itis equivalent” + HX}.thet Imf/t the”(r — ) T‘ r n:aﬁtlrlx Wh'clh
supy x frxtao(Y) rows span the left null space of matré, namely
to the_G_LR test based dng ~—supx fax (V) and to such tEatWH _ vame L WTW =
the minimax test. Sometimes the equatigg) = 0 T -1 1T def ,
result from some structural (geometric) properties of I — H(H H) .H - Vectore .:WY Is known as
the system, energy or mass balance equations for in{he parity vectorin the analytical redundancy ap-
stance. If the balance equations involve the only ob- proach (Potter and Suman, 1977). From (3), we get
servationsY’, some additional work should be done the model:
to carry the relation from the observations to the pa-
rameterd) and X . For linear systems, such equations
are known under the name of analytical redundancy S :
relations in the=DlI literature (Potter and Suman, 1977; that remains invariant under the group of transia

. ' tionsG. Of course, it is assumed that- p > 1 and
Chow and Willsky, 1984; Lot al, 1986; Pattoret 4
al., 1989: Frank, 1990; Patton and Chen. 1991). that the cross product$V’ M) x (W M,) are nonzero

foreveryl < j # I < K. Next, to cope with the
unknown fault magnitudé;, the MLE can be plugged
into (35), which results in:

c WY = WMo+ W¢

4.3 Fault isolation

. W M. 0, (E)
As mentioned in 2.3, in case of two fault modes or . Ho if gﬁﬁfi@ <h
more, isolation refers to deciding which fault mode ~ 9(Y)= ' o e (@9
occurred. Two basic approaches can be undertaken for H;if j = arg i@ﬁ}f(% >h

this purpose. The first one consists in partitionthg
as in (25), with¢ scalar, and deciding in favor of
the fault mode¢y, while considering the other fault
modes collected iy as nuisance information. Model MjTWTE

(3) writes as in (33) withd £(M, M, H). Ther x 0; = argmin [le — WM;0,||* = T
(mg + my, + p)-dimensional matrixH is assumed ’ !
to be f.c.r. Fault isolation can thus be seen as fault pecision rule (36) has a simple geometric inter-
detection in the presence of a nuisance parameter. Th¢yretation. Assume that the unit vectollg, =
test to be used is (34) witih = my and thisH. ) . L
The problem of detecting and isoladt)ing faults in the "V Mi/ M WTWM,; defineK different directions
presence of disturbances modeled exactly as the faultdn R" 7. Then, the inner produdt; - ¢ represents the
can be handled in a similar manner. projection of the parity vectoe along V;. Finally,

) i . for testing the alternative$(y, ... ,Hx against the
The second approach is multiple hypotheses testing.y 1l ,, we have to compute the differences—

In model (3), the" x 1-dimensional matrix/ is now \ e) V; and to choose the index that mini-
the fault direction and the scalar valdethe fault mizes the norme — (V; - €)V;|. This is equivalent

magnitudQe. Hence, thpe problemis to t8&f : {Y ~ to minimize the angle betweenandV; in R" 7. If

N(HX,0%I); X € R"} against the ratiof,,,, . = (¢)/fo(c) is greater tharh, then the
377

Hj{Y ~N(HX +M;0;,0%I.); X € RP,0; #0}  hypothesisH; is chosen.

wherefy(¢) is the density oN(6, o21,._,,) and



4.4 Fault diagnosis The error probabilities in (37) and (38) are also valid
for fault detection in the presence of a nuisance pa-
At this point, some comments are in order on different rameter and for the first approach to fault isolation.
types of faults. In both cases, Wald’s statistics (22)-$-distributed
with m (respectivelym,) degrees of freedom. It is
a difficult problem to compute the error probabilities
in case of multiple hypotheses (36). Some asymp-
totic results and particular cases can be found in
(Nikiforov, 1997; Lai, 2000).

A single faultaffects a single component of the fault

vector § or several components of this vector in a

specific direction or subspace. When a single fault
at a time is assumed, for isolating - or diagnosing -
the faulty component, the multiple hypotheses testing
approach described above is to be preferred: precise
criteria (performance indexes) can be defined and al-

gorithms exist. 5. EXAMPLE

Two basic types ofmultiple faultscan be distin-  How to apply some of the above methods to an in-
guished : embedded multiple faults with causality tegrity monitoring problem is now discussed. Integrity
constraints, which we do not address here, and inde-monitoring, a major issue for the Global Positioning
pendent multiple faults. The latter type assumes no System (GPS) in many safety-critical applications, re-
causality between the faults on the individual compo- quires that a navigation systemetects, isolatefaulty
nents, which can occur simultaneously in any manner.measurement sources, anemovesthem from the

In this case, and assuming that the number of failed navigation solution before they significantly contam-
components is known, running simultaneously sev- inate the output.

eral isolation tests can make up a diagnosis procedureTh GPS is based ¢ . f the di
for simultaneous faults. Actually, viewing all but one € IS based on accurate measuring ot the dis-

faults as nuisance parameters and exploiting possi—t_ance (angg from sgveral satellites Wi.th known loca-
ble invariance properties is a relevant approach, for ions to au_sgr(vehmle). AssumesTatgllltes located at
which some optimality property has been established known positionsX;; = (xj’gj’ %) (j =1:r)and
(Spjotvoll, 1972; Basseville, 1997). Roughly speak- & YS€' at}.(” - (x“’y“’z.”) .The distance from the
ing, the set of all ‘individual’ tests maximizes both j-th satellite to the user is defined as

the minimum and the sum of the individual powers. d; = | X; — Xull,

Running these tests in parallel has proven useful in

practice (Bassevillet al, 1994), and thepseudorange;; from the j-th satellite to the

user writes:

Inferring the (generally unknown) number of failed rj =dj +cs+ &,
components il is beyond the scope of this paper. The
interested reader is referred to (Basseglial, 1994)
for a discussion of and a possible solution to this

wheres is a user clock biag; is the light speed ang;
is an additive pseudorange error at the user position.
The pseudorangs is thus a function o, ands. Let

problem. X = (XT,5)T be the state, an& = (rq,... ,r)7
be the measurement. Linearizing the functi®qX)
o _ around the working poink, = (X7 ,s0)7, we get
4.5 Statistical properties the measurement equation
For computing the performance indices, we have to YER— Ry~ Ho(X — Xo) +&,

define the distributions of the test statistics under
the hypothese§(;, j = 0,..., K. Wald’s statistics
(19), which should be used for fault detection in the o = | X; — Xuo |l + €50,
absence of nuisance parameteryisdistributed with €= (¢
m degrees of freedom. Thig? distribution is central b
underH, and noncentral undéi(,. Hence, we get OR

Hy = &%
o O7 00X |y,

=P =Py(A(Y)> h)= 7
ag=Po(6#3o) =P (A(Y) > h) /h po(z)dz (37) is the(n x 4)-dimensional Jacobian matrix. Hence the

m/2—1_—m GPS model with a fault is given by:
2"/2 e/ s the density of the given by

whereRy = (7“10, C ,TnO)T, with

., &)Y, and where

wherepg(z) =

“2m72T(m)2) _ 0. 2
central x*(m) andI'(z) = ["u""'e “du is the Y = Ho(X — Xo) + M;6; + & £~ N(0,0°1)
gamma function, and where §; is an additional bias (fault) on the pseu-

h doranger; and where the fault direction i8/; =

a1 =P (6£H;) =Py (X(Y)<h):/pk(m)da: (38) 0,...,0,1,0,...,0)7 (j = 1 : r). Assume that
0 only one measurement vectoris available to the ob-
wherep (y) = po(y) e G (%, %) andG isthe  Server,situation often called snapshot. In this case, the
s problem of fault detection/isolation is solved by using
hypergeometric functiorz(a,y) = > .2, % the decision rule (36) withk = r. If the integrity



monitoring problem is to be solved in real time, the The constant power and the most stringent test ap-
performances of the decision algorithm can be cru- proaches are much more demanding. First, the alterna-
cially improved using statistical sequential methods. tive hypothesi§{; should be given as the outside of an
The interested reader is referred to (Nikiforov, 2002). ellipsoid defined by Fisher information matrix. In the
Gaussian or asymptotic cases, the three methods (min-
imax, constant power and most stringent test) lead to
6. DISCUSSION the same (Wald's) statistics. Second, the invariance
theory and reparameterization approaches to deal with
We now discuss some methodological features of thenuisance parameters in this context have the following
methods presented above. properties. The invariance theory does not warrant any
optimal property of the resulting (invariant) test; but
it can be used to reduce the initial problem to an-
other one, usually simpler or having a known solution.
Instead, the reparameterization approach warrants an
optimality in the sense given in 3.2. But this approach
should be supplied with the definition of a compos-
ite null hypothesis (21), namely with a vector-valued
functionf — n(6). The role of the invariance theory is
to investigate the invariant properties of the hypothe-
ses testing problem under a group of transformations
e For Bayesian approaches: tagriori probabil- and to prepare some variants of the above function
ities P(H;) and the probability distributions of (). This investigation should be finalized by using
the parameter8;. The existence of thB(H;) is the reparameterization approach to design an optimal
especially important in case of multiple faults, as decision rule.
shown in section 3;
e For non Bayesian approaches: the parametric
domainsg;, typically given by points, curves or
ellipsoids inR™.

A priori information. The first step in designing a
FDI algorithm is the derivation of the model and the
integration of the availablgrior information The
model design includes the definition of the model’s
structure and the partition of the parameter veétor
into the informative parameter and the nuisance.
The integration ofa priori information on the hy-
pothese$(; includes,

It is worth to note that the two approaches, (statistical)

invariance theory and (engineering) analytical redun-

dancy, are actually very close to each other. Both ap-
proaches exploit the model structure at a preliminary

The prior information on the nuisance parameter vec- stage in order to define the functiof{6), whered

tor ¢ is usually its dimensiom,,. contains e.g. the additive faults and the nuisance state.

Optimality criteria. The second design step is the Conclusion. The FDI problem has been addressed
choice of an optimality criterion. This should achieve from a statistical point of view, with faults modeled as

a tradeoff between the practical needs and the existingdeviations in the parameter vector of a stochastic sys-
theoretical results. Here the model structure plays atem. Fault detection, isolation and diagnosis have been
crucial role: the geometric properties of the monitored stated as hypotheses testing problems. Several major
system (energy or mass balance equations and othestatistical tools for solving these testing problems have
deterministic - static or dynamic - properties) not only been introduced. Particular emphasis has been put on
affect the termH X in (3), but also the natural pa- nuisance rejection and deciding between multiple hy-
rameter (the mean) of the processed data distributionpotheses. The application to GPS integrity monitoring
through the term/ 6, signature of the fault. has been described. The advantages and drawbacks of

. o . . thedifferent methods have been discussed.
The possible criteria usually result from the prior in-

formation on the hypotheses. For instance, in case
of binary decision scheme, if the alternative hypoth- 7. REFERENCES
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