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Abstract: State estimation for discrete-time linear systems is addressed by developing
a filter that provides an estimate of the state depending only on a batch of recent
measurement and input vectors. This problem has been solved by introducing a
receding-horizon objective function that includes also a weighted penalty term related
to the prediction of the state. Convergence results and unbiasedness properties have
been proved for this estimator in a previous work. In this paper, the focus is on the
problem of designing such a filter using results related to quadratic boundedness of
the estimation error. Upper bounds on the norm of the estimation error have been
found by constructing a suitable positively invariant set. Moreover, these bounds may
be expressed in terms of Linear Matrix Inequalities (LMIs), and are well-suited to
being minimized for the purpose of design. Copyright ©2002 IFAC
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1. INTRODUCTION

Receding-horizon estimation for discrete-time lin-
ear systems has been objective of investigations
from the pioneering work of Jazwinski (1968). A
receding-horizon estimator is well-suited in the
presence of modeling uncertainties or numerical
errors as, for example, in identification problems
(Niedzwiecki and Guo, 1991; Houacine, 192 ).
Moreover, in the area of fault diagnosis, receding-
horizon filters are used for the purpose of resid-
ual generation as reported, among others, in
(Medvedev, 1998). Most recent results regard the
application of such methodologies to constrained
estimatidn see (Rao et al, 200 )].

In this paper, we assume the system state
and measurement equations to be linear, time-
invariant, dledted by additive norm-bounded

disturbances that take their values from known
compact sets. A generalized least-squares ap-
proach is considered that consists in minimizing
a quadratic estimation cost function defined on
a sliding window composed of a finite number
of time stages (Alessandri et al, 1999). The cost
function is made of two contributions: the first one
is the usual prediction error computed on the basis
of the more recent measurements; the second one
is a weighted term penalizing the distance of the
current estimated state from its prediction (both
computed at the beginning of the sliding window).



The scalar weight is given by a positive scalar
parameter. This cost function is more general
with respect to the standard least-square method
and the trade-off between the two components
of the cost can be tuned by suitably selecting
the scalar weight. The receding-horizon estimator
has been derived by imposing the necessary con-
dition on the minimization of the cost function,
which can be solved analytically for linear sys-
tems (Alessandri et al., 2001). If the system and
measurement noises are absent, this filter reduces
to an observer whose estimation error is exponen-
tially convergent to zero. If disturbances affect
the system and measurement equations and are
regarded as random variables together with the
initial state, the resulting filter is asymptotically
unbiased.

The focus of this work is on the problem of finding
upper bounds on the estimation error. To this end,
in Section 2, the results on quadratic bounded-
ness for continous-time linear systems [see, among
others, (Brockman and Corless, 1998)] have been
extended to discrete-time linear systems. Section
3 is devoted to the description of the receding-
horizon estimator. The design of the estimator is
considered in Section 4, where, using the results
of Section 2, a method is proposed to minimize
an upper bound on the estimation error. This
problem can be easily expressed in terms of LMIs,
which enable one to solve it by means of efficient
convex programming algorithms [the reader is re-
ferred to (Boyd et al., 1994) for an introduction
on this subject]. Finally, a simulation example is
given in Section 5.

We conclude this section with some nota-
tions we use throughout this paper. Given a
generic, symmetric, positive definite matrix S,
let us denote by A(S) and A(S) the mini-
mum and maximum eigenvalues of S, respec-
tively. The superscript / indicates matrix trans-
pose. For a generic vector v, let us define
A

vi_n = col (vt—n,Vt—N+41,---,v¢) . Furthermore,
. . . A

given a generic matrix M, ||M||lmax = ||M|| =

[ANM M) and (| M [lmin 2 MM M)])2.

2. QUADRATIC BOUNDEDNESS FOR
DISCRETE-TIME LINEAR SYSTEMS

Consider an uncertain dynamical system de-
scribed by the state equation

zi41 = Az +Guwy, t=0,1,... (1)

where z; € R" and w; € R' are the state and
the noise vector, respectively. We assume that the
noise vector belongs to a compact set Q C R .

Definition 1. System (1) is quadratically bounded
with Lyapunov matrix P if

(i) P is a symmetric positive definite matrix;
(ii) z € R™, 2Pz >1 implies

(Az + Gw)' P (Az + Gw) < 2'Pz, Ywe€ Q.
If, instead, z € R™, 2Pz > 1 implies
(Az + Gw)' P(Az + Gw) < 2'Pz, Yw € Q,

then system (1) is said to be strictly quadratically
bounded with Lyapunov matrix P.

Remark 1. Consider the function V(z) £ 2Pe.
Strict quadratic boundedness of system (1) en-
sures that the function V(z;) decreases, i.e.,
V(z¢41) < V(z¢), for any possible value of the
system noise when V(z;) is greater than 1.

Proposition 1. If there is at least one vector w €
Q such that Gw # 0 (i-e., we are not in the trivial
case), then the following facts are equivalent:

(i) system (1) is quadratically bounded with
Lyapunov matrix P;

(if) system (1) is strictly quadratically bounded
with Lyapunov matrix P.

O

Definition 2. The set S is a robustly positively
invariant set for system (1) if z € S implies
Az+GweS, Ywe.

Theorem 1. The following facts are equivalent:

(i) system (1) is quadratically bounded with
Lyapunov matrix P;

(ii) ellipsoid ep 2 {z€R":2'Pz< 1} is a ro-
bustly positively invariant set for system (1).

O

Theorem 2. Suppose that the noise vector belongs
to the compact set

eg={weRrR: wQw<1, Q>0},

then system (1) is quadratically bounded with
Lyapunov matrix P if and only if there exists
a > 0 such that

A'PA—-P+aP

A'PG
g <0. (2)

G'PG—-aQ | =
O

Remark 2. Clearly, Theorem 1 together with The-
orem 2 and Proposition 1 ensures that, if there
exist a > 0 and P > 0 such that inequality (2)
is verified, then any possible trajectory for system
(1) converges to ep as t — o0, i. e., the set ep
results to be an attractive invariant set for system
(1). Moreover, an upper bound on the ultimate



—1/2

value of ||z] is given by A(P) as it turns out

that

. —1/2
Jim [|z(]] < A(P)

Remark 3. Tt is worth noting that inequality (2)
isan LMI in P for a fixed «. Thus, the selection
of the parameters may be easily accomplished by
means of efficient standard routines [see (Boyd et
al., 1994)].

In order to prove Theorem 2 we need the following
technical lemma.

Lemma 1. Suppose that the noise vector belongs
to the compact set eg, then the following facts
are equivalent:

(i) system (1) is quadratically bounded with
Lyapunov matrix P;

(ii) w'Qw < z'Px implies V (Az + Gw) —
V(z) <0.

Proof of Lemma 1. Clearly (ii = i),as V(z) > 1
and w'Qw <1 imply w'Qw < z'Px.

(¢ = ii) Suppose that system (1) is quadratically
bounded with Lyapunov matrix P and Fact (ii)
does not hold, then there exist o and wg such
that

wyQuo < 0 Pxo 3)
V (Azo + Guo) — V(z) >0 4)

Clearly xzq # 0, as if g = 0, then it can be
deduced that wg = 0 from (3) and consequently
V (Azg + Gwg) — V(z¢) = 0, which contradicts
hypothesis (4). Let us now define the following
quantities

1
)\éim, .Z'lé/\.’L'(), wlé/\wo.
(x(Pxo)
Clearly
2iPzy =1, wiQuw <1

and

V (Az1 + Gunr) = V(z1) =
= A2V (Azo + Gwo) — A2V (z0) > 0,
thus proving that system (3) is not quadratically

bounded with Lyapunov matrix P .
]

Proof of Theorem 2. If we rewrite the condition
stated in Fact (ii) of Lemma 1 as

[Z]I[_opg] mfo = 0

t]'TAPA-—P A'PG] [z <0
w G'PA GPG||lw| =7

then we can invoke the S-procedure, see (Boyd et
al., 1994) and conclude that (5) is satisfied if and
only if

G'PA G'PG

! !
3azo:[APA—PAPG]_[—Po

For an introduction to set invariance problems,
the reader is referred to (Blanchini, 1999). In the
next section, these results on quadratic bounded-
ness will be applied to a receding-horizon estima-
tion problem for discrete-time linear systems.

3. RECEDING-HORIZON ESTIMATION FOR
DISCRETE-TIME LINEAR SYSTEMS

Let us consider the discrete-time state equation

IL't+1:A.’IJt+BUt+G1wt, tZO,l,...(ﬁ)

observed through the noisy measurement equation

yy=Cxy +Gowy , t=0,1,... (7
where z; € R™ is the state vector (the initial
state xg is unknown), u; € R™ is the control
vector, wy € R’ is the noise vector, and y; €
R? is the measurement vector. We assume the
statistics of the random variables xg, wq, w1, .- -
to be unknown, and consider them as disturbances
of unknown character that take their values from
known compact sets. Moreover, we assume the
estimator to be a finite-memory one. Then, for
any t > N, we define the information vector as

N 2
It = col (yt—Na"'Jyt,ut—Na"wut—l) .

N +1 is the number of measurements made within
a “sliding window” {t — N,t}.

We will follow the approach to receding-horizon
estimation described in (Alessandri et al., 1999),
i.e., the goal is to estimate the state vectors
Ty_N,---,Ty, at any stage t, on the basis of
the information vector I}¥ and of a prediction
Ty_n on the state z;_n. Let us define as
2y N, .., Ty the estimates of z¢—n,...,2¢, re-
spectively, made at stage t. We assume that the
prediction T; n is determined via the state equa-
tion (6) by the estimate #;_ny_1¢—1, that is,
Ty N=A%_N_14-1+Bu_n_1,t=N+1,N+
2,....Zy denotes an a priori prediction on xy.

Let us now denote by W the set from which the
vector w; takes its values. As we have assumed



the statistics of the disturbances to be unknown,
a natural criterion to derive the estimator consists
in resorting to a least-squares approach. Towards
this end, we introduce the following loss function

t
Jo = pll&-ne—Fn [+ 1y — C |
i=t—N

where ||-|| is the Euclidean norm and 4 is a pos-
itive scalar by which we express our belief in the
prediction Z; n with respect to the observation
model. Then, at any stage t = N,N +1,..., the
following problem has to be solved:

Problem 1. For a given pair (Z{_u, 1Y), find the
optimal estimate &; n;, ..., #;; that minimize
the cost J; and satisfies the constraints

AO A0
Zi,=A%,+ Bu,,

The optimal prediction is determined as

T, N =A% N 141+ Bun1 (8
for t=N+1,N+2,.... 0

Clearly, as to the propagation of the estimation
procedure from Problem 1 at time ¢ to Problem
1 at time ¢ + 1, only the estimate &; y, has to
be retained. This estimate becomes the optimal
prediction Z; n,, for Problem 1 at time ¢ + 1
through the use of (8). When the measures given
by yi+1 and the input u; become available, we
can refer to the new information vector I}, =

col (:Ut—N—i—l; ey Y41, U — N1y - - - ,ut) and gen-
erate the new estimates 27,,,, i = t — N + 1,
...,t+ 1. The same mechanism is applied stage
after stage.

Let us introduce the following assumptions:

Al1.W is a compact set.
A2.The pair (A, C) is completely observable.
A3.N >n.

Let us define

C CA
CA CA?
Fv]\fé : ) ]\'é .
CcAN cAN
0 0 e 00
CB 0 e 00
By 2| CAB CB - 0 0|

CAN1B CcAN-1B ... CAB CB

i=t—N,. .., t—1.

0 0 -0 0
C 0 -0 0
Wil ca o 00,
CAN=2 cAN-3 ...cA C
A . A ~ A =
Tn = [FN—1|TN] ,O=FNFn,O=FyFn_1,
G 0 - 0
N 0 G; 0
G,‘J\Ié ' . ,Z=1,2,
0 0 G;
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A A
Te = gggHletH , Ty = Max |Gawe]| ,

A A A =
fmin = ”FN”min ; fmaw = ”FN” , fm = ||FN|| >
= A A AT

Jrmaz = ”FN*1|| ) kf = ”A” , t= ||TN|| .

Using the above-written definitions, we can state
the following results [see (Alessandri et al., 2001)].

Theorem 3. Suppose that p > 0. Then Problem
1 at time ¢ has a unique solution given by

o= (I+0)" [p3n+Fh (4 n
~BruTh)|

for t = N,N +1,.... Moreover, if we denote the
estimation error by e; n = z; n — £;_x ;, then

(

o = (uT +0) " [ulzo = ) - (C4) Gau

— (FJIVTNGLN + FJIV,IGQ,N) wéVl]

A

einy = (pI +0)7! [MAet—N—l + pGrwi—N_1
— (FJI\[TNGLN + F&,léz,N) wiy
_(CANYGﬂW], t>N+1.

\

The error dynamics is stable if

pks

2

ie, Vu>0if ki <1 and vu;()<'u<kmin1
;-

if kp>1. O

Theorem 3 has been used to show some nice
properties of the receding-horizon state estimator,
e.g., the exponential convergence when no noise
acts on the system and measurement equations
and unbiasedness in the presence of disturbances.



4. DESIGN OF THE RECEDING-HORIZON
FILTER USING LMI

A crucial issue about the design of the proposed
estimator is the choice of the scalar weight .
Such a parameter can be chosen to tune the rela-
tive trust in the prediction of the state estimates
or in the measures of the cost function. If the
measurements are affected by a high amount of
uncertainty, a bigger value of y may be prefer-
able. Otherwise, if the measurement noises are
negligible and/or the process noises are large, it is
well-suited to choose a smaller p. In qualitative
terms, p expresses our belief in the prediction
Z¢_n with respect to the observation model. How-
ever, in order to devise a quantitative procedure
to select an appropriate value of g, it is cus-
tomary to introduce some kind of performance
index to be optimized with respect to p. Among
several possible choices, one possibility is to rely
on the analysis of the asymptotic behavior of
the receding-horizon estimator. We can state the
following proposition [see, for details, (Alessandri
et al., 2001)].

Proposition 2. Suppose that Assumptions Al,
A2, and A3 are verified. Then the norm of the
estimation error is bounded as

fm.fmawrﬁ t>N ,

llee—nll < & —n + >
/l‘+fr2mn ’

where the sequence é; is defined as

€o = by
€ =aé_1+b, t>1

and
& Pky
“= lu’+f72nzn ’
A 1 1 =
b~ HI—A 1+0 OH
+tfmVN — 1Ire + fraa VN + 11y |,
A 1 = if VN —1
+ FmasVN F lrn) .

Then, if condition (9) is satisfied, the sequence &
has the following properties:

A 1 o
(o) lim & =é = p(l—kg) + fhin [tfm N —1re

>

+fmaaVN + 11y + || 1= A1 +0) O ,”E] ;

(b) € 1> €& < €1 -

An asymptotic upper bound on the error e;_ is

fmf_ma:c'rg

A

€oo,1 (1) = €+ (10)

An alternative approach follows from an applica-
tion of the results on quadratic boundedness pre-
sented in Section 2 to the error dynamics. To this
end, let us suppose that the compact set W is an

elliptic one, i.e., W 2 {w cwlQw<l, Q> 0}
and define

Wt—N

W41

Then we can rewrite the error dynamics as

2= Az 1 + Gy 4 (11)
where
AZ(uWI+0) " A,
G2 (uI +0)™" x

—( FJI\ITNCA{I,N

8 [Gl +Fy_GoN )

‘— (CAN)'GQ] :

We now exploit the results of Section 2 by stating
the following proposition.

Proposition 8. If system (11) is quadratically
bounded with Lyapunov matrix P, then A\(P)~1/2
is an asymptotic upper bound on the error e; n.

O

If we define
QO0--0
. 1 0Q 0
Q=— .
N+2 -t
00---Q
| S —

then we have that w;_yQuwi(—n <1, ...,
w1 Qw1 < 1 implies @;Qw; < 1. Therefore,
we can solve the following problem.

Problem 2. Find (P°,a°) = argmax {A(P)} such
that P >0, a >0, and

-
A° PG <0

GTPG — on -

ATPA—P+aP
GTPA



The solution of Problem 2 is of particular interest
for the design of the receding-horizon estimator
as the upper bound on the asymptotic estimation
error

eoo2(p) = A(P%) ™/ (12)

turns out to be minimized.

5. A NUMERICAL EXAMPLE

In this section, a simulation example is presented
to illustrate the proposed approach to receding-
horizon estimation. We considered the second-
order system described in (Kwon et al., 1999), by
means of the equations (6) and (7) with

0.9950 0.0998 0.1
A= [—0.0998 0.9950 ] B = [0.1 ] ’

100

G1=[010

] L G=[001],C=[10].
We suppose the noise vector w belongs to the
ellipsoid eg = {w : w'Qw < 1}, where

156.25 0 0
Q= 0 156.25 0
0 0 3125

In order to evaluate how conservative the asymp-
totic bounds presented in this paper are, a nonlin-
ear programming problem may be solved that con-
sists in determining the worst-case performance,
ie.,

) 2

eworst(ﬂ || IT-N _‘%%*N || ’

max
w; Qw,<1,t€[0,T—1]
where the simulation horizon T has to be chosen
sufficiently large with respect to the dynamics of
the error. eyorst(pt) provides a simulation-based
practical evaluation of the maximum asymptotic
estimation error. As shown in Fig. 1, the bound
given by (12) and obtained via LMI is much less
conservative than that provided by (10).

6. CONCLUSIONS

A method to perform receding-horizon estima-
tion for discrete-time linear systems has been pre-
sented. A complete analysis of stability and of the
unbiasedness properties for such a filter has been
provided in (Alessandri et al., 2001)). Here we
focused on (i) a method to find less conservative
upper bounds on the estimation error based on
quadratic boundedness and (ii) a design method-
ology that aims at minimizing such upper bounds
using LMI procedures.

35¢ e
3l
250
ol
15}

l,“”H”HHHHH"H“ e
worst

0.5¢

O L L L
0 2 po4 6 8

Fig. 1. Diagrams of eq,1, €co,2 and eyorst as
functions of u, for T equal to 70.
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