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Abstract: In this paper, the problem of forcing the Chen’s chaotic attractor to track a
sinusoidal and a chaotic reference signals in the presence of uncertainties in the system’s
parameter values is addressed by combining the theory of robust regulation and the exact
Takagi-Sugeno fuzzy model for the Chen’s chaotic attractor. On the basis of designing a
robust controller for each linear subsystem, it is shown that the aggregated controller assures
robust tracking in the presence of variations on the parameters of each linear subsystems and
in the membership functions as well.
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1. INTRODUCTION

In this work, we consider a dynamical system
described by

ẋ= f (x,u,w,θ) (1)

ẇ= s(w) (2)

e= h(x,w,θ) (3)

where θ ∈ Rν is a parameter vector,u(t) ∈ Rm is
the input signal,x(t) ∈ Rn is the state of the system,
w(t)∈Rq represents the state of an external signal gen-
erator (exosystem), described by (2), which provides
the reference and/or the perturbation signal. Equation
(3) describes the output tracking errore(t) ∈ Rm de-
fined as the difference between the system output and
the reference signal. The linear approximation of the
system (1)-(3) around a specific point(x̄, w̄, ū) is given
by

ẋ= Aθ x+Bθ u+Pθ w (4)

ẇ= Sw (5)

e=Cθ x−Rθ w (6)

where
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Aθ =
∂ f (x,w,u,θ)

∂x
|((x̄,w̄,ū);S=

∂s(w)
∂w

|(w̄);

Bθ =
∂ f (x,w,u,θ)

∂u
|(x̄,w̄,ū);Cθ =

∂h(x,w,θ)
∂x

|(x̄,w̄);

Pθ =
∂ f (x,w,u,θ)

∂w
|(x̄,w̄,ū);Rθ =

∂h(x,w,θ)
∂w

|(x̄,w̄) .

The subindexθ indicates the explicit dependence
of each matrix with respect to the parameter vector. In
the following, M0 will denote the value of matrixM
for the nominal values of the parameter vectorθ .

For such a system, an interesting problem is that
of controlling it to track, at least asymptotically, a
desired reference signal, preserving at the same time
some suitable stability property of the closed-loop
scheme. Among the different approaches studied, the
so-called regulator theory has provided a frame to
accomplish such objectives. The regulator problem
for system (1)-(3) consists in finding a state or error
feedback controller such that the equilibrium point of
the closed system with no external signals is asymptot-
ically stable, and the tracking error goes to zero when
the system is under the influence of the exosystem.
This problem has been studied intensively both in the
linear case (Francis, 1977), and recently in the non-
linear setting (Isidori and Byrnes, 1990; Huang and
Rugh, 1990), by showing that the nonlinear regulator
problem is solvable by means of the solution of a
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partial differential equations, named Francis-Isidori-
Byrnes (FIB) equations. On the other hand, for non-
linear systems, it has been shown that the inclusion of
an internal model in the controller structure was also
necessary and sufficient for having robust regulation,
i.e., the capability of the controller for maintaining the
output tracking error within certain predefined bounds
while ensuring the stability of the closed-loop sys-
tem, despite the presence of parameter perturbations
(Hepburn and Wonham, 1984). Following these ideas,
in Isidori (1995), Dellipriscoliet al (1995) and Byrnes
et al (1997), an error feedback controller which relies
on the existence of an internal model is presented. This
internal model represents an inclusion of the exosys-
tem dynamics into an observable one, which allows to
generate, as in the linear case, all the possible steady
state inputs for the admissible values of the system
parameters. A remarkable feature is that the controller
is constructed on the basis of the linear approximation
of the nonlinear system and, in the case when the im-
mersion is linear, the controller becomes fully linear.
However, since the solvability of this robust solution
relies on the existence of a solution of both the FIB
equations and the existence of an internal model, for
which no solution is guaranteed a priori, then for many
complex physical systems, this may become a draw-
back. Another additional problem is that a rigorous
mathematical model may not be available, but only
some local mathematical behavior could be obtained.
For this situation, the Tagaki-Sugeno(TS) formu-
lation provides a fuzzy model which could describe
the dynamics of complex systems under appropriate
selection of linear subsystems for each predefined
condition of the dynamics of the system. Using these
ideas, many works have appeared in the literature for
dealing with the control of nonlinear systems, since
linear feedback control techniques can be utilized to
stabilize the nonlinear dynamics. In this case, the sta-
bilization properties are based on the existence of a
common Lyapunov function for each linear subsystem
(T. Taniguchi and Wang, 1999; Wang, 1997).

To precise these ideas, suppose that it is possible
to describe locally the input-output behavior of system
(1)-(3) by aTS fuzzy dynamic model described by the
following r rules:

Plant rule i :
IF
z1(t) isF1i and.....and zp(t) is Fpi
THEN

∑
i

:





ẋ(t) = Aθ ix(t)+Bθ iu(t)+Pθ iw(t)
ẇ(t) = Siw(t)
ei(t) = Cθ ix(t)−Rθ iw(t), i = 1, ..., r

wherez1(t), ...,zp(t) are measurable premise vari-
ables,Fji are the corresponding fuzzy sets and the
linear subsystems are obtained from some knowledge
of the dynamics on the process.

For a given triplet(x(t),u(t),w(t)), the composite
fuzzy model is obtained by using a singleton fuzzifier,

product inference and center of gravity defuzzifier, and
is then given by

ẋ(t) =
r

∑
i=1

µiAθ ix(t)+
r

∑
i=1

µiBθ iu(t)

+
r

∑
i=1

µiPθ iw(t) (7)

ẇ(t) =
r

∑
i=1

µiSiw(t) (8)

e(t) =
r

∑
i=1

µi

[
Cθ ix(t)−Rθ iw(t)

]
(9)

whereµi is the normalized weight for each rule
calculated from the membership functions forzj in Fji
and satisfyingµi = µi [z(t)]≥ 0 and∑r

i=1 µi [z(t)] = 1,

z(t) =
[
z1(t), ...,zp(t)

]T
.

For this system, we introduce theFuzzy Robust
Regulator Problem(FRRP) which consists on finding
a set of triplets(Ki ,Gi1,Gi2), i = 1, .., r such that, for
all admissible parameter values in a suitable neighbor-
hoodP of the nominal ones, the following conditions
hold:
FRS) The equilibrium point(x,ζ ) = (0,0) of the

system

ẋ=
r

∑
i=1

µiAθ ix(t)+
r

∑
i=1

r

∑
j=1

µi µ jBθ iH̃ jζ (t)

ζ̇ =
r

∑
i=1

r

∑
j=1

µi µ jGiCθ jx(t)+
r

∑
i=1

µiFiζ (t)

is asymptotically stable.
FRR) The solution of the closed-loop system satisfies

that

lim
t→∞

e(t) = 0.

In Xiao (2000), a combination of the regulation
theory and the Tagaki-Sugeno fuzzy modelisation for
designing a controller was presented for both state
and error feedback. Along the same lines, in Castillo-
Toledo (2001), the use of the robust regulation theory
for solving the FRRP is proposed. The basic idea is to
take the rules for the dynamic regulator as

Controller rule i :
IF
z1(t) is F1i and.....and zp(t) isFpi
THEN
ζ̇ (t) = Fiζ (t)+Gie
u(t) = H̃iζ (t),

so that he final controller is given by

ζ̇ =
r

∑
i=1

µiFiζ +
r

∑
i=1

µiGie (10)

u=
r

∑
i=1

µiH̃iζ . (11)



The following result gives conditions for the solu-
tion of the FRRP.

Theorem 1.Assume the following conditions hold:
FH1) The pairs(A0i ,B0i) are stabilizable

FH2) The pairs

(
A0i −B0iHi
0 Φi

)
,
(

C0i 0
)

with Hi =

diag(H j) andH j = ( 1 0 · · · 0 ); are detectable
FH3) For all θ ∈P,

rank

(
Aθ i −λ I Bθ i

Cθ i 0

)
= n+ p

for eachλ which is an eigenvalue ofS.
FH4) There exist triplets(Ki ,G1i ,G2i) and a matrixP

such that

MT
ii P+PMii < 0

for i = 1, ..., r and
(

Mi j +M ji

2

)T

P+P

(
Mi j +M ji

2

)
< 0

for i < j ≤ r, whereMi j =
(

A0i B0iH̃ j
GiC0 j Fi

)
,

then theFRRP is solvable.

Proof: We note first that thanks to FH3, there exist
mappingsxss = Πθ w and uss = Γθ w satisfying the
equations

Πθ Si = Aθ iΠθ +Bθ iΓθ +Pθ

0=Cθ iΠθ −Rθ i

and this, together with assumptions FH1 and FH2
guarantees that, for each subsystem, the robust regu-
lation problem is solvable, namely, there exists a con-
troller (10) with

Fi =
(

A0i +B0iKi −Gi1C0i
0

−Gi2C0i Φi

)
;Gi =

(
Gi1
Gi2

)

H̃i =
(

Ki , Hi

)
.

such that

lim
t→∞

ei(t) = 0.

Now, for the overall stability part whenw = 0, the
closed-loop of (10–11) with the system (7–9) at the
nominal values of the parameter vector can be written
as

ẋ(t) =
r

∑
i=1

µiA0ix(t)+
r

∑
i=1

µiB0i

(
r

∑
j=1

µ j H̃ jζ

)

ζ̇ (t) =
r

∑
i=1

µiFiζ (t)+
r

∑
i=1

µiGi

(
r

∑
j=1

µ jCθ jx(t)

)

which, defining xe(t) =
(

x(t) ζ (t)
)T

may be re-
written as

ẋe =
r

∑
i=1

µ2
i

(
A0i B0iH̃i

GiC0i Fi

)(
x(t)
ζ (t)

)
+

r−1

∑
i=1

r

∑
j=i+1

µi µ j

{(
A0i B0iH̃ j

GiC0 j Fi

)
+

+
(

A0 j B0 j H̃i
G jC0i Fj

)}
xe

=

{
r

∑
i=1

µ2
i Mii +2

r−1

∑
i=1

r

∑
i=i+1

µi µ j

[
Mi j +M ji

2

]}
xe.

whereMi j defined as above. Now, taking the Lyapunov
function

V(x,ζ ) = xT
e Pxe

we have that

V̇ = ẋT
e Pxe+xT

e Pẋe

= xT
e

{
r

∑
i=1

µ2
i Mii +2

r−1

∑
i=1

r

∑
i=i+1

µi µ j

[
Mi j +M ji

2

]}T

P

+xT
e P

{
r

∑
i=1

µ2
i Mii +2

r−1

∑
i=1

r

∑
i=i+1

µi µ j

[
Mi j +M ji

2

]}
xe

From this, we obtain

V̇ = xT
e

{
r

∑
i=1

µ2
i (MT

ii P+PMii )

}
xe+

2
r−1

∑
i=1

r

∑
i=i+1

µi µ jx
T
e

{(
Mi j +M ji

2

)T

P

+P

(
Mi j +M ji

2

)}
xe

Now, if assumption FH4 holds, theṅV(x,ζ ) is definite
negative, and thereforex(t) andζ (t) converge globally
asymptotically to zero. Since the property of stability
in the first approximation is not destroyed by small pa-
rameter variations, the controller in question stabilizes
any plant so long the parameter vectorθ stays on some
open neighborhoodP.

For the regulation part, this follows immediately
from the fact that each controller is robust for each
subsystem, and therefore guarantees zero tracking er-
ror, i.e.limt→∞ ei(t) = 0, and then the total error is

lim
t→∞

e(t) = lim
t→∞

r

∑
i=1

µi [ei(t)]

=
r

∑
i=1

µi

[
lim
t→∞

ei(t)
]

= 0.

2. APPLICATION TO THE CHEN’S CHAOTIC
ATTRACTOR

2.1 Periodic reference tracking

The approach presented so far is used in this work
to pursue the trajectory control for the well-known
Chen chaotic attractor described by



ẋ1 = a(x1−x2)

ẋ2 = (c−a)x1−x1x3 +cx2 +u

ẋ3 = x1x2−bx3

This is a nonlinear system exhibiting chaotic behavior
for some specific values of the parametersa,b,c. A
remarkable feature of this chaotic system is that it may
be exactly described by a TS Fuzzy Model (Chen and
Ueta, 1999), so the use of the TS fuzzy model is a valid
alternative for synthesize a controller.

Under this premise, we use the fuzzy regulator
approach to derive a nonlinear control law which en-
sures robust output regulation when applied to the
original system. For simulations purposes, we take the
values ofa = 35,b = 3 andc = 28, and perform all
calculations needed for the controller. We verify that
the conditionsFH5 are satisfied for the system and by
using Using the Matlab LMI Toolbox, a matrixP was
found.

The simulations results of the controller applied to
the fuzzy system are shown in Figures 1a) trough 1d).
Figure 1a) shows the output tracking error response
for variations up to25%in the values ofa andb, and
−75%in the value ofc.
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Fig. 1. Output tracking error

As we may observe, the controller is able to take
the output tracking error asymptotically to zero despite
the variations in the parameters. We have also intro-
duced some variations in the membership functions in
order to violate the condition∑8

i=1 µi(t) = 1 as shown
in Figure 1c). We may observe that the output tracking
error in Figure 1d) goes asymptotically to zero even
under this circumstances, showing the robustness of
the controller to these perturbations as well.

2.2 A Chaotic reference tracking

In this case we take as the reference generator, the
Lorenz chaotic system, whose behavior is described
by

ẇ1 = α(w2−w1)

ẇ2 = γw1−w2−w1w3

ẇ3 = w1w2−βw3.

With α = 10, β = 8/3, γ = 28, this system pro-
duces a chaotic dynamics. As in the case of the Chen’s
attractor, it is possible to show that this system may
be exactly described by a Takagi-Sugeno fuzzy model.
We then apply the technique mentioned so far to obtain
a controller that allows to track the reference signals
given byw1,w2, andw3. It is interesting to note that
the linearization of the system at the equilibrium point
(0,0,0) exhibits an unstable eigenvalue and therefore
the classical nonlinear regulation theory can no longer
be applied. However, since the calculations for the
Takagi-Sugeno scheme needs only the linear submod-
els, then it is still possible to design a Fuzzy Robust
Regulator.

In this case, we consider the Chen’s attractor with
three inputs, namely

ẋ1 = a(x1−x2)+u1

ẋ2 = (c−a)x1−x1x3 +cx2 +u2

ẋ3 = x1x2−bx3 +u3.

The simulation results are presented in Figure 2.
We have introduced ont = 20s variations up to 25%
in a and b and -75% inc. Figure 2 shows both the
reference and output signals. We may observe that
the system track the chaotic signals with small errors.
Finally, as in the previous case, in Figure 3 the output
tracking errors when variations on the membership
functions are introduced.
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Fig. 2. Output versus reference signals

3. CONCLUSIONS

In this paper we have presented a robust regulation
scheme for the Chen’s Chaotic Attractor, based on
a combination of the theory of robust regulation for
linear systems and the Tagaki-Sugeno fuzzy modeli-
sation for nonlinear systems. Taking advantage on the
fact that the Chen’s model may be exactly described
by a TS fuzzy model, we design stabilizing gains for
each linear systems associated with a rule in the fuzzy
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Fig. 3. Output tracking error

model, which guarantees the stability property of the
overall model. This allows the design of a regulator
for each subsystem which is robust with respect to
variations in the parameters associated to each linear
subsystem and also in the presence of parameter varia-
tions in the membership functions. This scheme allows
to ensure asymptotic zero output tracking error for the
TS fuzzy model of the Chen’s attractor and for the
nonlinear system as well.
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