
CSP GENERATION FROM PETRI-NETS MODELS

Daniel Riera � Miquel A. Piera � Antoni Guasch ��

� Enginyeria de Sistemes i Automàtica,
Universitat Aut̀onoma de Barcelona, Barcelona, Spain

fDaniel.Riera,MiguelAngel.Pierag@uab.es
�� Instituto de Rob́otica e Inforḿatica Industrial,

UPC/CSIC, Barcelona, Spain , Guasch@esaii.upc.es

Abstract: The use of traditional production planning techniques is constrained by large num-
bers of decision variables, uncertainty in demand and time production, and non-deterministic
system behaviour, characteristics intrinsic in manufacturing. The aim of this paper is to
present a methodology that combines the modelling power of petri-nets (PN) to represent
both manufacturing architecture and production logistics, together with the optimisation
performance given by constraint programming (CP). While PN can represent the entirety
of any system, CP is effective in solving large problems, especially in area of planning.
The foundations to generate a Constraint Satisfaction Problem (CSP) from a PN are given.
Copyright c� 2002 IFAC

Keywords: Methodology, Petri-nets, Constraint Satisfaction Problems, Planning, Production
systems

1. INTRODUCTION

In the last few years, many methods and tools have
been developed to improve production performance
in the manufacturing industry. These approaches try
to tackle changes in production objectives such as
high production diversity(instead of high production
volume), make to order(instead of make to stock), and
zero stock(instead of just in time) policies. Although
OR (Operations Research) methodologies have been
proved to perform well in front of some types of
problems, they fall short to tackle present flexible
manufacturing scheduling production demands.

Petri-nets (PN) have shown to be successful tools
for modelling Flexible Manufacturing Systems (FMS)
due to several advantages such as the conciseness of
embodying both the static structure and the dynam-
ics, the availability of the mathematical analysis tech-
niques, and its graphical nature (Jensen, 1997; Silva
and Valette, 1989; Zimmermann et al., 1996). Fur-
thermore, PN are very suitable to model and visu-
alize patterns of behaviour comprising concurrency,

synchronization and resources sharing, which are the
main characteristics of a FMS.

Thus, PN formalism is used to specify all the events
that lead to a system state change (e.g. beginning or
ending of a production activity) together with all the
preconditions that should be satisfied in order an event
could occur (e.g. raw material and resources require-
ments, etc.). Note that a PN model of a production sys-
tem is enough to simulate its behaviour, which means
that the model formalizes both:

� Architecture Production Constraints: Automated
transport units (i.e. conveyors, robots, manipula-
tors, etc.) bind the material flow in the production
system.

� Logistic Production Constraints: Despite
flexible production mechanisms allow different
scheduling policies, product recipes reduce sub-
system interaction due to several factors such as
the operation sequence in which the raw material
must be processed.

Copyright © 2002 IFAC
15th Triennial World Congress, Barcelona, Spain



Constraint Programming (CP) has been mainly chosen
because of its good optimisation performance. Since
CP is usually embedded in declarative programming,
the user does not need to write an algorithm to solve
the problem but only to model the problem to be
solved. Therefore, once the model is generated, CP
can optimise it without requiring an expert to rule it.

In this paper, the main aspects of a PN analysis
methodology to deal automatically with all the con-
straints of a production system are presented. The aim
of this methodology is to automatize the constraints
modelling phase of a production system — described
previously in PN formalism — in order to generate a
quasi-optimal scheduling for a particular system state
and production goal, making the optimisation phase
transparent to the user (See Fig. 1).

Fig. 1. Presented methodology

It should be noted that despite there are several PN
analysis tools to improve system performance, those
can be used only when the PN model shows certain
characteristics, which is not always the case of PN
models of production systems. On the other hand,
despite CP offers a powerful technology to deal with
the best planning policy for a production system, it
requires a deep knowledge in both the production
system and the CP technology, and time to develop
the CP model. Thus, the present work tries to combine
the main advantages of both methodologies in order
to offer good scheduling policies, minimizing the time
spent in the modelling and optimization tasks.

The foundations for the analysis on a PN model and
the generation of the CP model are presented. This
analysis is made by detecting structures in the PN,
which are translated directly into the CSP constraints.

In sections 2 and 3 PN and CP backgrounds are pre-
sented. Section 4 introduces the purposed methodol-
ogy. Section 5 illustrates this methodology by means
of an example. Finally, Sections 6 and 7 discuss the
benefits, and present the conclusions and future work.

2. PETRI-NETS BACKGROUND

A Petri-net(PN) is a particular kind of directed graph,
together with an initial state called the initial marking.
An ordinary PN is a 5-tupla N � �P� T� I� O�M��:

� P � fp�� � � � � png is the set of places, repre-
sented graphically by circles.

� T � ft�� � � � � tmg is the set of transitions, repre-
sented graphically by bold lines or rectangles.

� I � �P � T � � N is a function that defines the
weight of directed arcs from places to transitions.

� O � �T � P � � N is a function that defines the
weight of directed arcs from transitions to places.

� M� is the initial marking.

A markingis an array that assigns to each place a non-
negative integer. If a marking assigns to place p a value
k (k � Z

�), p is marked with k tokens, represented
graphically by black dots.

A transition ti is said to be enabled by a marking M ,
if �p � P � M�p� � I�p� ti�. The firing transition
generates a new marking M � which can be computed
by withdrawing I�pk� ti� tokens from each pk input
place of ti, and by adding O�pj � ti� tokens to each pj
output place of ti.

In manufacturing terms, transitionsare used to model
operations (firing a transition can represent a task or
process initiation or an ending of a task), placesare
used to model buffers and resources status, connecting
arcs specify logical relationships and resource con-
straints among operations, and tokensrepresent ma-
terial and resources conditions.

3. CONSTRAINT PROGRAMMING
BACKGROUND

Constraints arise in most areas of human endeavour.
A constraint is simply a logical relation among sev-
eral unknowns (or variables), each taking a value in
a given domain. The constraint thus restricts the pos-
sible values that variables can take. CP is the study of
computational systems based on constraints. The main
idea is to solve problems by stating constraints (re-
quirements) about the problem area and, consequently,
finding a solution satisfying all the constraints.

The earliest ideas leading to CP may be found in the
Artificial Intelligence (AI) with the scene labelling
problem (Waltz, 1975) and the interactive graphics
(Sutherland, 1963).

Gallaire (1985) and Jaffar and Lassez (1987) noted
that logic programming was just a particular kind of
CP. The basic idea behind Logic Programming (LP),
and declarative programming in general, is that the
user states what has to be solved instead of how to
solve it, which is very close to the idea of constraints.

Recent advances promise that CP and Operations
Research (OP), can exploit each other, in particular,
the CP can serve as a roof platform for integrating
various constraint solving algorithms including those
developed and checked to be successful in OR.

Then, CP combines ideas from a number of fields
including Artificial Intelligence, Combinatorial Algo-
rithms, Computational Logic, Discrete Mathematics,
Neural Networks, Operations Research, Programming
Languages and Symbolic Computation.



The problems solved using CP are called Constraint
Satisfaction Problems (CSP). A CSP is defined as:

� a set of variables,

X � fx�� � � � � xsg

� for each variable xi, a finite set Di of possible
values (its domain), and

� a set of constraintsrestricting the values that the
variables can simultaneously take.

Such as Barták (1999) says: “Constraint programming
is an emergent software technology for declarative
description and effective solving of hard real life prob-
lems, especially in areas of planning and scheduling”.

4. PETRI-NET MODELS TO CP MODELS

4.1 CSP Components Identification

In order to analyse the PN model and generate the
CSP problem, the first step is to identify the elements
composing the CSP. These elements are:

� Variables
There is a variable for each firing of a PN

transition. Hence, every transition is associated
to a list of times. The length of this list is given
by the number of times the transition is fired (or
a higher bound if unknown). These are called
transition variables.

The second set of variables are those repre-
senting the number of firings of the transitions.
These variables are called firing variables.

Apart of these, there are also Boolean vari-
ableswhich indicate the paths followed by to-
kens in bifurcations.

� Domains
The domains on the transition variablesare

defined using the knowledge about the problem.
Usually the fact of reducing the domains on the
variables makes the search faster. Firing vari-
ablesdepend on the bounds found by the Transi-
tions Firings Boundingalgorithm (See Alg.1).

� Constraints
They are generated in the PN structures detec-

tion phase (See Section 4.3) and restrict the paths
which can be followed by every token and the
times when transitions can be fired.

4.2 Calculation of the Bounds of the Transitions
Firings

Since the variables are the firings of the transitions in
the PN, it is necessary to bound the number of times
they happen (�). Otherwise the number of variables
would become unmanageable.

An algorithm which depends on the PN and the initial
state (M�)of the problem is proposed:

Algorithm 1. Transitions Firings Bounding

Step 1: Initialisation of �� by applying rules
T�P and P�T (See below) for each place and tran-
sition respectively. First T�P is applied to every
place in the PN and later P�T calculates the initial
�–values for every transition.

(a) T�P (b) P�T

Fig. 2. General cases for place and transition feeding

T�P finds the maximum number of tokens each
place p � P can contain during all the system
run. This is calculated applying to the general
case shown in Fig.2(a) the formula presented in
Eq.1.

tok�p� � tokini�p� �

mX
i��

�i � Oti�p (1)

where tokini�p� is the initial number of tokens of
place p in the initial marking (M�).

P�T initialises the number of times each transi-
tion t � T might be fired during the system run.
The number or expression (if there are unknown
values) is given by the application of the formula
in Eq.2 to the general case shown in Fig.2(b).

��t� � min
i�������n

jtok�pi�
Ipi�t

k
j Ipi�t 	� � (2)

Step 2: Propagation of the �–valuesin � i from its
values in �i��. In this step both numbers and ex-
pressions are propagated.

Step 3: Resolution of the expressions in �i. If a ex-
pression representing �j contains itself (�j), it is
not considered, and is substituted by infinity (
).
After this simplification, min functions are applied,
if possible.

Step 4: if ��j � �i j �j �� Z� then go to Step
2 else End.

4.3 Petri-net Structures Detection

In this step, the PN structures are extracted in order to
generate the constraints and reduce the search space.
Each structure corresponds to a set of constraints
which are automatically generated:

4.3.1. Structure R1 R1 constraints (See Eq.3) are
generated for every single transition in the PN. This is
not a structure but a way of removing symmetries from
the problem. Since there is a variable for each firing of



a transition, by using R1, the values of these variables
(and hence the firings) are given a unique order.

tij � tij��
�j � �� � � � � l� length�Ti� � l

(3)

4.3.2. Structure R2 This structure includes two
consecutive transitions (with a direct path between
them). Each firing time of the exit transition is related
with one of the source transition (See Eq.4).

tij � tkj � timek
�j � 	� � � � � l� length�ti� � length�tk� � l

(4)

where timek is the processing time associated to
transition k.

These constraints are not generated if both transitions
(forming R2) belong to a more complex structure (i.e.
F, J or FJ).

4.3.3. Structure IS This represents an initial stock
(i.e. an isolated place feeding two or more transitions).
IS structure does not add temporal constraints but
constraints related with the number of firings of the
exit transitions (See Eq.5).

X
�i � tokini�pin�

�i j feeds�pin� ti�
(5)

where pin is the place representing the initial stock.

4.3.4. Structure F This structure is formed by a sin-
gle transition, which feeds a set of transitions through
a single place (See Fig.3). A list of Boolean variables
are used to select the path followed by each token
in the structure. These variables enable or disable
constraints depending on their correspondence to the
selected path (See Eq.6).

touti � �tinj � timein� � Boutj 
Bdi� �M

�j � 	� � � � � n� length�Tin� � n�

�i � 	� � � � �m� length�Tout� � m�

Bdi� � diff�i�
jX

k��

Boutk �

(6)

where function diff returns zero (�) if the parame-
ters are equal and one (	) if they are different, and M
is an integer that dominates the expression (a ‘big-M’
term).

4.3.5. Structure J This is complementary to struc-
ture F. A set of transitions feed a single transition

Fig. 3. Structure F

through a unique place (See Fig.4). Boolean variables
are also necessary in this case (See Eq.7).

touti � �tinj � timein� �Bini 
Bdi� �M

�j � 	� � � � � n� length�Tin� � n�

�i � 	� � � � �m� length�Tout� � m�

Bdi� � diff�j�
iX

k��

Bink �

(7)

Fig. 4. Structure J

4.3.6. Structure JF This is the most complex struc-
ture, where a list of input transitions feeds an output
list of transitions (See Fig.5). This structure also re-
quires the use of Boolean variables(See Eq.8).

Touti � �Tinj � timein� � Bin�outj

Bdi� �M

�j � 	� � � � � n� length�Tin� � n�

�i � 	� � � � �m� length�Tout� � m� (8)

Bdi� � diff�i�
X
in

jX
k��

Bink�

Fig. 5. Structure JF

4.4 CSP Labelling Definition

Since the aim of this methodology is to find the
optimum, not only a solution has to be found but
optimality must be proved. Although a possibility is to
generate the complete solutions tree, this would mean
a high computational cost.



On the other hand optimality can be proved by la-
belling the variable to optimise first, and selecting its
values from better to worse solutions. This means that,
in the moment a solution is found, all the possible
better solutions have been already rejected. Optimality
is proved and further search is not necessary.

Transition and Boolean variablesare labelled only
once for each instance of the variable to optimise (any
of their feasible values gives an optimal solution).
Paths are selected by labelling Boolean variablesfirst.
Transition variablesare labelled later.

5. EXAMPLE

Example 1.Process and Assemble Factory

The system is composed by two machines which per-
form the next operations: M1 makes two different op-
erations depending on the type of piece it is working
with. This is a shared resource. Hence it is necessary
to plan the order the pieces are put into it. On the other
hand, M2 is used to join two processed pieces (A and
B). The system can be seen in Fig. 6.

The aim is, given 10 pieces of type A and 5 pieces of
type B, to perform 
 processed and assembled pieces.

Fig. 6. The studied system

5.1 Petri-net of the System

The PN of the studied system (See Fig.7) has the next
components:

Places:
P1: Stock of pieces A.
P2: Stock of pieces B.
P3: Piece A being processed in M1.
P4: Piece B being processed in M1.
P5: M1 free.
P6: Stock of pieces A processed.
P7: Stock of pieces B processed.
P8: M2 free.
P9: M2 assembling a final piece.
P10: Stock of assembled pieces.

Transitions:
T1: Move piece A to M1 (1 hour).
T2: Move piece B to M1 (1 hour).
T3: Retire piece A from M1 (2 hours).
T4: Retire piece B from M1 (4 hours).
T5: Move processed pieces A and B to M2 (1
hour).

T6: Retire final piece from M2 (3 hours).
Initial marking:

M� � �	�� 
� �� �� 	� �� �� 	� �� ��

Fig. 7. The Petri-net of the system

5.2 Transitions Firings Bounding

In order to calculate the higher bounds of the transi-
tions firings, Algorithm 1 is applied to the PN:

�� � �min�	�� 	 � ����min�
� ���� ��� ���
min���� ��� 	 � �	�� �
�

�� � �min�	�� 	 � ����min�
� ����min�	�� 	 � ����
min�
� ����min���� ��� 	 � �
��
min���� ��� 	 � �	�� �

� �min�	��
��min�
�
��min�	��
��
min�
�
��min���� ���
��
min���� ���
�� �

� �	�� 
� 	�� 
�min���� ����min���� ����
�� � �	�� 
� 	�� 
�min�	�� 
��min�	�� 
�� �

� �	�� 
� 	�� 
� 
� 
� � �

5.3 Structures Found

The structures found and automatically translated into
constraints are as follows:

R1: [T1], [T2], [T3], [T4], [T5] and [T6]
R2: [T1 � T3], [T2 � T4] and [T5 � T6]
IS: �
F: �
J: [T3, T4, T6 � T5]
JF: [T3, T4 � T1, T2]

5.4 Results

The firing times found after the optimisation phase are
the next:



T1=[20, 23, 26, 29, 37]
T2=[0, 5, 10, 15, 32]
T3=[21, 24, 27, 30, 38]
T4=[1, 6, 11, 16, 33]
T5=[23, 27, 31, 35, 40]
T6=[24, 28, 32, 36, 41]

Then, the optimal time for the performance of 5 pieces
(processed and assembled) is 

 hours (T�
�time	).

6. BENEFITS OF THE PURPOSED
METHODOLOGY

The proposed approach improves several aspects of
actual scheduling tools, some of which are:

� The specification of the logistics of complex pro-
duction systems using the PN formalism together
with the presented analysis tool is a useful proce-
dure to improve the overall system performance.

� The use of the CP technology to avoid local
optimisation in front of global optimisation gives
better solutions.

� The possible validation of the scheduling policy
by means of a PN simulator. Note that the CP
model does not consider the stochastic aspects
of manufacturing systems.

7. CONCLUSIONS AND FUTURE WORK

The presented methodology has proved to work for
academic examples. Although only structural con-
straints extracted from the PN have been presented,
new constraints are being studied. These may raise
from relations like symmetries, t-invariants, etc. and
also constraints which can be added by experts on
the studied system. The addition of these constraints
makes the search faster. Likewise, more complex PN
models are going to be considered (Wang and Wu,
1998).

Another work line is the hierarchial structuring of the
search in order to perform the optimisation in different
steps: splitting the system in more general structures
first and, specializing later.

8. REFERENCES

Barták, R. (1999). Constraint programming: In pursuit
of the holy grail. Proceedings of WDS99 (invited
talk).

Gallaire, H. (1985). Logic programming: Further de-
velopments. IEEE Symposium on Logic Pro-
gramming.

Jaffar, J. and J.L. Lassez (1987). Constraint logic pro-
gramming. The ACM Symposium on Principles of
Programming Languages.

Jensen, K. (1997). Coloured Petri Nets: Basics Con-
cepts, Analysis Methods and Practical Use.
Vol. 1. Springer-Verlag. Berlin.

Silva, M. and R. Valette (1989). Petri nets and flexible
manufacturing. Lecture Notes in Computer Sci-
ence, vol. 424, Advances in Petri Netspp. 374–
417.

Sutherland, I. (1963). Sketchpad: a man-machine
graphical communication system. Proc. IFIP
Spring Joint Computer Conference.

Waltz, D.L. (1975). Understanding line drawings of
scenes with shadows, in: Psycology, of Computer
Vision. McGraw-Hill. New York.

Wang, L. and S. Wu (1998). Modeling with colored
timed object-oriented petri nets for automated
manufacturing systems. Computers and Indus-
trial Engineering34(2), 463–480.

Zimmermann, A., K. Dalkowski and G. Hommel
(1996). A case study in modeling and perfor-
mance evaluation of manufacturing systems us-
ing colored petri nets. Proceedings of the 8th Eu-
ropean Simulation Symposium (ESS ’96).


