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Abstract: This paper presents an indirect adaptive control scheme for
nominally stabilizable, but possible non-controllable, continuous and time-
varying systems with unmodelled dynamics. The control objective is the
adaptive stabilization of the system. The scheme includes severa estimation
algorithms and a supervisor which selects the appropriate estimator keeping it
in operation during at least a minimum residence time. Copyright72002 IFAC
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1. INTRODUCTION

Robus adaptie stabilizatbon, unde unnodelled
dynamics ard boundel noise of linea time-invariart
stablizable bu paossibly non controllable plans ha
been succssfully developd by De la S@ and Alonse
Quesad (1999 and AlonseQuesad (2001) In suth
works the assumptons d the ided adaptive catrol
problen (e Narendraet al., 19800 ard the
controllability of the nomind plant wee relaxed The
adaptive @ntrd algorithm hal to incluce a relative
adaptatbn deaezone for robustnss puposes ard ‘a
posteriort modification d the estimatd paametes
ensure the ontrollability of the esimated ard
modified estmated plart modd since sut propery is
crucid for stabilzation via adaptie poleplacemen
(see Che ard Caq 1997).

This pape extend the stug of AlonseQuesad
(200)) to the ca®e d nominally stabilzabk plans
with piecewi® nstan unknown parameters The

contrd objective is the stabilizatbn, unde the
presene d unmodelled dynamics of the systen via
an adaptie pole placemdn scheme Severh
estimaton algorithns ruming in parallé are designd
with a supervispwhich sekcts one d them dependig
on a criteron relatie o the identification erors
(Narenda ard Balakrishnan1997) Tha estimato is
usa for the adaptidon controller synthess and it is
kept in opeation durihg a certan time intervéa so tha
closedloop stabiliy is guaranteed.

All of the adaptive ontrd algorithrrs o be designd
hawe © incluce a relative deadore am a ‘a
posteriori modification o the plart estimatd modé
parametes as n the timeinvariart plant case The
stablizability of the nomind model d the plar a all
time instan ard the knowledge d an upperbound
function on tke ntribution o the unnodelled
dynamics and eventually boundeé noie © the outpu
are the only asumptiors requirel to establis the
stablity of the closedoop system.



2.PROBLEM STATEMENT

Consider the following time-varying plant
A(D,t)y(t)=B(D,t)u(t)+n(t) D

where n is the contribution of unmodelled dynamics
and, possibly, bounded noise to the output,
A(D,t)=Dn+i§_lail(t)D"‘i1, B(D{)= 3 b, (t)Dr
with m<n, and & (t), b, (t), for2 i, 0{1,---,n}
and i, 0{n-m,---,n}, being unknown piecewise
constant functions and D being the time-derivative

operator. In the following, the time argument is
omitted for notational abbreviation.

The following filtered signals subscripted by " f"
are introduced

F(D)ug =u ; F(D)y; =y ; F(Dn: =n (2

for some stable filter F(D)=Dn+ f,Dn-i . Then,
i=1

the filtered plant output is given by

A(th)yf = B(Dlt)uf i +£(tvtzp+j ) g

©)
W =0Tp+n; +&(tty,;) for tD[tm+j,tm+j+1)

where s and tpejers for any bounded or

i
unbounded integer z=0 and jO{0,...,p—-1 with
p >0 being some prefixed arbitrary bounded integer,
denote two consecutive instants at which at least one
of the functions a; (t) or by (t) switches. It is
supposed that the time interva between two
consecutive plant switches is higher than a minimum
threshold At.;,, residence time used for stability
purposes. The signa §(t,t,,;) is a exponentialy
decaying term which depends on the parameterized
conditions of the plant and the filters at the initial
instant of each interva [tzp+j,tzp+j+l). The plant

T

parameter vector 8 =[b,_, --- b, a; --- a,] and

have  been

_ T
p=[ulm up —yD oy
introduced for notational compactness.

Assumption 1: Thesignal n7; isthe sum of a bounded

term, plus a term related to u by a strictly proper
exponentialy stable transfer function. ol

From Assumption 1 and in view of Lemma 3.1 by
Middleton et al. (1988), there exist real constants
0,0(01), ap; 20 and o 20, and a constant vector

v, which are assumed known, such that

ne(tysn¢(t)=ap(t)+a, 0Ot>0

for p(t)= Sup{|vTz(1) e-oo(t-1)}

O<rst

(4)

with zz[s(f”’l)-n g U uf]T, €t =Yt ~Ym
being the filtered tracking-error and y; the filtered
reference signal obtained from F(D)y,s =VY,,- The

reference signal  y,, is the output of the
exponentially stable filter W, (D)=B,(D)/An(D)
operating under any uniformly bounded and
piecewise continuousinput r*(t).

3. ADAPTIVE CONTROL

The control objective is the adaptive stabilization with
achievement of a bounded tracking-error between the
system output and any uniformly bounded reference
signal. The control law is given by

u=K(t)yy ~R(D,t)us =S(D,t)y; )

_ -1 — -1
where R='3 7, (t)Di and S='3 5, (t)Di with
i=0 i=0

the control parameters K, r, and s being
caculated from a plant estimated model. Several
estimation algorithms are designed in order to obtain
controllable estimated models of the plant at each
instant. All of them are of least square-type or of
gradient-type. They include a relative dead-zone and
a parameter modification to ensure the robustness
under disturbances and the controllability of the
estimated models, respectively. These algorithms run
in parallel while a supervisor selects the estimated
model which optimizes certain cost function
involving the identification error every certain time.

The motivation of the use of a multiestimation scheme
is that the estimation model may be adjusted more
closely to the true plant. Thisis very relevant when the
plant varies or when the initial conditions of a unique
estimator are very deviated from the unknown true
plant parameters. In this sense, it is suitable to reset
each estimator when the true plant presents a change
in any of their parameters. This is crucia to improve
the performance of the system signals before changes
in the parameters of the nominal model of the plant. It
has to be pointed out that only one of the
parameterized controller acts as an effective controller
on the plant during each time interval while all
controllers are parameterized from their respective
identifiersfor all time.

Remark 1. In the ideal case of time-invariant known
plant, the control parameters requested to meet the
control objective can be obtained from the following
diophantine equation,



(F(D)+R(D))A(D)+S(D)B(D)=C(D) (6)

where C(D)=D2n+¢, D21+ ..+¢c,, is a
Hurwitz polynomial. Besides, another parameter K
can be considered to obtain a perfect tracking for
some frequency range of interest. For example, if the
external reference signal belongs to a low-frequency
signals class, then K must be obtained from

Kfnbn :( fn +rn )an +Snbn (7)

Egns. (6) and (7) can be compactly expressed by

T _
M(B)[l fl"'rl fn Iy S 0 Sy _Kfn] =
; (8)
=[1c; - cp 0
where
oL 0 0 -0 0 0 0 0 0 oC
By 1 0 0 0 b, O 0 o ot
@ a 1 -+ 0 0 bymg bym = O 0 oC
B @ a 0 0 Dume Bugs - O 0 OF
0: : : ol : H : H H : O
0 C
_[@n 8y 8 oy 1 bn-1 bz - bhomer baem O
M(0)-Do g
g a A1 Q@ by bhor o Bhomez Boomer 0[
0 0 a - a & 0 by - byomes Ppomiz OC
0. H : : : H : : : : C
O H : : ‘o
o o 0 - a, a1 0 0 by, by OC
Eo 0 0 - 0 a 0 0o - 0 by OE
B o 0 - 0 a 0 o - 0 b, b,E
9)

The objective is achieved if | Det(M(8))|=2d >0,
for some real constant &. Such an expression is
referred to as the plant controllability condition.  ***

3.1 Estimation algorithms

Assume there is a finite number | of estimators. Each
estimation algorithm consist of two steps.

** Stepl (Parameter estimation): The equations which
define each agorithm are the following

0-9iSiPio.o! P,
O e
P. =g 1tvielPo,

O

O 0

it Apn(Pi(1))2 Ao >0 10

otherwise

for some prefixed rea constant Ay with Ai(Pi)
being the minimum eigenvalue of the matrix P, , and

N P
0i :m (11)
1+yipl Pe,
-~ o ~ ~ ~ T
for iD{l,...,I} where 6, =[bq bn, a; - anl] ,
00 = 0/(1+[o]). e, =& /(L+]o]) with

& =(0-0,)Tp+n; =—0Tp+n;
identification error corresponding to thei-th estimator,
0<P(ty)=PT(ty) and bounded,
yi [tg,) — [yil,yiz] for some O<y; <y, <o,

being the

g; =0 (for a least-square type agorithm which
becomes to a gradient type one) or g; =1 (agradient
type algorithm) and s :[ty,o) - [01) a relative
adaptation dead-zone defined by

g 0 it w < pn;
%(t):a 7o) T a2
Wi = LT )/ W, otherwise
for any arbitrary constant y; >1, with

Min =M¢ /(1+||¢||) and an augmented error
w(t)=(€eZ +gi9f P?p,)%.

**Step2 (Estimation modification): The modified
estimates are obtained from

0, =6, +m,P, B, (13)

with @, =[60| Bn, a, - EnI]T, 1 [tg,0) - O
and B, :[ty,») —» O(2+11 | see (Alonso-Quesada,

2001; De la Sen and Alonso-Quesada, 1999) for
details. The components of g;(t) aregiven by

B :DEt([F)i1 pi, - Vo Py,
g Det(R)

0 nt1 d

where v=[0 ---0 1 0 --- 00 is replacing the j-th
B

piZM]) (14)

column of the matrix P, i.e Pi, for

jo{4,....2n+1}.

The switching functions 77, (t), for i0{1,...|}, are
zeroat t, andfor t >t, aredefined by

Fr(t) it | Det(M( +m(t-)Rp )25 >
=0

1 (1)

0
(15)
otherwise

for some prefixed real constant . i.e., (15) implies
that 77, (t) only changes its value when the i-th plant
estimated model is near to a non-controllable model.

*Algorithm 1 to compute 77, *

Stepl: Set m, =0, compute ‘Det(M 0, +m, P, ))‘
and go to Sep2,



Step2: 1t | Det(M (5, +m P ;)| 25 then end, else
go to Sep3,

Step3: Increase the value of 1, as m, =m, +4;, with
0<9; <<1, compute ‘ Det(M (@i +1m, P B, ))‘ and go
to Sep4,

steps: It | Det(M(p, +71 P g )25 then et
m, =1, and go to Step5, else go to Sep3,

Step5: Set 1y =0 and go to Stepé,

Step6: Decrease the value of m, according to

My =T =& compute‘ Det(M (@i +114 B B ))‘ and go
to Step7?,

Step?7: |If ‘ Det(M (@I +11, P B ))‘ 20 then go to
Sep8, else go to Stepb,

Step8: If |n]'|s|rrol| thenset m, =m, ,andend. ***

Remark 2. The nomina plant is chosen of relative
degree zero due to the knowledge of the relative degree
of the true plant has not been assumed. Then, the
adaptive problem can be overparameterized. *okk

Remark 3. By substitution of (13) into the expression
e =(0-60,)"p+n;, the following estimated and
modified plant models

y{" =0Tp+e -mpTPp=0Tp+e, (16)
are obtained, where e, =& —75, 8 P g isreferred to

as a modified identification error. The estimation and
modification agorithm ensure the controllability of all
plant estimated models, i.e, Det(M (6, ))‘ > & >0 Where

M (8, ) isobtained from (9) by replacing 8 by @, .***

3.2. Supervisor

This design device selects the plant estimated model
which optimizes the following cost function,

t t
3; = Ay fer N2 (T)dT +(1- Ay )fe (06 (1)dr (17)
to o

for some real constants A;,A, =0 and A;0[0]].

The switches between the estimators only take place
after a minimum residence time T, in the current
estimator, which is required to guarantee the system
stability, see (Narendra and Bal akrishnan, 1997).

Let {t,,k=1} bethe collection of instants where the

adaptive controller switches the parameterization
from one of the estimators to another one. Assume

that 6(t; )=6,(t; ). Thus, for t>t;

B9i if t-t, <T or Ji(t,g e, )=Jq(t,eq,eaq)

0=0 18)
H, otherwise
where the g¢-th estimator is such that

Jq(t.6g.€5, )< Im(tien.8,, ) foral gmo{L,- I}
The plant estimated model issued by the supervisor is

y(fn) :§T¢+ea DtD[tk,tk+1) (19)

where e, =e, with i denoting the chosen estimator

index during the time interval [ty ,te.q),

(7:[50 b, @ - a,|" and ¢ asin(3).

3.3. Adaptive control law parameters

The parameters of the adaptive control law, egn. (5),
are obtained by means of an equation similar to (8)

replacing # by @ and K, r, and s by K, 1, and
s, respectively, for i0{1,...,n}. Such equation is
uniquely solvable due to the fact that M(8) is
ensured as anon-singular matrix.

4. CONVERGENCE AND STABILITY RESULTS

All of algorithms of egns. (10-15), for i O{L,---,1},
have the following properties:

Lemma 1

() ||P|OL.. P, >0 Ot=ty, it is symmetric and it
converges asymptotically as time tends to infinity,

(i) N, 0Ly and |04, OL,,,

Besides, if

Eppn

= (20)

1 4 2 - 9 (1=
Zgl‘li I_ljglAT(tzpﬂ' )P| 1(tzp+j )(A(tzp+j )_zgi(tzm-j ))

where At )Z0(ths) )= 0(t50 ).

120 =0t b ) S (D)2 >0},
€'<<1, and At .; is sum of the time intervals

with

belonging to 1?7, for

jO0{1,---, p} , then:

i0{1,--,1}  and

(iii)Hi)i |OL., w OL,,, sw? 0L, and Hg‘ HD Lo

(iv) m 0L, anditistime-differentiable for all t except
at the switching time instants,



(v) ||§i "DLw and it is time-differentiable Ot except at

* k%

the timeinstant at which 71, switches.
The proof isgiven in Appendix A.

Remark 4. Note that (20) implies that a minimum time
between some finite number p of conseaitive switches
in the true parameter vector isimposed to guarantee the
properties (iii) to (v). Thisisacomplished if

Vi(t5) W (tuyp) =
» (z+1)p (21)
= 20t MG )+ 3 )65 )20

where {tzp+j v 1=1,2,..., p} are the time instants at
which the plant parameters switches and
V(1) =0T (t)P1(1)8, (1)+Tr (P, (1)) isaLyapunov’'s
like functionfor thei-th parametrical error. *kk

The estimated model of the plant has the following
properties:

Lemma 2
(i)||5|| 0L, anditisapiecewise cntinuous function,

(i) The oortroller parameters K, r, and s, for
i0{1,...,n}, are piecavise ontinuous bounded
functions. f

The proof is given in Appendix B.
Introducing the cntrol law (5) in (19), one obtains
At)= A(1)Z(1)+By9;(1)+By9,(t)  (222)
with
91(t) =e,(t) +[bg (KF(D)=S(D,t)) = A(D,t)] Yy (1)

9,(t) = (KF(D)=S(D,t))yny (1)

G @+ %) - (@ +B0%) - -+ S) bR (1 ) By (1 + )

g 1 0 . 0 0 o 1

0o o 1 0 0 0 ul

0 . B . . . O

Av=o © 0 0 o . o B

0 -§ -5 -5 =(fi+n) o —(fa+f) O

g oo 0 . 0 0 0 B

u] 0 0 0 0 O

[} . . . . O

H o 0 0 0 0 H
0 C

Bl =[L0 - 0;B]=® - 0 1 - OF(22h)
O n+1 C

Remark 5. (Stability of the homogeneous system). The
time-varying system #(t)= A(t)z(t) is asymptotically
stable in view of Lemma 3.1 of loannou and Datta
(1991) since: A(t) is bounded, the eigenvalues of

K(t) are strictly inside the stability boundary Ot and

t+T =
[ -A(T)dT <koT +k; Ot, some ky,k; >0, with T

t
being the minimum residence time interval between
two consecutive switches of estimator, and where k,

is sufficiently small. This property is fulfilled for a k,
sufficiently small, even though ||K(t)|| can present

impulsive Dirac-type discontinuities in the time
interval (t,t+T) since the jumps in the entries of

A(t) are bounded. Note that the discontinuities in

A(t) are due to switches from one estimator to

ancther one or switches due to parameter estimator
modification. *E*

Theorem (Stability result). The adaptive control law
(5) stabilizes the stabilizable plant (1), in the sense
that thesignals u and y are bounded for all time, any
finite initial state and any piecewise continuous
bounded reference signal r*, subject to Assumption 1,
provided a in (4) and T in (18) are such that,
T> p In K for all

1—_ % i
g

tOfty, +(k+1)T.t,, +(k+2)T], with any integer
z=0 any k0{0,1,2,..}, where
Bin, (1) = H Max {1 (A (1)}, The intant

and
Sup

ty, +KT<7Tst

ty, isthelast oneintheinterval [t,, .t ,.1),) a which
some of the functions 71; switches. The constants K
and K' are relative to an upper bound of the

transition matrix associated with A and o >0 is a
lower bound of the absolute values of the real parts of
the eigenvalues of A for all
tOfty, +(k+1)T t,, +(k+2)T] andany k0{0,1,...}. ***

The proof is given in Appendix C.

5. SIMULATION RESULTS

The plant to be controlled is given by (1) with by =1,

0-6 if 0<t<10
by(t) g1 if Ostleort>30, b g p ,
t)= t)=[F57 if 10<t<30
"V H1 it w0<ts20 2()=F57 if 10<
B-551 if t>30
g2 if 0<st<20 0-3 if 0<t<20
al(t)=%1.9 if 20<ts30’a2(t)=%—3.3 if 20<t<30
g
= ]

O
if t>30 B-319 if t>30

and the initia condition y(0)=0. The signa n
arises from a multiplicative and an additive
unmodelled dynamics acting on the nomina plant

2
boS2+D15+0; g0 ynmodelled dynamics

Wy(s)=
b(s) s2+a;s+a,



are  given by Al(s):% and Az@ﬁ%-

The stable filter W, (s)=5*95*4 ang the input

s2+5s+4
() = 0.5 (sin20t +sin30it) for 0<t<40
E 1 for t>40

are considered. The system signals are filtered by
means of egns. (2) with F(D)=D2+9D+12 and
initial conditions zero. The parameters o = 0.005,
a,=0.01, 0,=025 and v=[-07 0.6 -0.40.5]
are chosen in (4). A supervisory system with two
estimation algorithms running in parallel are used to
obtain a controllable estimated model of the plant at
each time instant. The estimator 1 is an algorithm of a
least-squares type which becomes gradient one with
Ao =001, y,(t)=01 for dl t, p; =101 and

0, =0.001 in Algorithm 1 to compute 71, . Theinitial

conditions of this estimator are
0l 090909 090 o-1rc
0 04:C

@.9 1 0909097 T15E The

P,(0)=1000000& 0.9 0.9 1 0.9 0.9(%#,(0)=025LC
090909 1 09 FosE
09090909 10 H15E

2 is a gradient agorithm type with

0l 010101010
9110101 0.151
P, =100000x 0.1 0.1 1 0.1 0.10
H10101 1 013
®1010101 18

U, =1.01 and &, =0.001 in Algorithm 1 to compute
Mo, . The initial condition of this estimator is

estimator

y,(t)=0 for dl t,

0,(0)=[-15 -1 2 -1.21]" . The parameter & =0.005
is chosen as the controllability lower-bound for the
estimated models of the plant. The supervisory
systems selects the estimator which minimizes the
function cost (17) with A; =1, for i0{1,2,3}. The
minimum residencetimeinterval T in (18) istaken as
30 times the minimum integration step of the
simulator program used (Smulink, version 5.3).
Finally, the desired dynamics for the closed-loop
system is defined by the Hurwitz polynomial
C(s)=s4+4s3 +6s2 +5s5+2.

Figure 1 displays the tracking error and Figure 2
shows the index of the estimator chosen by the
supervisor, with i =1 corresponding to the least-
sguares algorithm and i =2 to the gradient algorithm.

B

-4

3 10 20 30 40
Fig.1. Tracking error signal.

Il |

0 To o I} 50
Fig.2. Index of the estimator chosen by the supervisor

6. CONCLUSIONS

An adaptive control algorithm that stabilizes a
stabilizable, but possibly non-controllable, continuous
plant with piecewise constant parameters, in the
presence of unmodelled dynamics has been presented.
The algorithm includes the use of severa estimation
algorithms running in paralel and a supervisory
system which selects the most appropriate estimator at
certain time instants. Such estimator is then kept in
operation during a minimum residence timeinterval so
that closed-loop stability is guaranteed.
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