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Abstract: This paper presents an indirect adaptive control scheme for 
nominally stabilizable, but possible non-controllable, continuous and time-
varying systems with unmodelled dynamics. The control objective is the 
adaptive stabilization of the system. The scheme includes several estimation 
algorithms and a supervisor which selects the appropriate estimator keeping it 
in operation during at least a minimum residence time. Copyright2002 IFAC 
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1. INTRODUCTION 
 

Robust adaptive stabilization, under unmodelled 
dynamics and bounded noise, of linear time-invariant 
stabilizable, but possibly non controllable, plants has 
been successfully developed by De la Sen and Alonso-
Quesada (1999) and Alonso-Quesada (2001). In such 
works the assumptions of the ideal adaptive control 
problem (see Narendra et al., 1980) and the 
controllability of the nominal plant were relaxed. The 
adaptive control algorithm had to include a relative 
adaptation dead-zone, for robustness purposes, and ‘a 
posteriori’ modification of the estimated parameters to 
ensured the controllability of the estimated and 
modified estimated plant model since such property is 
crucial for stabilization via adaptive pole-placement 
(see Chen and Cao, 1997). 
 
This paper extends the study of Al onso-Quesada 
(2001) to the case of nominally stabilizable plants 
with piecewise constant unknown parameters. The 

control objective is the stabilization, under the 
presence of unmodelled dynamics, of the system via 
an adaptive pole placement scheme. Several 
estimation algorithms running in parallel are designed 
with a supervisor which selects one of them depending 
on a criterion relative to the identification errors 
(Narendra and Balakrishnan, 1997). That estimator is 
used for the adaptation controller synthesis and it is 
kept in operation during a certain time interval so that 
closed-loop stability is guaranteed. 
 
All of the adaptive control algorithms to be designed 
have to include a relative dead-zone and a ‘a 
posteriori’ modification of the plant estimated model 
parameters as in the time-invariant plant case. The 
stabilizability of the nominal model of the plant at all 
time instant and the knowledge of an upper-bound 
function on the contribution of the unmodelled 
dynamics and, eventually, bounded noise to the output 
are the only assumptions required to establish the 
stabilit y of the closed-loop system. 
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2.PROBLEM STATEMENT 
 
Consider the following time-varying plant 
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where η  is the contribution of unmodelled dynamics 

and, possibly, bounded noise to the output, 
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constant functions and D being the time-derivative 
operator. In the following, the time argument is 
omitted for notational abbreviation. 
 
The following filtered signals subscripted by "f"  

are introduced 
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the filtered plant output is given by 
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where jzpt +  and 1jzpt ++ , for any bounded or 

unbounded integer 0z ≥  and { }1p , ,0j −∈ �  with 

0p >  being some prefixed arbitrary bounded integer, 

denote two consecutive instants at which at least one 
of the functions )t(a
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 switches. It is 

supposed that the time interval between two 
consecutive plant switches is higher than a minimum 
threshold mint∆ , residence time used for stability 

purposes. The signal )t,t( jzp+ξ  is a exponentially 

decaying term which depends on the parameterized 
conditions of the plant and the filters at the initial 
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introduced for notational compactness. 
 
Assumption 1: The signal fη  is the sum of a bounded 

term, plus a term related to u  by a strictly proper 
exponentially stable transfer function.                      *** 
 
From Assumption 1 and in view of Lemma 3.1 by 
Middleton et al. (1988), there exist real constants 

)1,0(0 ∈σ , 00 ≥α  and 0≥α , and a constant vector 

v , which are assumed known, such that 
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being the filtered tracking-error and mfy  the filtered 

reference signal obtained from mmf yy)D(F = . The 

reference signal my  is the output of the 

exponentially stable filter )D(A)D(B)D(W mmm =  

operating under any uniformly bounded and 
piecewise continuous input )t(r* . 

 
 

3. ADAPTIVE CONTROL 
 
The control objective is the adaptive stabilization with 
achievement of a bounded tracking-error between the 
system output and any uniformly bounded reference 
signal. The control law is given by 
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the control parameters K , ir  and is  being 

calculated from a plant estimated model. Several 
estimation algorithms are designed in order to obtain 
controllable estimated models of the plant at each 
instant. All of them are of least square-type or of 
gradient-type. They include a relative dead-zone and 
a parameter modification to ensure the robustness 
under disturbances and the controllability of the 
estimated models, respectively. These algorithms run 
in parallel while a supervisor selects the estimated 
model which optimizes certain cost function 
involving the identification error every certain time. 
 
The motivation of the use of a multiestimation scheme 
is that the estimation model may be adjusted more 
closely to the true plant. This is very relevant when the 
plant varies or when the initial conditions of a unique 
estimator are very deviated from the unknown true 
plant parameters. In this sense, it is suitable to reset 
each estimator when the true plant presents a change 
in any of their parameters. This is crucial to improve 
the performance of the system signals before changes 
in the parameters of the nominal model of the plant. It 
has to be pointed out that only one of the 
parameterized controller acts as an effective controller 
on the plant during each time interval while all 
controllers are parameterized from their respective 
identifiers for all time. 
 
Remark 1. In the ideal case of time-invariant known 
plant, the control parameters requested to meet the 
control objective can be obtained from the following 
diophantine equation, 
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Hurwitz polynomial. Besides, another parameter K 
can be considered to obtain a perfect tracking for 
some frequency range of interest. For example, if the 
external reference signal belongs to a low-frequency 
signals class, then K must be obtained from 
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Eqns. (6) and (7) can be compactly expressed by 
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The objective is achieved if ( ) 0 )(Det >≥ δ�
M , 

for some real constant δ . Such an expression is 
referred to as the plant controllability condition.    *** 
 
 
3.1 Estimation algorithms 
 
Assume there is a finite number l of estimators. Each 
estimation algorithm consist of two steps. 
 
**Step1 (Parameter estimation): The equations which 
define each algorithm are the following 
 

( )







 >≥
+

−

=

otherwise                     0          

0)t(   if      
1

sg
0minT

i

T
ii

i

λλ
γ i

nin

inni P�P� P��P

P
�

 (10) 

 
for some prefixed real constant 0λ  with )(min iPλ  

being the minimum eigenvalue of the matrix iP , and 
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( )





−

≤
=

otherwise          ww

      wif                        0          
)t(s

ifnii

fnii
i ηµ

ηµ
  (12) 

 
for any arbitrary constant 1i >µ , with 

( )�+= 1ffn ηη , and an augmented error 

2
1

i
)ge()t(w 2T

i
2
ni nin

�P�+= . 

 
**Step2 (Estimation modification): The modified 
estimates are obtained from 
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The switching functions )t(iπ , for { }l ..., ,1i ∈ , are 

zero at 0t  and for 0tt >  are defined by 
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for some prefixed real constant δ . i.e., (15) implies 
that )t(iπ  only changes its value when the i-th plant 

estimated model is near to a non-controllable model. 
 
*Algorithm 1 to compute 

i0π * 
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Remark 2. The nominal plant is chosen of relative 
degree zero due to the knowledge of the relative degree 
of the true plant has not been assumed. Then, the 
adaptive problem can be overparameterized.            *** 
 
Remark 3. By substitution of (13) into the expression 
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3.2. Supervisor 
 
This design device selects the plant estimated model 
which optimizes the following cost function, 
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for some real constants 0, 21 ≥λλ  and [ ]1,03 ∈λ . 

The switches between the estimators only take place 
after a minimum residence time T , in the current 
estimator, which is required to guarantee the system 
stability, see (Narendra and Balakrishnan, 1997). 
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The plant estimated model issued by the supervisor is 
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3.3. Adaptive control law parameters 
 
The parameters of the adaptive control law, eqn. (5), 
are obtained by means of an equation similar to (8) 

replacing 
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 and K , ir  and is  by K , ir  and 

is , respectively, for { }n , ,1i �∈ . Such equation is 

uniquely solvable due to the fact that )(
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ensured as a non-singular matrix. 
 
 

4. CONVERGENCE AND STABILITY RESULTS 
 

All of algorithms of eqns. (10-15), for { }l , ,1i 
∈ , 

have the following properties: 
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at the switching time instants, 
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The proof is given in Appendix A. 
 
Remark 4. Note that (20) implies that a minimum time 
between some finite number p of consecutive switches 
in the true parameter vector is imposed to guarantee the 
properties (iii) to (v). This is accomplished if 
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The estimated model of the plant has the following 
properties: 
 
Lemma 2 
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 and it is a piecewise continuous function, 

(ii) The controll er parameters K , ir  and is , for 

{ }n , ,1i �∈ , are piecewise continuous bounded 

functions.                                                                  ***  
The proof is given in Appendix B. 
 
Introducing the control law (5) in (19), one obtains 
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Remark 5. (Stability of the homogeneous system). The 
time-varying system )t()t()t( zAz =

�
 is asymptotically 

stable in view of Lemma 3.1 of Ioannou and Datta 

(1991) since: )t(A  is bounded, the eigenvalues of 
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is sufficiently small. This property is fulfilled for a 0k  
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 can present 

impulsive Dirac-type discontinuities in the time 
interval ( )Tt,t +  since the jumps in the entries of 

)t(A  are bounded. Note that the discontinuities in 

)t(A  are due to switches from one estimator to 

another one or switches due to parameter estimator 
modification.                                                            *** 
 
Theorem (Stability result). The adaptive control law 
(5) stabilizes the stabilizable plant (1), in the sense 
that the signals u  and y  are bounded for all time, any 

finite initial state and any piecewise continuous 
bounded reference signal *r , subject to Assumption 1, 
provided α  in (4) and T  in (18) are such that, 
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The proof is given in Appendix C. 
 
 

5. SIMULATION RESULTS 
 
The plant to be controlled is given by (1) with 1b0 = , 
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are considered. The system signals are filtered by 
means of eqns. (2) with 12D9D)D(F 2 ++=  and 

initial conditions zero. The parameters 0.005=α , 

0.01=0α , 25.00 =σ  and [ ]T0.5  0.4  0.6  7.0 −−=v  

are chosen in (4). A supervisory system with two 
estimation algorithms running in parallel are used to 
obtain a controllable estimated model of the plant at 
each time instant. The estimator 1 is an algorithm of a 
least-squares type which becomes gradient one with 

01.00 =λ , 1.0)t(1 =γ  for all t , 01.11 =µ  and 

001.01 =δ  in Algorithm 1 to compute 
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01.12 =µ  and 001.02 =δ  in Algorithm 1 to compute 

20π . The initial condition of this estimator is 
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is chosen as the controllability lower-bound for the 
estimated models of the plant. The supervisory 
systems selects the estimator which minimizes the 
function cost (17) with 1i =λ , for { }3 2, ,1i ∈ . The 

minimum residence time interval T  in (18) is taken as 
30 times the minimum integration step of the 
simulator program used (Simulink, version 5.3). 
Finally, the desired dynamics for the closed-loop 
system is defined by the Hurwitz polynomial 
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Figure 1 displays the tracking error and Figure 2 
shows the index of the estimator chosen by the 
supervisor, with 1i =  corresponding to the least-
squares algorithm and 2i =  to the gradient algorithm. 
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6. CONCLUSIONS 
 
An adaptive control algorithm that stabilizes a 
stabilizable, but possibly non-controllable, continuous 
plant with piecewise constant parameters, in the 
presence of unmodelled dynamics has been presented. 
The algorithm includes the use of several estimation 
algorithms running in parallel and a supervisory 
system which selects the most appropriate estimator at 
certain time instants. Such estimator is then kept in 
operation during a minimum residence time interval so 
that closed-loop stability is guaranteed. 
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