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Abstract: Identification of continuous-time non-linear systems characterised by fractional order
dynamics is studied. The Riemann-Liouville definition of fractional differentiation is used. A
new identification method is proposed through the extension of Hammerstein-type models by
allowing their linear part to belong to the class of fractional models. Fractional models are
compact and so are used here to model complex dynamics with few parameters. Copyright ©

2002 IFAC
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1. INTRODUCTION

The goal of system identification is to establish a
mathematical model able to reproduce the dynamic
behaviour of a system. For many systems, when there
is a wide operating area rather than a unique
operating point, a linear model cannot be used. In this
case non-linear models such as multi-models,
Volterra series, neural networks, fuzzy logic,
Hammerstein and Wiener-type models can be used.
In this paper, a Hammerstein model, with a static
non-linear part connected to a fractional linear part, is
considered.

To our knowledge, no identification study is
available in the literature on non-linear systems
whose dynamics have a fractional differentiation
character. Here, Hammerstein models with local
fractional order dynamics are considered.

Hammerstein models are used in many fields:
chemical engineering, e.g., distillation columns, heat
exchangers (Özkan, et al.,  2001) pH systems (Zhu,
Seborg, 1994); electrical engineering (Haber and
Unbehauen, 1990) and automotive engineering
(Ralston, et al., 1997).

Section 2 presents the Hammerstein model. Section 3

focuses on the linear part of the model where some
properties of fractional calculus are given. In section
4, two identification algorithms are developed. The
first algorithm is based on the minimisation of the
quadratic equation error with a linear programming
method. The second is based on the minimisation of
the quadratic output error with a non-linear iterative
optimisation algorithm. The last section illustrates,
through a numerical simulation, the advantages of
using a fractional Hammerstein model compared to a
classical integer Hammerstein model.

2. HAMMERSTEIN MODEL

The structure of Hammerstein models is shown in
figure (1). It consist of a static non-linear part N
connected to a dynamic linear part H.

Fig. 1. Hammerstein model

For the non-linear part, we assume that
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This condition is not restrictive as long as only stable
systems are treated. Let us consider BIBO stability
(Bonded Input - Bounded Output). If H is stable,
N(u(t)) must be bounded for any permitted input data
to ensure the stability of the whole system.

When N is unknown, it can be approximated with a
polynomial expansion (Ljung, 1987):
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where M∈���� and ∈kα �. As N is static, u(t) and v(t)
have the same transition time with different
amplitudes. It is assumed, as is usual for
Hammerstein models, that v(t) is not accessible for
measurement (Billings and Fakhouri, 1982; Haber
and Unbehauen, 1990). The virtual signal v(t),
resulting from N(u(t)), is mapped through the linear
part H which could be described with a differential
equation, transfer function or state space
representation. In this paper, H is extended to the
class of fractional linear models (see eq. (3)). This is
the original part of our contribution.
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n(t) is a white noise, with zero mean and finite
variance: 0))((E =te  and ∞<))(var( te ,

JL bbaaJL n..,nn..,nb..,ba..a ,,,, 110 1
are real numbers.

This new class of models includes the class of
Hammerstein integer linear models.

Studies on real systems such as thermal (Battaglia, et
al., 1999), (Battaglia, et al., 2000) or electrochemical
(Oustaloup, 1995) reveal inherent fractional
behaviour. Identifying such non-linear systems using
fractional non-linear models may be more suitable
for the general case.

3. FRACTIONAL LINEAR MODELS:
MATHEMATICAL BACKGROUND

During the 19th century some mathematicians such as
Abel, Liouville, Riemann and Cauchy were
interested in the extension of classical integer
differentiation to real orders. Some definitions and
proprieties of this mathematical tool are now
provided.

3.1. Fractional integration

Let f(t) be a continuous real function. The fractional
integral of a function f(t) is defined by Samko, et al.,
(1993):
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where at > . n is the real integration order. Γ(n) is
the Gamma Euler function:
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When n is real, the integral in equation (4) is the area
of the surface generated by f(t) weighted with the

factor ( )( ) ntn −− 1Γ
1

τ
.

The Laplace transform of the integral of a function
f(t) is :
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where F(s) is the Laplace transform of f(t).

3.2. Fractional differentiation

The Riemann-Liouville fractional derivative of order
n of f(x) is defined as (Miller and Ross, 1993):
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Second definition (Grünwald’s definition) is:
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The two definitions (7) and (8) are equivalent when
0)(...)()( 00

1
0 00
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From equation (8), we note that fractional
differentiation is not a local operator. The value of
the fractional derivative function at t depends on the
whole past of the function. However, in the case
where the differentiation order is an integer value, the
derivative function depends only on some local
points. For example when n = 1:
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When 0)0(...)0()0( 0
1
0 ==== ∞ fDfDf  the Laplace

transform of )(0 tfDn  (Oldham and Spanier, 1974):
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This result is coherent with the classical case where n
is an integer. Consequently, it is easy to define a
symbolic representation of a dynamic system, such as
a transfer function representation.

3.3. Modelling of fractional system

Consider a SISO LTI system H, relaxed at t=0. H can
be described by the differential equation:
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where JL bbaa ..,,.., 11 are real. u(t) and y(t) are the
input and the output signals. they are differentiated to
the real orders (integer or non integer) 

1an ..
Lan  and

1bn ..
Jbn . As H is relaxed, the Laplace transform of

)(tyD an  and )(tuD bn are respectively )(sYs an  and

)(sUs bn (see eq. (10)).

Applying the Laplace transform to equation (11) the
following is obtained:
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from which the generalised transfer function is
defined :
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3.4. Stability condition of fractional systems

As BIBO stability is considered, sufficient stability
condition is given by:
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where H(s) is the Laplace transform of the system
impulse response. Structural decomposition of non
integer systems, allows the definition of a stability
condition (Matignon, 1996) :
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where kλ are the eigenvalues of the system H

4. OPTIMISATION METHODS

Degree of the polynomial N(u(t)), M, and the
differentiation orders are assumed to be a priori
known by the user. In the case of many thermal
systems, Battaglia et al. (2000) show that best
differentiation orders are multiples of 0.5. When
fractional differentiation orders cannot be fixed due
to a lack of information, techniques providing
estimation of both coefficients and differentiation
orders can be applied as done in the linear case in
(Cois, et al., 2000) and (Trigeassou, et al.,  1999).

The optimal values of MJL bbaa αα ��

�

�� ,...,,ˆ,..,,..., 111  are
obtained according to a criterion based on the
equation error or output error.

4.1. Equation error algorithm

From equations (2) and (3)
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then
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where )(tε is the equation error.

For same input/output data the Hammerstein model is
not unique. There are many equivalent models. Two
Hammerstein models {N(.),H(s)} and {N’(.),H’(s)}
are equivalents if
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We are interested in one of the equation models.
Hence, without any lost of generality we suppose that
b1 = 1.

The estimated output is:
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The minimisation criterion is based on the quadratic
predictive error (for K+1 observations of input-output
data):
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The optimum θ is given by the standard least squares
equation:
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The values of MJbb αα ,...,,,.., 12  are not given in θ .

The drawback of this method is that initial
Hammerstein coefficients cannot be computed once
the vector θ  is known. The reason is that coefficients
αi and bi are coupled in (21). Hence, if one tries to
solve for αi and bi, knowing θ, then one will obtain



more equations than unknowns. Often, the solution is
impossible. However, a model can be expressed
using the coefficient vector θ and the regression
matrix Φ.

4.2. Output error identification algorithm

To optimise parameters of the Hammerstein model
{N(.),H(s)}, length of θ  must be equal to the number
of unknown parameters. θ  can be defined as:

T
MJJ bbaa ],;,...;,...,[ 121 ααθ = .

This implies that a non-linear optimisation method
must be used. A new criterion J based on the
quadratic output error is defined:
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The optimal value of θ

�

 is then obtained iteratively
using a non-linear programming technique, herein the
Marquardt algorithm (Marquardt, 1963) was used.
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This algorithm, often used in non-linear optimisation,
ensures robust convergence.

To apply (25) output sensitivities must be computed
which is done by differentiating ŷ w.r.t. respective
parameters:
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5. Example

To illustrate advantages of using fractional
Hammerstein models, a system is identified with
both fractional and integer Hammerstein models. The
estimation data are generated with a fractional
Hammerstein model. First, the optimum model is
calculated in the class of integer Hammerstein
models. Then, it is calculated in the class of
fractional Hammerstein models. For both models, a
quadratic output error criterion is minimised.

The simulated system is described by the model:
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Output data are corrupted by a stationary zero mean
white noise of amplitude:

dB13
noise of Energie
signal of Energielog10 10 =��

�

�
��
�

�

The degree of the non-linearity and the
differentiation orders will be assumed known. All
other parameters are identified with the proposed
algorithm.

The first model we are looking for belongs to the
class of integer Hammerstein models. The non-
linearity structure is assumed as known (but not its
parameters). The posed problem is to find the
optimum order of the linear dynamic part having
integer order derivatives and to estimate all the
parameters of the system. The optimisation process is
then computed for many integer orders.

It was found that the optimal integer Hammerstein
model is the following:
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minimising the quadratic output error is identified as
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The number of optimised parameters with an integer
Hammerstein model is 11. However, only 3
parameters are optimised with the fractional
Hammerstein model. The small number of optimised
parameter makes the identification process more
efficient.

Figure 2 shows the variation of the output model for
the identification data. Figure 4 shows the validation
output data. Note that the output of the fractional



Hammerstein model is the closer to the true output
especially in validation data fig. 4, as expected.
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Fig. 2. Model output for identification data
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Fig. 4. Output model for validation data.

6. CONCLUSION

A new approach for identifying non-linear systems
whose dynamics have a fractional order is proposed.
It is based on Hammerstein models linear part of
which is extended to the class of fractional systems.
As shown through the example, this kind of models
is more compact. Hence, when the system belongs to
the class of non-linear systems whose dynamics have
a fractional order; the number of parameters to
optimise is reduced considerably. Hence, This
approach is especially useful when the a priori
information about system’s dynamics reveals
fractional behaviour.

An interesting perspective would be to extend this
approach to Winner-type models.
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