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Abstract: In this paper, an active fault tolerant control (FTC) strategy is
presented for linear dynamic systems. The robust observer-based fault detection
and isolation (FDI) systems are applied to guide the reconfiguration of controller
parameters to achieve the optimal control performance during different operating
conditions of the system: fault-free, fault detected and fault isolated. The selec-
tion of design parameters is achieved using the linear matrix inequality (LMI)
optimization technique. Copyright c°2002 IFAC
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1. INTRODUCTION

During the last years, fault tolerant control (FTC)
has received more and more attention (Patton,
1997; Blanke et al., 2000; Isermann et al., 2000).
Due to its intimate relationship to the robust
control theory, robust controllers based passive
FTC received the first attention at the end of the
80’s and is still an actual research topic on account
of the development of the robust control theory
(Wu and Chen, 1996). The major advantage of
this scheme is its simplicity in implementation
while its application is strongly limited. In com-
parison with it, active FTC may improve the fault
tolerant performance by reconfigurating controller
parameters or even structure. In the active FTC
scheme, fault detection and isolation (FDI) plays

1 Supported by the DAAD, the NNSF of China and the
National Education Ministry of China

an important role. Among the existing FDI ap-
proaches (Frank and Ding, 1997; Gertler, 1998;
Chen and Patton, 1999), the parameter identifi-
cation technique is widely integrated in the ac-
tive FTC systems to achieve fault identification
(Zhang and Jiang, 1999). On the other hand, the
known limitations of the parameter identification
technique (Chen and Patton, 1999; Frank and
Ding, 1997) may restrict the application of such
kind of FTC systems.

In this contribution, an FTC strategy is presented,
whose core is an observer-based FDI system and a
reconfiguration algorithm of controller parameters
based on the information delivered by the FDI
system. The basic idea is to ensure an optimal
control performance in different operating condi-
tions by switching the controller between different
control laws. The output of the observer-based
FDI system controls the switching action.
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It is evident that the FDI system should react very
fast to fault and be able to deliver information
about the operating conditions of the system as
early as possible so that the controller parameters
can be correspondingly adjusted and, as a result,
the best control performance can be achieved. To
ensure it, an optimally sensitive FDI system is
needed. The design of such an FDI system from
the FTC viewpoint is the main objective of this
paper.

In practice it is very difficult to get an exact math-
ematical model of real systems. Thus the FTC
problem of linear systems with model uncertainty
is also treated using the linear matrix inequality
(LMI) technique.

2. PRELIMINARY

In this section, the observer-based FDI schemes is
briefly reviewed.

Consider linear time-invariant (LTI) processes
without model uncertainty described by

ẋ(t) = Ax(t) +Bu(t) +Eff(t) +Edd(t)

y(t) = Cx(t) +Du(t) + Fff(t) + Fdd(t) (1)

where x, u, d, f and y are vectors of states, control
inputs, disturbances, faults and measured out-
puts, respectively. d is unknown but bounded by
kdk2 6 ∆d. The transfer function matrices from
u, d, f to y are denoted as Gu(s), Gd(s) and Gf (s)
respectively. Without loss of generality, assume

A1. (C,A) is detectable;

A2.
·
A− jωI Ed
C Fd

¸
has full row rank for all ω.

The first step to FD is residual generation. An
observer-based residual generator can be con-
structed as

˙̂x(t) = Ax̂(t) +Bu(t) + L(y(t)− ŷ(t))
rb(t) = y(t)− ŷ(t) = y(t)−Cx̂(t)−Du(t)
r(s) = R(s)rb(s) (2)

where L is the observer gain matrix, R(s) ∈ RH∞
is the so-called post filter which is an arbitrar-
ily selectable parametrization matrix (Frank and
Ding, 1997). Note that if R(s) = V with V being
a constant matrix, then residual generator (2) re-
duces to the standard fault detection filter (FDF).

It can be derived that the dynamics of the residual
generator (2) is governed by

r(s) = R(s)Mu(s)(Gd(s)d(s) +Gf (s)f(s))

Mu(s) = I −C(sI −A+ LC)−1L (3)

To evaluate the residual, the 2-norm of the resid-
ual signal r is used as the evaluation function and
the decision logic is the mostly used one

krk2 > Jth =⇒ fault

krk2 6 Jth =⇒ no fault (4)

where Jth is the threshold selected as

Jth = sup
d,f=0

krk2 = kR(s)Mu(s)Gd(s)k∞∆d (5)

The main objective of designing residual gen-
erators is to improve the sensitivity of the FD
system to faults without loss of the robustness
to disturbances. Thus the selection of the design
parameters L and R(s) can be formulated as an
optimization problem

min
R(s),L

kR(s)Mu(s)Gd(s)k∞
σi(R(s)Mu(s)Gf (s))

(6)

where σi(R(s)Mu(s)Gf (s)) denotes some nonzero
singular value of R(s)Mu(s)Gf (s).

Lemma 1. (Ding et al., 2000) Given system (1)
satisfying Assumption A1-A2. SupposeMu(s)Gd(s)
has a co-inner-outer factorization (CIOF) as

Mu(s)Gd(s) = Gdo(s)Gdi(s) (7)

where Gdo(s) is co-outer and has an RH∞
left inverse G−1do (s), Gdi(s) is co-inner satisfying
Gdi(jω)GTdi(−jω) = I, then

R(s) = G−1do (s) (8)

solves the optimization problem (6).

For the purpose of fault isolation, a bank of FD
systems are designed. Each of them is sensitive
to some faults while robust to the rest faults and
disturbances. With a suitable decision logic the
faults can be isolated (Chen and Patton, 1999).

In residual generator (2), post filter R(s) plays an
important role in that it releases the observer gain
L from the task of optimizing FDI performance,
as shown below. Motivated by this, in the FTC
strategy described in the next section, FDI system
and controller use the same observer without
impairing either control or FDI performance.

Suppose that R̄(s) solves (6) and generates a
residual r̄ with optimal dynamics

r̄(s) = R̄(s)M̄u(s)(Gd(s)d(s) +Gf (s)f(s))

M̄u(s) = I −C(sI −A+ L̄C)−1L̄
If now the observer gain is selected as L 6= L̄, then
the residual dynamics is governed by (3). Because
there exists always a matrix (Ding and Guo, 1997)

Q(s) = I +C(sI −A+ L̄C)−1(L− L̄)
such that Q(s)Mu(s) = M̄u(s), the optimal resid-
ual dynamics r̄ can always be achieved by let-
ting R(s) = R̄(s)Q(s). Moreover, R(s) ∈ RH∞
since Q(s) ∈ RH∞. Thus, as long as L stabilizes
A− LC, the optimal residual r̄(s) can always be
obtained by a suitable selection of R(s).



In the same way, it can be shown that the op-
timality of the residual generated by the FDF
depends not only on V but also on L. This is also
the reason why the post filter R(s) is used in our
robust observer-based FDI systems.

3. DESCRIPTION OF THE FTC STRATEGY

The FTC problem is considered for linear systems
described by

ẋ(t) = Ãx(t) +Bu(t) +Eff(t) +Edd(t) (9)
z(t) = C1x(t) +D1u(t) + Ff1f(t) + Fd1d(t)

y(t) = C2x(t) +D2u(t) + Ff2f(t) + Fd2d(t)

where z denotes the controlled signal, x, u, d, f, y
are the same as before. The system matrix Ã = A
in the nominal case and Ã = A+∆A in the case
of model uncertainty with ∆A structured as

∆A =MΣN (10)

where M,N are known matrices, Σ is unknown
but bounded by ΣTΣ 6 I.
The controller is based on the observer

˙̂x(t) = Ax̂(t) +Bu(t) + L(y(t)− ŷ(t))
ŷ(t) = C2x̂(t) +D2u(t)

rb(t) = y(t)− ŷ(t) (11)

The control law is

u(t) = −Kx̂(t) +Hrb(t) + v(t) (12)

where v is the reference input signal, H is a
constant matrix

H =

½
0, krk2 6 Jth
H, krk2 > Jth

i.e. if a fault is detected, the residual signal will be
taken as an input to the controller to compensate
the influence of faults. The same observer is used
for the FDI purpose with post filter R(s) whose
state space realization is (AR, BR, CR,DR).

In the normal operating conditions of the system,
i.e. krk2 6 Jth, the controller parameters are set
to H1 = 0 and K1, L1 which solve the optimiza-
tion problem

min
K,L

k[Tzd(s) Tzv(s)]k∞ (13)

If krk2 > Jth, a fault is detected. The controller
is then reconfigured to K2, L2,H2 which solve

min
K,L,H

k[Tzd(s) Tzf (s) Tzv(s)]k∞ (14)

in order to tolerate all possible faults. And a bank
of post filters are activated to isolate the faults.

After the occurring fault f̃ is isolated, the con-
troller is reconfigured to K3, L3,H3 which solve

min
K,L,H

k[Tzd(s) Tzf̃ (s) Tzv(s)]k∞ (15)

in order to tolerate the occurring fault. Corre-
spondingly, the FDI system is also reconfigured

to be able to detect new faults. Note that in each
operating condition of the system, the stability of
the system is the basic requirement.

During the transition phase that the fault has
happened but not yet been detected by the FDI
system, the closed-loop stability will not be influ-
enced because the fault enters the system as an
additive external signal. Moreover, the supremum
of the 2-norm of the controlled signal z during
this period can be determined as follows. Since
krk2 6 Jth, the fault is deduced to satisfy

kfk2 6
2Jth

σmin(R(s)Mu(s)Gf2(s))

Thus

kzk2,τ 6 kzk2
= kTzd(s)d(s) + Tzf (s)f(s) + Tzv(s)v(s)k2
6 kTzd(s)k∞∆d +

2 kTzf (s)k∞ Jth
σmin(R(s)Mu(s)Gf2(s))

+ kTzv(s)k∞ kvk2
where τ denotes the detection delay.

It is worth noticing that in the above presented
FTC strategy, the controller aims not only to
ensure the stability of the overall system, but
also to achieve the best possible performance
making use of the information delivered by the
FDI system.

4. PROBLEM FORMULATION

The design parameters are K,L,H and R(s). Re-
membering that L can be devoted fully to improv-
ing the control performance, the design for each
operating condition of the system is completed
in two steps. At first, K,L, (H) are selected to
optimize the control performance. Then, based on
the resulting L, (H), the post filterR(s) is selected
to improve the FDI performance.

In the following, our attention is focused on two
sub-problems:

• Design of the optimal post filter;
• Solution to the optimization problem (14)

since the solution to (13) is well-known (Wang and
Shieh, 1992) and the solution to (15) is similar to
the solution to (14).

5. NOMINAL DESIGN

In this section, we consider the design of optimal
post filter for LTI systems (9) without model
uncertainty, which is also called nominal design.
The solution to the optimization problem (14) can
be derived by simplifying the algorithm given in
Section 6.1, thus it is omitted here.



From Lemma 1, the key to get the optimal post
filter is to do the CIOF (7). Note that

Mu(s)Gd2(s) = Nd(s)

= Fd2 +C2(sI −A+ LC2)−1(Ed − LFd2)
The following theorem is obtained by applying the
CIOF approach given in Francis (1987).

Theorem 2. Suppose that L is determined by the
controller design, the post filter R(s) that solves
(6) is given by

R(s) = V̄ + V̄ C2(sI −A+ L̄C2)−1(L− L̄) (16)
where

L̄ = [EdF
T
d2 +XC

T
2 ](Fd2F

T
d2)
−1

V̄ = (Fd2F
T
d2)
− 1
2 (17)

and X ≥ 0 solves the Riccati equation
ĀX +XĀT −XCT2 (Fd2FTd2)−1C2X

+Ed(I − FTd2(Fd2FTd2)−1Fd2)ETd = 0 (18)

with Ā = A−EdFTd2(Fd2FTd2)−1C2.

Correspondingly, the threshold is set to be

Jth = kR(s)Mu(s)Gd2(s)k∞∆d = ∆d
Remark 1. The dynamics of the optimal residual
is independent of L and governed by

r(s) = V̄ N̄d(s)d(s) + V̄ N̄f (s)f(s) (19)

where

N̄d(s) = Fd2 +C2(sI −A+ L̄C2)−1(Ed − L̄Fd2)
N̄f (s) = Ff2 +C2(sI −A+ L̄C2)−1(Ef − L̄Ff2)
The optimal residual (19) will be called nominal
optimal residual in the following sections.

Remark 2. We would like to point out that L̄
and V̄ in (17) is also the unique solution to the
optimization problem formulated for the standard
FDF design

min
V,L

kVMu(s)Gd2(s)k∞
σi(VMu(s)Gf2(s))

6. ROBUST DESIGN

In this section, the two sub-problems formulated
in Section 4 are solved for LTI systems with model
uncertainty described by (9)-(10).

6.1 Solution to the optimization problem (14)

The control loop dynamics is governed by·
ẋ
ė

¸
=

·
A+∆A−BK BK +BHC2

∆A A− LC2
¸ ·
x
e

¸
+

·
Ed +BHFd2
Ed − LFd2

¸
d+

·
Ef +BHFf2
Ef − LFf2

¸
f+

·
B
0

¸
v

z =
£
C1 −D1K D1K +D1HC2

¤ · x
e

¸
+(Fd1+D1HFd2)d+(Ff1+D1HFf2)f +D1v

The optimization problem (14) is re-formulated as

min
K,L,H

α (20)

where k[Tzd(s) Tzf (s) Tzv(s)]k∞ < α and the
control loop is stable. Because of the limitation
of space, only the algorithm is given below.

Step 1: For a given value of α > 0, find a positive
definite matrix Q, a matrix K̄ and a positive real
number ², which solve the LMI

U11 Ed Ef B U15 QN
T

ETd −αI 0 0 FTd1 0
ETf 0 −αI 0 FTf1 0

BT 0 0 −αI DT1 0
UT15 Fd1 Ff1 D1 −αI 0
NQ 0 0 0 0 −²I

 < 0 (21)

U11 = AQ+QA
T −BK̄ − K̄TBT + ²MMT

U15 = (C1Q−D1K̄)T
and let K = K̄Q−1. If (21) has no solution, go
directly to Step3.

Step 2: Based on the resulting K and using
the alternating projection algorithm (Skelton et
al., 1998), find positive definite matricesR1, S1, S2
and positive real number ε which satisfy R1S1 = I
and the LMI’s

WT
1 ΦW1 < 0, W

T
2 ΨW2 < 0 (22)

with

Φ =



Φ11 Φ12 Ed Ef B M R1N
T

ΦT12 −αI Fd1 Ff1 D1 0 0
ETd FTd1 −αI 0 0 0 0
ETf FTf1 0 −αI 0 0 0

BT DT
1 0 0 −αI 0 0

MT 0 0 0 0 −δI 0
NR1 0 0 0 0 0 −δ−1I


Φ11 = (A−BK)R1 +R1(A−BK)T

Φ12 = R1(C1 −D1K)T

Ψ =



Ψ11 Ψ12 S1Ed S1Ef S1B Ψ16 S1M
ΨT12 Ψ22 S2Ed S2Ef 0 Ψ26 S2M
ETd S1 ETd S2 −αI 0 0 FTd1 0
ETf S1 ETf S2 0 −αI 0 FTf1 0
BTS1 0 0 0 −αI DT1 0
ΨT16 ΨT26 Fd1 Ff1 D1 −αI 0
MTS1 M

TS2 0 0 0 0 −δI


Ψ11 = S1(A−BK) + (A−BK)TS1 + δNTN

Ψ12 = S1BK, Ψ16 = (C1 −D1K)T
Ψ22 = A

TS2 + S2A, Ψ26 = (D1K)
T

W1 = diag{W11, I, I}, W2 =

 0 I 0
W22 0 0
0 0 I


where W11 and W22 are the bases of null spaces
of
£
BT DT1

¤
and

£
C2 Fd2 Ff2

¤
respectively.



Step 3: Reduce or increase the value of α, iterate
the above process till the minimal α is achieved.

Step 4: Substitute S1, S2 into the LMI to get Θ

Ψ+zTΘΞ+ ΞTΘTz < 0 (23)

z =
·
BTS1 0 0 DT1 0
0 −S2 0 0 0

¸
Ξ =

£
0 C2 Fd2 Ff2 0 0 0

¤
Step 5: Partition Θ into

·
H
L

¸
.

Thus the controller design is completed.

6.2 Design of the optimal post filter

To deal with model uncertainty ∆A, the nomi-
nal optimal residual is taken as a rule, since it
represents the best compromise between the ro-
bustness to disturbances and sensitivity to faults
in the ideal nominal case. The design problem is
formulated as: Find the optimal post filter R(s)
so that in the face of model uncertainty ∆A,
the residual approximates the nominal optimal
residual to preserve the best trade-off property.

To this aim, define ξ(t) = r(t)− r̄(t). ξ(t) reflects
the difference between r(t) and nominal optimal
residual r̄(t). From Remark 1, the dynamics of r̄(t)
with respect to disturbance and fault is

ẋn(t) = (A− L̄C2)xn(t) + (Ef − L̄Ff2)f(t)
+ (Ed − L̄Fd2)d(t)

r̄(t) = V̄ C2xn(t) + V̄ Ff2f(t) + V̄ Fd2d(t) (24)

where L̄ and V̄ are defined as in (17).

Let e(t) = x(t) − x̂(t). Considering (9)-(12), the
transfer function from the external input η =
[ fT dT vT ]T to ξ can be expressed into the lower
linear fractional transformation of an extended
plant Pp(s) and the post filter R(s), i.e. Tξη(s) =
Fl(Pp(s), R(s)), where

Ẋp(t) = ApXp(s) +B1pη(t) +B2pr(t) (25)
ξ(t) = C1pXp(s) +D11pη(t) +D12pr(t)

rb(t) = C2pXp(s) +D21pη(t) +D22pr(t)

with Xp = [ xT eT xTn ]
T and

Ap = Ap0 +MpΣNp

Ap0 =

A−BK BK +BHC2 0
0 A− LC2 0
0 0 A− L̄C2


Mp = [M

T MT 0 ]T , Np = [N 0 0 ]

B1p =

Ef +BHFf2 Ed +BHFd2 BEf − LFf2 Ed − LFd2 0
Ef − L̄Ff2 Ed − L̄Fd2 0


B2p =

£
0 0 0

¤T
, C1p =

£
0 0 −V̄ C2

¤
C2p =

£
0 C2 0

¤
, D21p =

£
Ff2 Fd2 0

¤
D11p =

£−V̄ Ff2 −V̄ Fd2 0 ¤ , D12p = I, D22p = 0

Define

ΘR =

·
AR BR
CR DR

¸
(26)

The closed-loop transfer function from η to ξ is

Tξη(s) = Cc(sI −Ac)−1Bc +Dc (27)

where

Ac = Ac0 +McΣNc (28)

Ac0 = Ao + B̃ΘRC̃, Bc = Bo + B̃ΘRD̃21

Cc = Co + D̃12ΘRC̃, Dc = D11p + D̃12ΘRD̃21

Ao =

·
Ap0 0
0 0

¸
, Bo =

·
B1p
0

¸
, Co =

£
C1p 0

¤
B̃ =

·
0 B2p
I 0

¸
, C̃ =

·
0 I
C2p 0

¸
, D̃21 =

·
0

D21p

¸
D̃12 =

£
0 D12p

¤
, Mc =

·
Mp

0

¸
, Nc =

£
Np 0

¤
The optimization problem is thus re-formulated
as to find an optimal parameter set ΘR, so that
the closed-loop system is stable and

min
ΘR

γ (29)

kTξη(s)k∞ < γ (30)

According to the well-known Bounded Real Lemma,
(30) holds if and only if there exists a positive
definite matrix P such that

P (Ac0+McΣNc)+ (Ac0+McΣNc)
TP +CTc Cc

+(PBc+C
T
c Dc)(γ

2I−DTc Dc)−1(BTc P+DTc Cc) < 0
Because for any real number ε > 0, there is

PMcΣNc + (McΣNc)
TP

6 εNT
c Nc + ε−1PMcM

T
c P

Thus if there exists P > 0, ε > 0 such that
PAc0 +A

T
c0P + εNT

c Nc PBc C
T
c PMc

BTc P −γI DTc 0
Cc Dc −γI 0
MT
c P 0 0 −εI

 < 0
then (30) holds. Considering (28), the above LMI
can be re-written as

Π+ PoΛ
TΘRΓ+ Γ

TΘTRΛPo < 0 (31)

Γ =
£
C̃ D̃21 0 0

¤
Λ = [ B̃T 0 D̃T12 0 ], Po = diag{P, I, I, I}

Π =


PAo +A

T
o P + εNT

c Nc PBo CTo PMc

BTo P −γI DT11p 0
Co D11p −γI 0
MT
c P 0 0 −εI


According to Skelton et al. (1998), (31) is solvable
for some ΘR if and only if

ΓT⊥ΠΓ⊥ < 0, Λ
T
⊥P
−1
o ΠP

−1
o Λ⊥ < 0 (32)

where Γ⊥, Λ⊥denote the bases of null spaces of
Γ, Λ respectively.



Partition P and P−1 as

P =

·
S Y
Y T ∗

¸
, P−1 =

·
Q−1 X
XT ∗

¸
(33)

By substituting (28) and (33) into (32) and taking
into account that B2p = [ 0 0 0 ]T , D12p = I, the
following theorem is obtained.

Theorem 3. Consider system (27) and let Γ̄⊥ de-
note the base of null space of

£
C2p D21p

¤
. There

exists a post filter R(s) of order kr so that Ac
is stable and (30) holds, if there exist matrices
S > 0, Q > 0 and a real number ε > 0 satisfying

Φ̄ < 0, WT Π̄W < 0 (34)
S > Q, Rank(Q− S) 6 kr (35)

where W = diag{Γ̄⊥, I, I} and

Φ̄ =

QAp0 +ATp0Q+ εNT
p Np QB1p QMp

BT1pQ −γI 0

MT
p Q 0 −εI



Π̄ =


SAp0 +A

T
p0S + εNT

p Np SB1p CT1p SMp

BT1pS −γI DT11p 0
C1p D11p −γI 0
MT
p S 0 0 −εI


In conclusion, the robust optimal design of post
filter R(s) is summarized as follows:

• Compute the nominal optimal residual dy-
namics r̄(t) according to (24).

• Construct the matrices of Pp(s) by (25).
• Solve iteratively (34)-(35) using alternating
projection algorithm (Skelton et al., 1998) to
get the minimal γ and matrices S > 0, Q > 0.

• Compute two full column rank matrices X,Y
such that XY T = I −Q−1S.

• Solve the linear equation·
S I
Y T 0

¸
= P

·
I Q−1

0 XT

¸
(36)

and obtain the unique solution P .
• Substitute P into the LMI (31) and get ΘR.
• Partition ΘR as (26).

In the fault-free case

krk2 = kTrd(s)d(s) + Trv(s)v(s)k2
6 kTrd(s)k∞ kdk2 + kTrv(s)k∞ kvk2

Therefore, the threshold is set to be

Jth = kTrd(s)k∞∆d + kTrv(s)k∞ kvk2 (37)

which suggests that the threshold adapts to the
reference input signal v.

7. CONCLUSION

In this paper, an FTC strategy is proposed for lin-
ear systems. Key is to apply the robust observer-
based FDI system to the reconfiguration of con-
troller parameters and thus to improve the con-
trol performance in every operating conditions of

the system. Structurally the controller and the
FDI system use the same observer while their
designs are carried out successively. The proposed
FTC system has an explicit physical structure
and ensures good control and FDI performance
simultaneously. The basic idea of the proposed
FTC strategy can also be extended to nonlinear
processes. Due to the essential complexity and
variety of nonlinear processes, the design of an
optimally sensitive and robust observer-based FDI
system is still under research.
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