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Abstract: In this paper, fault detection problems for linear uncertain systems
are studied. Instead of designing fault detection systems from the viewpoint of
increasing the system robustness against unknown inputs and the sensitivity to
the faults, an approach is proposed, which allows us to design fault detection
systems in such a way that the missed detection rate is minimized for a given false
alarm rate.
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1. INTRODUCTION

In this paper, problems related to the design of
observer based fault detection (FD) systems for
linear dynamic systems with model uncertainties
are studied. The plant model under consideration
is described by

ẋ= Āx+ B̄u+ Ēff + Ēdd (1)

y=Cx+Du+ Fdd+ Fff (2)

where x ∈ Rn, u ∈ Rku and y ∈ Rm denote
the state, input and output vectors of the plant,
f ∈ Rkf , d ∈ Rkd the fault and unknown input
vectors respectively. Without loss of generality,
we assume d is L2-norm bounded, kdk2 ≤ δd,
u is an L2-signal and Ā = A + ∆A, B̄ = B +
∆B, Ēf = Ef+∆Ef , Ēd = Ed+∆Ed. A,B,C,D,
Ef , Ed, Fd, Ff are known system matrices with
appropriate dimensions and ∆A,∆B,∆Ef ,∆Ed
represent model uncertainties satisfying

1 Supported in part by the MSWF-NRW in the framework
of TRAFO-programme
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We will use below the notation Gu(s) = C(sI −
A)−1B+D and drop, due to the space limitation,
time variable t and complex variable s of Laplace-
transformation if it does not cause confusion.

A typical FD system consists of a residual gen-
erator and a residual evaluation stage including
an evaluation function and a threshold (Gertler,
1998; Chen and Patton, 1999; Frank and Ding,
1997). For the purpose of residual generation,
observer-based fault detection systems of the fol-
lowing form

˙̂x=Ax̂+Bu+ L(y − ŷ), ŷ = Cx̂+Du (3)
r(s) =R(s)(y(s)− ŷ(s)) (4)

are considered, where r is the residual vector and
the design parameters are the observer gain L and
post-filter R(s) ∈ RH∞. It is well-known that (3)-
(4) can also be expressed in terms of
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r(s) = R(s)
³
M̂u(s)y(s)− N̂u(s)u(s)

´
(5)

where (M̂u(s), N̂u(s)) is a left coprime factoriza-
tion of Gu(s), and the design of a residual gener-
ator is equivalent to the selection of a post-filter
(Frank and Ding, 1994).

In this contribution, the H2-norm of residual
vector r(s) is used as the residual evaluation
function which evaluates the energy change in r.
It is worth to remark that in practice a modified
form of the H2-norm is used for the purpose of
residual evaluation. The length of the evaluation
window, both in the time and frequency domains,
is limited instead of infinitive.

The last step to a successful fault detection is
the establishment of a logic decision unit. In this
contribution, we consider a simple but mostly
used logic:

If krk2 >Jth (threshold) =⇒ alarm (6)

If krk2 ≤ Jth (threshold) =⇒ no fault (7)

A widely accepted way to deal with model based
FDI problems is to solve them in the context of
robust control theory (Gertler, 1998; Chen and
Patton, 1999; Frank and Ding, 1997). So are the
concepts robustness and sensitivity, perhaps the
most important topics in the field of model based
FDI. What is the real idea behind these two
concepts? They are indeed the ”translation” of
two essential requirements on a fault diagnosis
system: false alarm rate and missed detection rate.
False alarms are caused by unknown input vector
and model uncertainties. In order to reduce them,
thresholds are introduced, which lead in turn to
missed detection. In fact, the most difficult task
of designing a fault detection system is to find out
a suitable trade-off between the false alarm rate
and the missed detection rate.

It is evident that setting Jth according to Jth =
sup∆A,∆B,∆Ed,d,f=0 krk2 prevents false alarms.
This way of handling FD design problem seems
elegant but has two practical problems:

• the performance that the false alarm rate
equals zero is achieved at the cost of missed
detection rate. This problem may become
more serious if kdk2 and the model uncer-
tainties rarely reach their maximum;

• how to design the FD system such that for
a given false alarm rate the missed detection
rate is minimized.

The main objective of this paper is to develop
a new approach to the design of fault detection
systems from the viewpoint of achieving a suitable
trade-off between the false alarm rate and missed
detection rate. Motivated by the above discussion,
we shall try to solve the following two problems

• Establishment of a trade-off relationship be-
tween the false alarm rate and the missed
detection rate;

• Direct design of FD systems to minimize the
missed detection rate for a given false alarm
rate.

2. OUTLINE OF BASIC IDEAS AND
PROBLEM FORMULATION

In this section, we are going to outline the ba-
sic ideas of our study, major solution steps and
problems to be solved for designing an FD system
satisfying the requirements mentioned above.

2.1 System dynamics

For our purpose, the system dynamics will first be
studied. Depending on the control law used, the
dynamics of the overall system (plant + residual
generator) can be written in two different ways.

Case I: u(t) is realized independent of the ob-
server used. Since u is known, introducing e = x−
x̂ yields, after a straightforward calculation,·

ẋ
ė

¸
=

·
Ā O
∆A A− LC

¸·
x
e

¸
+

·
B̄
∆B

¸
u

+

·
Ēd

Ēd − LFd
¸
d+

·
Ēf

Ēf − LFf
¸
f

r=R(s) (Ce+ Fdd+ Fff) (8)

Case II: u(t) is based on the observer used, for
instance: u(t) = −Kx̂+wref . Then, we have·
ẋ
ė

¸
=

·
Ā− B̄K −B̄K
∆A+∆BK A− LC −∆BK

¸ ·
x
e

¸
+

·
B̄
∆B

¸
wref +

·
Ēd

Ēd − LFd
¸
d

+

·
Ēf

Ēf − LFf
¸
f

r=R(s) (Ce+ Fdd+ Fff) (9)

Note that in Case I, since the observer gain L
has no influence on the system dynamics (1)-(2),
the overall system is stable iff the plant is stable
and (A,C) is detectable. The task of the fault
detection system design can then be formulated as
finding L and R(s) ∈ RH∞ such that the residual
generator (observer) (3) is stable and r satisfies
the desired system performance. Different from it,
in Case II, it is evident that an integrated design of
the controller and residual generator (observer) is
needed, since bothK and L have influences on the
whole system dynamics (Murad and Gu, 1996).
Thus, the design tasks consist of a) stabilization of
the overall system (9); b) satisfying desired control



performance; c) satisfying of FD performance by
selecting K,L and R(s). Due to the paper space
limitation and also for the sake of simplicity, in
this contribution we’ll focus our attention to Case
I. A brief remark on Case II will be given in the
concluding remarks.

Considering the fact that in Case I for any R(s), L
we are able to find a R∗(s) such that for a given
Lo the relation r(R∗, Lo) = r(R,L) holds, we shall
only consider the design of a post filter R(s) for a
given (suitable) L in the following of this paper.
In the above relation, r(R,L) denotes the residual
signal generated by the residual generator with
observer gain L and post-filter R(s).

For the sake of simplicity, we write (8) in the
following form

r = Gruu+Grdd+Grff (10)

with Gru,Grd and Grf denoting the transfer func-
tion matrices from u, d and f to r.

2.2 Establishment of an adaptive threshold

Remember the objective of our study, we first
introduce δd, δ∆ :

δd ≤ sup
d
kdk2 = ∆d, δ∆ ≤ δ

and define the threshold as follows

Jth = sup
ΣTΣ≤δ∆I,kdk2≤δd,f=0

krk2 (11)

Since for any d, kdk2 > δd or ∆A,∆B,∆Ed which
lead to ΣTΣ > δ∆I, we may have krk2 > Jth for
f = 0, i.e. it leads to a false alarm. Thus, the false
alarm rate may be non-zero and its size depends
on the frequency that kdk2 > δd or ΣTΣ > δ∆I.
For our purpose on the one side and to simplify
the problem formulation on the other side, we
introduce the following index

IFAR = 1−
supΣTΣ≤δ∆I,kdk2≤δd,f=0 krk2
supΣTΣ≤δI,kdk2≤4d,f=0 krk2

(12)

= 1− Jth
Jth,max

with Jth,max denoting the maximal possible thresh-
old which covers all possible d and model un-
certainties. It is clear that IFAR measures the
frequency of false alarms. If the threshold Jth is
set to be

Jth = Jth,max = sup
ΣTΣ≤δI,kdk2≤4d,f=0

krk2

then IFAR = 0, which means, as expected, no false
alarm. On the other side, if Jth is set to be zero,
then IFAR = 1, which means that there exists
definitively at least a false alarm. It is also evident
that the smaller δd or δ∆ are defined, the larger

IFAR may become, which leads to a higher false
alarm frequency.

It follows from (10) that, due to the existence
of model uncertainties, the threshold to be es-
tablished should be a function of d, u and model
uncertainties. We denote it with

Jth = γdδ∆δd + γuδ∆ kuk2 (13)

where both γdδ∆ and γuδ∆ are some constants de-
pending on δ∆. Note that the threshold consists of
two terms and the term γuδ∆ kuk2 depends on the
input signals and can be on-line calculated. Such
kind of threshold is called adaptive threshold.

As shown in (13), the main task of establishing a
threshold is to determine γdδ∆ and γuδ∆ .

2.3 Design of residual generator

Recall that following detection logic (6)-(7) a fault
f can be detected if and only if

krk2 = kGruu+Grdd+Grffk2 > Jth (14)

As a result, we claim that for some d,∆A,∆B,∆Ed,
∆Ef a fault f can be detected if and only if

kGruu+Grdd+Grffk2 > γdδ∆δd+γ
u
δ∆ kuk2 (15)

We now introduce two sets

• the set of detectable faults ΩR,Jth(d,∆)
ΩR,Jth(d,∆) (16)

= {f | f 6= 0, kGruu+Grdd+Grffk2 > Jth}
• the set of undetectable faults Ω⊥R,Jth(d,∆)

Ω⊥R,Jth(d,∆) (17)

= {f | f 6= 0, kGruu+Grdd+Grffk2 ≤ Jth}
Since the missed detection rate is proportional to
the number of undetectable faults, minimizing the
missed detection rate under a given false alarm
rate is equivalent to minimizing the dimension of
set Ω⊥R,Jth . Note that

Ω = {f | f 6= 0} = Ω⊥R,Jth(d,∆) ∪ΩR,Jth(d,∆)
we further have

min
R(s)∈RH∞

dimΩ⊥R,Jth(d,∆)

⇔ max
R(s)∈RH∞

dimΩR,Jth(d,∆)

Following this, we formulate the problem of de-
signing fault detection systems as finding R(s) ∈
RH∞ such that for all d, ∆A,∆B,∆Ed,∆Ef the
dimension of the set of detectable faults reaches
maximum, i.e.

max
R(s)∈RH∞

dimΩR,Jth(d,∆) (18)

for all d,∆A,∆B,∆Ed,∆Ef . Solving optimiza-
tion problem (18) is another main task of this
contribution.



3. PROBLEM SOLUTIONS

In this section, solutions for the above-defined two
problems will be derived.

3.1 Study of system dynamics

For our purpose, we first study the influence of d
and model uncertainties on the system dynamics.
It follows from (8) that Grdd + Gruu can be
expressed as follows:

Grdd+Gruu = R(s)
£
C(sI −A+ LC)−1ϕ+ Fdd

¤
ϕ = ∆Axd + (Ēd − LFd)d+∆Bu
xd = (sI − Ā)−1(Ēdd+ B̄u))
Note that

∆Axd +∆Edd+∆Bu

=EΣ
£
FA FB FEd

¤ xdu
d

 = EΣϕd

ϕd =
³
FA(sI − Ā)−1B̃ + D̃

´·
u
d

¸
(19)

B̃=
£
B̄ Ēd

¤
, D̃ =

£
FB FEd

¤
(20)

We can re-write Grdd +Gruu as

Grdd+Gruu =

R(s)
£
C(sI −A+ LC)−1(Ēd̄ − LF̄d̄) + F̄d̄

¤
d̄

Ēd̄ =
£
E Ed

¤
, F̄d̄ =

£
O Fd

¤
, d̄ =

·
Σϕd
d

(̧21)

Denote

Ḡrd̄ = C(sI −A+ LC)−1Ēd̄ + F̄d̄ (22)

and note that Grff can also be, without loss of
generality, expressed by

Grff = R(s)Ḡrff

we finally have

r = R(s)
¡
Ḡrd̄d̄+ Ḡrff

¢
(23)

3.2 Calculation of the adaptive threshold

Following (11) and (23), we have

Jth= sup
ΣTΣ≤δ∆I,kdk2≤δd

°°RḠrd̄d̄°°2
=
°°RḠrd̄°°∞ sup

ΣTΣ≤δ∆I,kdk2≤δd

°°d̄2°°2
We now consider

°°d̄2°°2 for ΣTΣ ≤ δ∆I, kdk2 ≤
δd. Since

sup
ΣTΣ≤δ∆I,kdk2≤δd

°°d̄2°°
= sup
ΣTΣ≤δ∆I,kdk2≤δd

kϕdk2 δ∆ + δd

the key problem becomes the calculation of
supΣTΣ≤δ∆I,kdk2≤δd kϕdk2. To this end, we have
the following lemma known from the LMI tech-
nique (Boyd and Feron, 1994).

Lemma 1. Given a uncertain LTI system

.
x= (A+∆A)x+ (B +∆B)w

z =Cx+Dw,x(0) = 0

∆A=E1ΣF1,∆B = E2ΣF2,Σ
TΣ ≤ I

and γ > 0, if there exist ε1 > 0, ε2 > 0 and a
positive-definite matrix P such that the following
LMI

Q PB CT PE1 PE2
BTP −γ2I + ε2F

T
2 F2 D

T 0 0
C D −I 0 0
ET1 P 0 0 −ε1I 0
ET2 P 0 0 0 −ε2I

 < 0
Q = PA+ATP + ε1F

T
1 F1

holds for all the model uncertainties ∆A and ∆B,
then the system is asymptotically stable and the
H∞-norm of transfer function Gzw satisfies

kGzwk∞ < γ

Note the definition of ϕd given by (19), it becomes
evident that

sup
ΣTΣ≤δ∆I,kdk2≤δd

kϕdk2 ≤
°°°Gϕdd̄

°°°
∞
(δd + kuk2)

Gϕdd̄
= FA(sI −A−∆A)−1B̃ + D̃

Now, interatively using Lemma 1 for searching for
the inf . of γ1 satisfying (24),°°°FA(sI −A−∆A)−1B̃ + D̃°°°∞ < γ1 (24)

gives supΣTΣ≤δ∆I,kdk2≤δd kϕdk2 ≤ γ1(δd + kuk2).
Finally, we can calculate the threshold as follows:

γdδ∆ =
°°RḠrd̄°°∞ (1+ γ1δ∆), γ

u
δ∆ =

°°RḠrd̄°°∞ γ1δ∆

Jth= γdδ∆δd + γuδ∆ kuk2 =
°°RḠrd̄°°∞ α

α= (1+ γ1δ∆)δd + γ1δ∆ kuk2
Note that α is a variable which only depends on
the system parameters and is independent of the
residual generator design.

3.3 Design of the residual generator

In this sub-section, we outline the basic idea and
present an approach to the solution of optimiza-
tion problem (18). We begin with the so-called



co-inner-outer factorization (CIOF) of transfer
function matrix Ḡrd̄, Ḡrd̄ = Gdo(s)Gdi(s), where
Gdi(s) is the co-inner matrix of Ḡrd̄ satisfy-
ing Gdi(jω)G>di(−jω) = I, Gdo(s) is the co-
outer and RH∞-left-invertible, i.e. there exists a
RH∞-transfer function matrix G−1do (s) such that
G−1do (s)Gdo(s) = I (Zhou et al., 1995). Setting
R(s) = Q(s)G−1do (s) yields,

krk2 − Jth = kR
¡
Ḡrd̄d̄+ Ḡrff

¢ k2 − °°RḠrd̄°°∞ α

= kQG−1do
¡
Ḡrd̄d̄+ Ḡrff

¢ k2 − kQGdik∞α
where Q(s) ∈ RH∞ stands for an arbitrarily
selectable matrix of an appropriate dimension.
Note that

kQGdik∞ = k (QGdi)∗ k∞ = kQk∞
kQG−1do

¡
Ḡrd̄d̄+ Ḡrff

¢ k2 ≤
kQk∞kG−1do

¡
Ḡrd̄d̄+ Ḡrff

¢ k2
It turns out: for all Q(s) ∈ RH∞

krk2 − Jth= kQG−1do
¡
Ḡrd̄d̄+ Ḡrff

¢ k2 − kQk∞α
≤ kQk∞

¡kG−1do ¡Ḡrd̄d̄+ Ḡrff¢ k2 − α
¢

The above inequality shows that condition

kG−1do
¡
Ḡrd̄d̄+ Ḡrff

¢ k2 − α > 0 (25)

is a necessary condition under which fault f be-
comes detectable. Note that (25) is expressed only
in terms of the model parameters Gdo, Gdi, Ḡrf
and f as well as d, moreover no assumption on
R(s) has been made by the derivation, thus the
following theorem holds.

Theorem 2. Given system (1)-(2) and threshold
(13), a fault f can then be detected only if (25)
holds.

Following Theorem 2, we know that increasing δd,
δ∆reduces the false alarm rate on the one side
and makes detecting f more difficult and thus
increases the missed detection rate on the other
side. From this point of view, we say that (25)
allows us to establish a relationship between the
false alarm rate and the missed detection rate and
further, based on it, to make a suitable trade-off
between them.

Note that setting Q(s) = I and therefore R(s) =
G−1do (s) leads to

krk2 − Jth = kG−1do
¡
Ḡrdd̄+ Ḡrff

¢ k2 − α

This means that (25) is also a sufficient condition
for f to be detectable if R(s) is set to be G−1do (s).
Using this result we are able to prove the following
theorem.

Theorem 3. R∗(s) = G−1do (s) is the optimal solu-
tion of optimization problem (18).

Proof. Denote a parameter matrix different
from R∗(s) by R̂(s). According to Theorem
3, the following inequality should hold: for all
d,∆A,∆B,∆Ed,∆Ef

dimΩR̂,Jth(d,∆) ≤ dimΩR∗,Jth(d,∆)
To prove it, we only need to show that for any
d,∆A,∆B,∆Ed,∆Ef and f ∈ ΩR̂,Jth(d,∆) we
also have f ∈ ΩR∗,Jth(d,∆). To this end, we re-
write R̂(s) as Q̂(s)G−1do (s) for some Q̂(s) ∈ RH∞.
Recall that

kR̂ ¡Ḡrdd̄+ Ḡrff¢ k2 − °°°R̂Ḡrd°°°∞ α

= kQ̂(G−1do Ḡrff +Gdid̄)k2 − kQ̂k∞α
≤ kQ̂k∞

¡kG−1do Ḡrff +Gdid̄k2 − α
¢

It follows from the definition of the set of de-
tectable faults, (16), that f ∈ ΩR̂,Jth(d,∆) only
if

kR̂(Ḡrdd̄+ Ḡrff)k2 − Jth > 0
This means in turn

kG−1do Ḡrff +Gdid̄k2 − α ≥
kR̂(Ḡrdd̄+ Ḡrff)k2 − α

kQ̂k∞
> 0

and thus f ∈ ΩR∗,Jth(d,∆). This proves the
theorem.

We would like to emphasize that the optimal so-
lution R∗(s) is independent of d and the model
uncertainties, and thus it ensures that for all pos-
sible unknown inputs and model uncertainties the
dimension of the set of detectable faults reaches
maximum.

Note that
°°R∗Ḡrd°°∞ = 1. Thus, in case that

the optimal post-filter R∗(s) is used the adaptive
threshold is given by

Jth= γdδ∆δd + γuδ∆ kuk2 = α

= (1+ γ1δ∆)δd + γ1δ∆ kuk2

3.4 Algorithms and on-line calculation

In this sub-section, the main results achieved
above will be summarised in form of two algo-
rithms that are used for the FD system design
and the calculation of the adaptive threshold.

Algorithm for the design of FD systems

• Do a left coprime factorization of Gu(s) or
design an observer (3) (i.e. selecting an L that
ensures the stability of the observer)

• Form Ḡrd̄ according to (21), (22)
• Do a co-inner-outer factorization of transfer
function matrix Ḡrd̄



• Set the optimal solution R∗(s) = G−1do (s).
Algorithm for the calculation of the adap-
tive threshold

• Form FA(sI−A−∆A)−1B̃+D̃ according to
(20)

• Search for (minimum) γ1 using the LMI-
technique on the basis of Lemma 1

• Set Jth = (1+ γ1δ∆)δd + γ1δ∆ kuk2
The needed on-line calculation

• Operation of residual generator (3)-(4) or (5)
• Residual evaluation: calculation of krk2
• Calculation of kuk2 for the purpose of the
on-line calculation of the adaptive threshold

• Comparison between krk2 and Jth

4. CONCLUDING REMARKS

From the viewpoint of a trade-off between the
false alarm rate and missed detection rate, an
approach to the design of fault detection system
for technical processes with model uncertainties
has been developed. Core of this approach is

• the derivation of a relationship between the
false alarm rate and the size of unknown
inputs and model uncertainties;

• the formulation of the design problem, min-
imizing the missed detection rate under a
given false alarm rate, as an optimization
problem and

• the derivation of an optimal solution.
We would like to make following remarks on the
results achieved, which cannot be discussed in
detail due to the limited space.

• As mentioned in Sub-section 2.1, an inte-
grated design of the controller and FDI sys-
tem is needed if the controller and the FDI
system are developed on the basis of a com-
mon dynamic system, for instance an ob-
server. In this case, the selection of both
parameter matrices, K and L, play a key
role, different from the case discussed in this
contribution. Considering that the design of
control system is of primary interest and the
post-filter R(s) has no influence on the dy-
namics of the control loop (plant + controller
in a closed loop), the integrated design can be
carried out in two steps: a). design of K and
L to ensure the desired control performance.
For this purpose, the known robust control
theory can be used; b). design of R(s) to
achieve the desired FDI performance. To this
end, the approach proposed in this paper can
be used.

• The derived solution can also be presented
in a state-space form, which provides us also

with an alternative solution to the design of
fault detection filters (Niemann and Stous-
trup, 1996; Edelmayer and Keviczy, 1997).

• Although the study carried out in this pa-
per aims at solving the robust fault detec-
tion problem, the achieved results can also
be used to approach the robust fault isola-
tion problem following two different schemes
(Gertler, 1998; Chen and Patton, 1999; Frank
and Ding, 1997): a) Reduce the fault iso-
lation problem to a unknown input decou-
pling problem; b) First solve the fault isola-
tion problem without considering the distur-
bances, which will result in kf residual gener-
ators, then optimize each residual generator
by taking into account the influence of the
disturbances on each residual signal.

• The approach has also been successfully used
in different laboratory systems.
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