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Abstract: In this paper, fault detection problems for linear uncertain systems
are studied. Instead of designing fault detection systems from the viewpoint of
increasing the system robustness against unknown inputs and the sensitivity to
the faults, an approach is proposed, which allows us to design fault detection
systems in such a way that the missed detection rate is minimized for a given false

alarm rate.
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1. INTRODUCTION

In this paper, problems related to the design of
observer based fault detection (FD) systems for
linear dynamic systems with model uncertainties
are studied. The plant model under consideration
is described by

i=Ax + Bu+ E¢f + Eqd (1)
y=Cx+ Du+ Fqd+ Fy f (2)

where * € R", u € R* and y € R™ denote
the state, input and output vectors of the plant,
f € R*,d € RFe the fault and unknown input
vectors respectively. Without loss of generality,
we assume d is Lp-norm bounded, ||d||, < &g,
u is an Lo-signal and A = A+ AA/B = B+
AB,Ef = EerAEf,Ed =F4+AFEy. A,B,C, D,
Ef,Eq, Fq, Fy are known system matrices with
appropriate dimensions and AA,AB,AE;, AE,
represent model uncertainties satisfying

L Supported in part by the MSWF-NRW in the framework
of TRAFO-programme

[AA AB AE; AE,| =EX [F4 Fp Fg, Fg, |
Y(H)I8(t) < 61,6 >0

We will use below the notation G, (s) = C(sl —
A)~!B+ D and drop, due to the space limitation,
time variable ¢t and complex variable s of Laplace-
transformation if it does not cause confusion.

A typical FD system consists of a residual gen-
erator and a residual evaluation stage including
an evaluation function and a threshold (Gertler,
1998; Chen and Patton, 1999; Frank and Ding,
1997). For the purpose of residual generation,
observer-based fault detection systems of the fol-
lowing form

t=Aé+Bu+L(y—14),§ = Ci+ Du (3)

r(s) = R(s)(y(s) —9(s)) (4)
are considered, where r is the residual vector and
the design parameters are the observer gain L and

post-filter R(s) € RHy. It is well-known that (3)-
(4) can also be expressed in terms of



r(s) = R(s) (Mu()y(s) = Nu(s)u(s))  (5)

where (M, (s), Nu(s)) is a left coprime factoriza-
tion of G,(s), and the design of a residual gener-
ator is equivalent to the selection of a post-filter
(Frank and Ding, 1994).

In this contribution, the Hs-norm of residual
vector r(s) is used as the residual evaluation
function which evaluates the energy change in 7.
It is worth to remark that in practice a modified
form of the Hs-norm is used for the purpose of
residual evaluation. The length of the evaluation
window, both in the time and frequency domains,
is limited instead of infinitive.

The last step to a successful fault detection is
the establishment of a logic decision unit. In this
contribution, we consider a simple but mostly
used logic:

If ||7|l2 > Ji (threshold) = alarm (6)
If ||7]]2 < Jup, (threshold) = no fault  (7)

A widely accepted way to deal with model based
FDI problems is to solve them in the context of
robust control theory (Gertler, 1998; Chen and
Patton, 1999; Frank and Ding, 1997). So are the
concepts robustness and sensitivity, perhaps the
most important topics in the field of model based
FDI. What is the real idea behind these two
concepts? They are indeed the "translation” of
two essential requirements on a fault diagnosis
system: false alarm rate and missed detection rate.
False alarms are caused by unknown input vector
and model uncertainties. In order to reduce them,
thresholds are introduced, which lead in turn to
missed detection. In fact, the most difficult task
of designing a fault detection system is to find out
a suitable trade-off between the false alarm rate
and the missed detection rate.

It is evident that setting J;; according to Jy, =
SUPA A AB,AE,d f—o ]2 prevents false alarms.
This way of handling FD design problem seems
elegant but has two practical problems:

e the performance that the false alarm rate
equals zero is achieved at the cost of missed
detection rate. This problem may become
more serious if [|d||, and the model uncer-
tainties rarely reach their maximum;

e how to design the FD system such that for
a given false alarm rate the missed detection
rate is minimized.

The main objective of this paper is to develop
a new approach to the design of fault detection
systems from the viewpoint of achieving a suitable
trade-off between the false alarm rate and missed
detection rate. Motivated by the above discussion,
we shall try to solve the following two problems

e Establishment of a trade-off relationship be-
tween the false alarm rate and the missed
detection rate;

e Direct design of FD systems to minimize the
missed detection rate for a given false alarm
rate.

2. OUTLINE OF BASIC IDEAS AND
PROBLEM FORMULATION

In this section, we are going to outline the ba-
sic ideas of our study, major solution steps and
problems to be solved for designing an FD system
satisfying the requirements mentioned above.

2.1 System dynamics

For our purpose, the system dynamics will first be
studied. Depending on the control law used, the
dynamics of the overall system (plant + residual
generator) can be written in two different ways.

Case I: u(t) is realized independent of the ob-
server used. Since u is known, introducing e = x—
Z yields, after a straightforward calculation,

{i] - [AAA A_OLC’} [:ﬂ - [ABB] !

B E
* [Ed —dLFJ it {Ef _fLFf} d
r=R(s) (Ce + Fyd+ Fyf) (8)

Case II: u(t) is based on the observer used, for
instance: u(t) = —KZ + wyes. Then, we have

#] [ A-BK -BK x
é| |AA+ABK A-LC—-ABK | |e

+| B o B
AB | Yl T | B, — LE,

E
* [Ef fLFf} /
r=R(s)(Ce+ Fqd + Fyf) 9)

Note that in Case I, since the observer gain L
has no influence on the system dynamics (1)-(2),
the overall system is stable iff the plant is stable
and (A,C) is detectable. The task of the fault
detection system design can then be formulated as
finding L and R(s) € RH such that the residual
generator (observer) (3) is stable and r satisfies
the desired system performance. Different from it,
in Case I, it is evident that an integrated design of
the controller and residual generator (observer) is
needed, since both K and L have influences on the
whole system dynamics (Murad and Gu, 1996).
Thus, the design tasks consist of a) stabilization of
the overall system (9); b) satisfying desired control



performance; ¢) satisfying of FD performance by
selecting K, L and R(s). Due to the paper space
limitation and also for the sake of simplicity, in
this contribution we’ll focus our attention to Case
I. A brief remark on Case II will be given in the
concluding remarks.

Considering the fact that in Case I for any R(s), L
we are able to find a R*(s) such that for a given
L, the relation r(R*, L,) = r(R, L) holds, we shall
only consider the design of a post filter R(s) for a
given (suitable) L in the following of this paper.
In the above relation, r(R, L) denotes the residual
signal generated by the residual generator with
observer gain L and post-filter R(s).

For the sake of simplicity, we write (8) in the
following form

r =G+ Grqd + Grff (10)

with Gy, Grq and G,y denoting the transfer func-
tion matrices from u,d and f to r.

2.2 FEstablishment of an adaptive threshold

Remember the objective of our study, we first
introduce 64,6 :

8qg <sup||dlly = Ag,0a <6
d

and define the threshold as follows

Jin = sup Il (11)
STE<AL|dl,<8a,f=0

Since for any d, ||d||y > 64 or AA, AB, AE4 which
lead to XTY > §a1, we may have ||r||y > Jyp, for
f =0, ie. it leads to a false alarm. Thus, the false
alarm rate may be non-zero and its size depends
on the frequency that ||d||, > 64 or ZTE > §a1.
For our purpose on the one side and to simplify
the problem formulation on the other side, we
introduce the following index

SUPSTS<6 AT, | d||,<8a,f=0 ll7]l2

Ipar=1— (12)
SUPSTS<61,||d||,<Aa, f=0 lI7]l2
Jin

Jth,max

with J¢p, max denoting the maximal possible thresh-
old which covers all possible d and model un-
certainties. It is clear that Irp4r measures the
frequency of false alarms. If the threshold Jy, is
set to be

Jin = Jth,max = sup HT”?
ST ||d]l, <Aa, f=0
then I'rar = 0, which means, as expected, no false
alarm. On the other side, if Jy;, is set to be zero,
then Irar = 1, which means that there exists
definitively at least a false alarm. It is also evident
that the smaller 64 or 6o are defined, the larger

Irpar may become, which leads to a higher false
alarm frequency.

It follows from (10) that, due to the existence
of model uncertainties, the threshold to be es-
tablished should be a function of d,u and model
uncertainties. We denote it with

Jen = Vo500 + 5 llull (13)
where both 7¢ and ¥, are some constants de-
pending on da. Note that the threshold consists of
two terms and the term v§  [lu/|, depends on the

input signals and can be on-line calculated. Such
kind of threshold is called adaptive threshold.

As shown in (13), the main task of establishing a
threshold is to determine yglA and vy, .

2.8 Design of residual generator

Recall that following detection logic (6)-(7) a fault
f can be detected if and only if
72 = |Grut + Grad + Grs fll2 > Jun (14)
As aresult, we claim that for some d, AA, AB, AFEy,
AFE; afault f can be detected if and only if
”GrourGrderGrffHZ > ’YgA‘SdJF’YgA ”UHz (15)

We now introduce two sets

o the set of detectable faults Qg g, (d,A)

Qr, 7, (d, A) (16)
={f 1 [ # 0, [|Gruu + Grad + Gryp flla > Jin}
e the set of undetectable faults Qﬁhh (d,A)

QJ}%,Jth (d7 A) (17)
= {f | f 7é 07 HGruu + Grdd+ GrffHQ S Jth}

Since the missed detection rate is proportional to
the number of undetectable faults, minimizing the
missed detection rate under a given false alarm
rate is equivalent to minimizing the dimension of
set Qg ;. Note that

Q={f|f#0}=Qx,,(dA)UQR,(dA)

we further have

R<S§Iéif?ﬂm dim Qg 5, (d, A)

= max

R(s)ERH.. dim QR,Jth (d, A)

Following this, we formulate the problem of de-
signing fault detection systems as finding R(s) €
RH,, such that for all d, AA,AB, AE,;, AEy the
dimension of the set of detectable faults reaches
maximum, i.e.
dim Q d, A 18
o, dim R (d; A) (18)
for all d,AA,AB,AE4, AE¢. Solving optimiza-
tion problem (18) is another main task of this
contribution.



3. PROBLEM SOLUTIONS

In this section, solutions for the above-defined two
problems will be derived.

3.1 Study of system dynamics

For our purpose, we first study the influence of d
and model uncertainties on the system dynamics.
It follows from (8) that G.qd + Gryu can be
expressed as follows:

Grad + Gruu = R(s) [C(s] — A+ LC) ¢ + Fyd
¢ =AArg+ (Eg — LF;)d + ABu
xq= (s — A)"Y(Eqd + Bu))

Note that
AAxg + AE4d + ABu
T4
=FEY [FA Fp FEd] u | = EXp,
d

0y = (FA(SI—A)*IBJFD) m (19)
B=[B E4|,D=[Fp Fg,] (20)

We can re-write G,qd +G,,u as

Grqd + Gryu =
R(s) [C(sI — A+ LC) " (Ez— LFy) + Fy| d
By = [E Ey] Fy= [0 Fy].d= F;jd}(m)

Denote
G,q=C(sI — A+ LO) 'E;+ F; (22)

and note that G,yf can also be, without loss of
generality, expressed by

Grpf=R(s)Gryf
we finally have

r=R(s) (Grqd + Grsf) (23)

3.2 Calculation of the adaptive threshold

Following (11) and (23), we have

Jen = sup | RG,4d],
STS<EAL | d]|, <64
=[[RGall,  sup o ldel,

ETE<L6AL,||d]| <64

We now consider Hd_gHz for X1 < 61, ||d|], <
64. Since

sup |da|
STE<8AL|d]l,<ba

= sup leallo 62 + 8a

ETE<L6AL,||d] <64

the key problem becomes the calculation of
SupZTZS(SAIyI‘d‘IzS&d ||SDdH2 To this end, we have
the following lemma known from the LMI tech-
nique (Boyd and Feron, 1994).

Lemma 1. Given a uncertain LTT system

t=(A+AA)zx+ (B+ABw
z=Cx+ Dw,z(0) =0
AA=F\YF,,AB = E;XF,, 2T < T

and v > 0, if there exist 1 > 0,65 > 0 and a

positive-definite matrix P such that the following
LMI

Q PB c? PE, PE,
BT'P I +eFf R, DT 0 0

C D -I 0 0 |[<o0
ETP 0 0 —e1I 0
EIP 0 0 0 —eof

Q=PA+ATP+oF'R,

holds for all the model uncertainties AA and AB,
then the system is asymptotically stable and the
H_,-norm of transfer function (G,,, satisfies

HszHoo <7

Note the definition of ¢, given by (19), it becomes
evident that

(6a + [lully)

‘ o

b palls <||Gpa
ETELEAL,||d] <64

G,,i=Fa(sI—A—AA)'B+D
Now, interatively using Lemma 1 for searching for
the inf . of v, satisfying (24),

HFA(SI —A-AA)B DH < (24)
gives SUPSTS<6AL||d||,<6a lpalla < v1(6a + [lully)-
Finally, we can calculate the threshold as follows:
Vo = |BGdll o A +7164),76, = [|RGyall 116
T =7338a+ 755 Jully = | RG,a| . @

a=(1+710a)0a +716a [ully

>

Note that a is a variable which only depends on
the system parameters and is independent of the
residual generator design.

3.8 Design of the residual generator

In this sub-section, we outline the basic idea and
present an approach to the solution of optimiza-
tion problem (18). We begin with the so-called



co-inner-outer factorization (CIOF) of transfer
function matrix G,.g, G, = Gao(5)Ga;i(s), where
Gai(s) is the co-inner matrix of G,; satisfy-
ing Gui(jw)Gg,(—jw) = I, Gao(s) is the co-
outer and RH.-left-invertible, i.e. there exists a
RH,-transfer function matrix G, (s) such that
G, (8)Gao(s) = I (Zhou et al., 1995). Setting
R(s) = Q(s)G .} (s) yields,

I7lly = Jin = IR (Grqd + Grs f) ll2 — | RG..4]| @
= QG (Grgd+ Grsf) 2 — |QGaill e

where Q(s) € RH,, stands for an arbitrarily
selectable matrix of an appropriate dimension.
Note that

[QGilloo = 1 (QGai)" llo = Qo
1QG3, (Grad+ Grsf) ll2 <
1QlloclI Gy (Grad + Gy f) l12
It turns out: for all Q(s) € RH

7]l = Jin = QG (Grad + Grpf) ll2 = |1Qll
<Qllso (1G5 (Grgd + Gy f) ll2 — )

The above inequality shows that condition
Gy (Grad + Grpf) o —a>0  (25)

is a necessary condition under which fault f be-
comes detectable. Note that (25) is expressed only
in terms of the model parameters GdO,Gdi,GTf
and f as well as d, moreover no assumption on
R(s) has been made by the derivation, thus the
following theorem holds.

Theorem 2. Given system (1)-(2) and threshold
(13), a fault f can then be detected only if (25)
holds.

Following Theorem 2, we know that increasing 64,
dareduces the false alarm rate on the one side
and makes detecting f more difficult and thus
increases the missed detection rate on the other
side. From this point of view, we say that (25)
allows us to establish a relationship between the
false alarm rate and the missed detection rate and
further, based on it, to make a suitable trade-off
between them.

Note that setting Q(s) = I and therefore R(s) =
G} (s) leads to

I7lly = Jin = G gy (Grad + Grgf) |2 —
This means that (25) is also a sufficient condition
for f to be detectable if R(s) is set to be G} (s).

Using this result we are able to prove the following
theorem.

Theorem 3. R*(s) = G}(s) is the optimal solu-
tion of optimization problem (18).

Proof. Denote a parameter matrix different
from R*(s) by R(s). According to Theorem
3, the following inequality should hold: for all
d,AA,AB,AE4, AEy
dim QR,Jth (d,A) < dimQp-~ g, (d,A)

To prove it, we only need to show that for any
d,AA,AB,AEq,AEs and f € Qp ; (d,A) we
also have f € Qg- j,,(d,A). To this end, we re-

write R(s) as QA(S)GJOI(S) for some Q(s) € RHo,.
Recall that

IR (Grad +Grr ) ll2 = || RGra|
= QG Grf + Gaid)ll2 — Qlwer
<@l (1Gay Grs f + Guidll — @)

It follows from the definition of the set of de-
tectable faults, (16), that f € Qp ; (d,A) only
if

a

|R(Grad + Gy f)ll2 — Jen > 0

This means in turn

|G Grf + Gad|]2 — a >
|R(Grad + Grp f)]2 — @
Qo

and thus f € Qpg- 7, (d,A). This proves the
theorem. W

We would like to emphasize that the optimal so-
lution R*(s) is independent of d and the model
uncertainties, and thus it ensures that for all pos-
sible unknown inputs and model uncertainties the
dimension of the set of detectable faults reaches
maximum.

Note that HR*GMHOO = 1. Thus, in case that
the optimal post-filter R*(s) is used the adaptive
threshold is given by

Jn :’)/fslA(Sd +’Y§A ||UH2 =
= (14 716A)04 + 710 |lull,

3.4 Algorithms and on-line calculation

In this sub-section, the main results achieved
above will be summarised in form of two algo-
rithms that are used for the FD system design
and the calculation of the adaptive threshold.

Algorithm for the design of FD systems

e Do a left coprime factorization of G,(s) or
design an observer (3) (i.e. selecting an L that
ensures the stability of the observer)

e Form G, 7 according to (21), (22)

e Do a co-inner-outer factorization of transfer
function matrix G,z



e Set the optimal solution R*(s) = G }(s).

Algorithm for the calculation of the adap-
tive threshold

e Form Fu(sI — A—AA)~'B+ D according to
(20)

e Search for (minimum) 7, using the LMI-
technique on the basis of Lemma 1

o Set Jip, = (1 4+ v16A)04 + 110 HU||2

The needed on-line calculation

e Operation of residual generator (3)-(4) or (5)
Residual evaluation: calculation of ||r||,
Calculation of ||ul|, for the purpose of the
on-line calculation of the adaptive threshold
e Comparison between ||r||, and Jy;,

4. CONCLUDING REMARKS

From the viewpoint of a trade-off between the
false alarm rate and missed detection rate, an
approach to the design of fault detection system
for technical processes with model uncertainties
has been developed. Core of this approach is

e the derivation of a relationship between the
false alarm rate and the size of unknown
inputs and model uncertainties;

e the formulation of the design problem, min-
imizing the missed detection rate under a
given false alarm rate, as an optimization
problem and

e the derivation of an optimal solution.

We would like to make following remarks on the
results achieved, which cannot be discussed in
detail due to the limited space.

e As mentioned in Sub-section 2.1, an inte-
grated design of the controller and FDI sys-
tem is needed if the controller and the FDI
system are developed on the basis of a com-
mon dynamic system, for instance an ob-
server. In this case, the selection of both
parameter matrices, K and L, play a key
role, different from the case discussed in this
contribution. Considering that the design of
control system is of primary interest and the
post-filter R(s) has no influence on the dy-
namics of the control loop (plant + controller
in a closed loop), the integrated design can be
carried out in two steps: a). design of K and
L to ensure the desired control performance.
For this purpose, the known robust control
theory can be used; b). design of R(s) to
achieve the desired FDI performance. To this
end, the approach proposed in this paper can
be used.

e The derived solution can also be presented
in a state-space form, which provides us also

with an alternative solution to the design of
fault detection filters (Niemann and Stous-
trup, 1996; Edelmayer and Keviczy, 1997).

e Although the study carried out in this pa-
per aims at solving the robust fault detec-
tion problem, the achieved results can also
be used to approach the robust fault isola-
tion problem following two different schemes
(Gertler, 1998; Chen and Patton, 1999; Frank
and Ding, 1997): a) Reduce the fault iso-
lation problem to a unknown input decou-
pling problem; b) First solve the fault isola-
tion problem without considering the distur-
bances, which will result in & residual gener-
ators, then optimize each residual generator
by taking into account the influence of the
disturbances on each residual signal.

e The approach has also been successfully used
in different laboratory systems.
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