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Abstract: Intelligent vehicle systems have introduced the necessity for the designer to take care of user preferences
in order to make as comfortable as possible several kinds of driving features. This requirement originates the problem
of a suitable analysis of the human performances to be implemented in automatic driving tasks. The aim of this
paper is to personalize an Adaptive Cruise Control with Stop and Go features (ACC/S&G) for a urban scenery. This
can be accomplished by taking into account the driver behaviour characteristics evaluated by means of a statistical
analysis performed on data collected, for a set of drivers, during a common urban journey. It will be shown that the
personalization of the ACC/S&G task can be obtained by a suitable tuning of the parameters of a reference generator
without modifying preexistent control algorithms structure. Copyright© 2002 IFAC
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1. INTRODUCTION

The recent developments on intelligent vehicle sys-
tems have introduced the necessity for the designer
of such systems to take care of user preferences, in
order to make as comfortable as possible these driving
features. Thus, the problem of implementing several
automatic driving tasks, taking into account driver
characteristics by suitably modelling the human per-
formances, has been widely studied in the last years.
For example, in Joannou and Chien (1993), following
the idea introduced in Burnham et al. (1974), an intel-
ligent cruise control strategy has been proposed using
and comparing different dynamical models to describe
driver behaviours. Moreover in Borodani et al. (1998)
a robotized gearbox has been designed optimising its
comfort features on the basis of estimated driver char-
acteristics. Then, in Fancher et al. (2000), a forward
collision warning system has been introduced com-
bining concepts from vehicle dynamics, control theory
and human factors psychology. Furthermore, different
studies on driving behaviour modelling have been de-
veloped by means of learning mental models, (see e.g.
Rasmussen, 1983; König et al., 1994; Goodrich and
Boer, 1998). The framework in which this work has
been developed is an Adaptive Cruise Control (ACC)
with Stop and Go features (ACC/S&G) for a urban
scenery. In this context, one of the main requirements
is the possibility of tuning the control strategy ac-
cording to the driving style. In order to accomplish
this task, a study by means of statistical analysis
methodologies on twenty different drivers has been
carried on, to give evidence to their behaviour during
the driving. In the related literature, other approaches
have been considered to solve similar problems. In
particular, in Wewerinke (1996), the overtaking task
is analyzed by using both system theoretic and neural

networks approaches to model human operators be-
haviour. As a matter of fact neural networks method-
ologies have been widely used to describe and to adapt
human behaviours in different driving tasks (see e.g.
Nechyba and Xu, 1996). Moreover, in Goodrich and
Boer (1998), a membership function methodology is
used to describe human behaviours in “cut in” situa-
tions. In this paper we show how it is possible to deter-
mine and classify the driver behaviour, which acquired
signals are suitable for this task, which parameters can
be used to describe the driving style and how they can
be taken into account by the vehicle control system.

2. ACC/S&G PROBLEM DESCRIPTION

The controlled vehicle moves in a urban scenery, ei-
ther strictly following, along the lane, the preceding
vehicles at a target relative distance dR, depending on
vehicle speed, or at a target velocity vF in absence
of a preceding vehicle. According to the preceding
traffic conditions, the controlled vehicle has to ac-
celerate or decelerate and even to stop automatically,
keeping safety distance. Acceleration and deceleration
are constrained by safety, comfort and mechanical
bounds, but inside these constraints they have also
to depend on the usual driver behaviour: when using
the ACC/S&G, quiet or aggressive drivers need to
feel the same sensations they are used to in manual
driving. To this aim, differences in driving behaviour
have to be described by simple parameters, detected
from the usual signals acquired for the ACC task and
used as directly as possible in control algorithms. The
considered control structure is depicted in Figure 1
where the two blocks named “Vehicle” and “Vehi-
cle and Radar sensors” represent the physical system,
while the other three blocks represent the control ar-
chitecture; the signals in Figure 1 will be described in
details in Section 3. One of the objectives of the ACC
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personalization was to modify the control algorithms
as less as possible in order to keep the ones adopted for
the non personalized version of the same task. In fact,
personalization can be obtained by means of a suitable
design of the Reference Generator block only, whose
structure will be discussed in details in Section 6. This
block can be regarded as an approximated model of
the human driver and its aim is to generate, on the
basis of the on line acquired vehicle and environment
data, an acceleration profile are f in agreement with
safety, comfort and personalization requirements. In
general (see, for example, Burnham et al., 1974; Joan-
nou and Chien, 1993) are f is a function f (·) of the rel-
ative speed vR and the relative distance dR with respect
to the preceding vehicle and of the controlled vehicle
speed vF (i.e are f = f (vR,dR,vF)). In Section 6, it will
be shown how the relation are f = f (vR,dR,vF) can
be “defined” and used to personalize the ACC/S&G
task. The other blocks in Figure 1 are not interested
by the personalization and they will not considered
in this paper, except for the brief description that fol-
lows. The “Compensator” block is essentially made
up by a Proportional plus Integral algorithm used to
compensate the error between the reference vehicle
speed vre f =

∫
are f and the measured vehicle speed

vF . The “Vehicle inverse model” generates the throttle
opening angle α or brake circuit pressure β needed by
the requested acceleration arq, through the requested
torque Trq; note that this block takes into account the
main non linearities of the vehicle.

3. EXPERIMENTAL SETUP

A FIAT Brava 1.6 car was equipped with obstacle de-
tection radar sensor, vehicle sensors and real time data
acquisition system to perform the field experiments
and observations. It was used on a test urban track
lasting one hour, with traffic lights requiring multiple
Stop and Go manoeuvres. According to this set up,
the following acquired variables have been chosen as
indicative and/or discriminating of driving styles:

(1) relative distance and relative speed between the
considered vehicle and the preceding one de-
noted respectively by dR and vR;

(2) throttle opening angle denoted by α ;
(3) brake circuit pressure denoted by β ;
(4) controlled vehicle speed denoted by vF .

Few comments are due to explain this choice. Vari-
ables related to point 1 are representative of the en-

vironment surrounding the driver, so they symbolise
the causes that produce different “human” reactions
such as braking or accelerating. On the other side,
variables related to points 2 and 3 represent the way
the driver actuates her/his reactions to the external
stimuli. Another interesting aspect regarding α and β
is the fact that they represent the commands generated
by the control algorithm. All the signals mentioned
in points 1 to 4 are got, as explained, by direct mea-
surements from the on board instrumentation. Other
variables obtained by the ones just mentioned may
be defined. In particular, the headway time TH = dR

vF

and collision time TC = dR
vR

will be considered. In fact
variables TH and TC (together with vF ) were shown to
be the more directly perceived by drivers (Lee, 1976).
Then, a set of tests oriented to the extraction of the
driver features in ACC/S&G scenery has been defined.
Common to all the tests is the settlement of a urban
journey in which each driver was subject to some driv-
ing constraints such as lane and queue keeping without
overtaking. During the journey all the variables con-
sidered (points 1 to 4) have been recorded and single
Stop and Go tracts (the typical acquired signals of
such tracts are depicted in Figure 2) were extracted
by selecting single nonzero vF sequences. Inside each
of these sequences, single nonzero α and β sequences
were further isolated. In order to distinguish different
situations inside a single S&G sequence we may di-
vide it into three main phases:

GO corresponding to the transient required to ap-
proach the subsequent CRUISE / TRACK phase;
note that no distance tracking is possible, in this
phase, due to its transient characteristics.

CRUISE / TRACK corresponding to the situation in
which the vehicle is performing a constant speed
following, in absence of a preceding vehicle, or
a relative distance following, in presence of the
preceding vehicle, respectively.

STOP corresponding to the situation requiring a de-
celeration leading to stop the vehicle.

On the basis of those latter sequences the driver
characteristics discriminating analysis has been per-
formed.

4. DRIVING STYLE ANALYSIS

In order to stress possible differences in driving be-
haviour, a preliminary analysis has been carried out by
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Fig. 2. Acquired signals. Above: vF (km/h) solid, vR
(km/h) dashed, dR (m) dash-dotted. Below: α (◦)
solid, β (bar) dashed.

means of a reduced set of drivers, whose driving char-
acteristics were evidently in contrast. One subject (a
test driver) was requested to drive in a very aggressive
manner, while the others drove normally or quietly.
From this analysis it was possible to conclude that the
drivers were well distinguishable during the GO and
TRACK phases but no significant differences were put
in evidence in STOP phase (Canale et al., 2001). Then,
on the basis of a 20 subjects set acquired sequences,
a more systematic statistical analysis was carried out
in order to classify these sequences in a limited num-
ber of groups, at most three or four, each one corre-
sponding to a driving style. To this aim, the sequences
have been considered as completely independent each
other, i.e. as any of them has been originated by a
different driver, to enlarge as much as possible the
number of “samples” to be analyzed. Then, on the
basis of these samples, a cluster analysis (see e.g.
Anderberg, 1973) has been worked out for each one of
the previously defined GO, TRACK and STOP phases.
It has to be noted that with this procedure, the two
problems of identifying different driving styles and
assigning a given driver to a cluster can be afforded
separately. As it will be shown in Section 6 the ACC
S&G task personalization can be obtained by consid-
ering the driving style analysis problem only.

GO phase cluster analysis. The aim of this analysis
is to study the way the driver activates an acceleration
procedure after a STOP phase. To this end, we observe
that the shape of the selected α signals inside a S&G
tract is nearly trapezoidal (see Figure 2). Therefore,
for each α sequence corresponding to a GO phase,
the slope sα of the best interpolating line, in the least
square sense, has been computed starting from the
first sample of the sequence until the last sample for
which the behaviour is non decreasing. Moreover the
maximum value Mα of the considered α sequence
has been computed too. This way, the cluster analysis
of the GO phase gave rise to four clusters whose
characteristics are pointed out in Table 1, where µ(·)
is the mean value and σ(·) is the standard deviation.

TRACK phase cluster analysis. The TRACK se-
quences have been selected considering those S&G
subtracts for which it results vF ≥ 20 km/h and −5 ≤

vR ≤ 5 km/h for a period longer than 5 s. For such
isolated TRACK sequences, the headway time TH and
its standard deviation inside the considered tract σTH
have been considered as indicative variables. Given
this setup, three clusters have been generated whose
characteristics are given in Table 2 in which, as be-
fore, µ(·) and σ(·) represent the mean value and the
standard deviation respectively.

STOP phase cluster analysis. The aim of this analy-
sis is to study the way the driver activates a decelera-
tion manoeuvre to stop the vehicle. We may observe
that, as α , also β signal has a nearly trapezoidal shape
(see Figure 2). Therefore also for each β sequence
the slope sβ and the maximum value Mβ have been
computed according to the same procedure followed
for α . Moreover, in order to investigate the “envi-
ronmental” setup that causes the driver decision to
activate a braking manoeuvre we have also considered
the values of signals vR and TH “frozen” at the time
instant when the brake has been activated. Then, by
using the above mentioned parameters three clusters
have been generated, whose characteristics are pointed
out in Table 3, where again µ(·) is the mean value and
σ(·) is the standard deviation.

As a matter of fact, the CRUISE phase is a typical
driving modality for non urban scenarios. Then, it
results quite difficult to test such modality in the
considered urban setting. Anyway, the CRUISE phase
can be seen as a speed regulation problem, almost not
influenced by preceding traffic. In this case the only
driver’s dependent characteristic is the transient period
before reaching the steady state speed value that may
be considered as a GO phase.

From the presented analysis it can be already pointed
out that, in each phase, the generated clusters are well
distinguishable. For example, from Table 1 it can be
seen that the four clusters have different µ (sα ) and
clusters 1 – 2 differ from clusters 3 – 4 for µ (Mα ).
Similar considerations can be made for the values
presented in Tables 2 and 3 (see for further details
Canale and Malan, 2002).

In the next Section, some criteria to classify and assign
a driver to a predetermined cluster will be given.

5. DRIVER CLASSIFICATION

Once the clusters corresponding to each S&G phase
have been generated, the problem we have to face
consists in finding some suitable criterion in order
to assign a driver to one of such clusters. The driver
assignment procedure that has been worked out can
be summarized as follows:

Step 1 Acquisition of driver’s data according to the
criteria outlined in Section 3.

Step 2 Separation of single S&G sequences.
Step 3 Assignment of every single sequence to a pre-

defined cluster.
Step 4 Computation of the membership percentage of

the sequences to the clusters.
Step 5 Driver assignment on the basis of the greater

membership percentage of the sequences to a clus-
ter.



Table 1. GO phase Cluster Analysis Results

Cluster # of samples µ (sα ) (◦/s) σ (sα ) (◦/s) µ (Mα ) (◦) σ (Mα ) (◦/s)
1 254 27.18 8.34 29.92 8.89
2 253 59.58 23.72 36.67 9.89
3 41 70.07 28.12 77.68 9.31
4 10 216.99 45.77 77.10 13.33

Table 2. TRACK phase Cluster Analysis Results

Cluster # of samples µ (TH) (s) σ (TH) (s) µ
(

σTH

)
(s) σ

(
σTH

)
(s)

1 132 1.62 0.20 0.12 0.05
2 135 1.33 0.23 0.30 0.06
3 104 1.06 0.15 0.19 0.06

Table 3. STOP phase Cluster Analysis Results

Cluster # of µ
(

sβ

)
σ

(
sβ

)
µ

(
Mβ

)
σ

(
Mβ

)
µ (vR) σ (vR) µ (TH) σ (TH)

samples (bar/s) (bar/s) (bar) (bar) (km/h) (km/h) (s) (s)
1 166 19.27 9.58 14.05 3.40 -3.92 2.50 1.28 0.38
2 164 23.31 12.42 13.77 4.31 -13.24 8.87 2.78 1.08
3 51 38.60 31.61 24.55 6.01 -6.48 4.18 1.43 0.63

The cluster assignment problem of each sequence,
considered in Step 3, has been performed using and
comparing two different procedures. The first one uses
the standard routine classify of MatLab Statis-
tics Toolbox based on the computation of the Ma-
halanobis distance (The MathWorks, 1999) and on
the consequent assignment on the basis of the low-
est distance. The second one relies on the so called
“k - Nearest Neighbour" (kNN) technique (see e.g.
Fukunaga, 1972) which requires the computation of
the distance (e.g. Mahalanobis) of the sample to assign
from every individual sample used for the cluster gen-
eration. Successively the k nearest samples from the
sample to assign are selected (usually k is of the order
of some unity and it represents a tuning parameter of
the algorithm). The parameter k satisfies the relation
k = ∑N

i=1 ki, where ki is the number of the k selected
samples belonging to the ith cluster and N is the total
number of clusters. The assignment of the sample to
a cluster is then done on the basis of the largest ki.
The driver membership to a cluster is therefore settled
on the basis of the greater percentage of sequences
belonging to every generated cluster.

The proposed assignment procedure has been applied
to three new drivers. In Tables 4, 5 and 6 the clus-
ter membership percentage computed by using both
classify and kNN algorithms are reported for each
of the S&G phase for the three new drivers. The kNN
algorithm was tested with the parameter k varying
between 1 and 10 and no substantial differences in
the obtained results were noted (results in Tables 4,
5 and 6 are obtained fixing k = 5). In these Tables, the
boldface numbers put in evidence, on the basis of the
largest percentage, the cluster the considered driver
has been assigned to.

Table 4. Assignment percentages of new
drivers for GO phase.

Algorithm classify kNN
Cluster 1 2 3 4 1 2 3 4

Driver #1 52 48 0 0 59 41 0 0
Driver #2 78 22 0 0 84 16 0 0
Driver #3 28 72 0 0 40 60 0 0

Table 5. Assignment percentages of new
drivers for TRACK phase.

Algorithm classify kNN
Cluster 1 2 3 1 2 3

Driver #1 47 47 6 47 47 6
Driver #2 77 15 8 77 15 8
Driver #3 13 20 67 13 20 67

Table 6. Assignment percentages of new
drivers (STOP phase).

Algorithm classify kNN
Cluster 1 2 3 1 2 3

Driver #1 17 72 11 56 33 11
Driver #2 13 74 13 35 56 9
Driver #3 31 13 56 44 19 37

As it can be noted from the presented results, the
assignment of every driver takes place in a univocal
way, independently from the used algorithm, for the
GO and TRACK phases. As a matter of fact, the as-
signment of Driver #1 presents an ambiguous situation
in the TRACK phase. This problem may be solved by
increasing the number of the acquired sequences, as
it will be discussed later. On the other hand, in STOP
phase discordant results have been obtained. This fact
appears quite reasonable as, in typical urban journeys,
the braking manoeuvres are mainly influenced by the
(intense) traffic flow than by the driving style.

Some indications concerning the minimum number
of sequences to acquire to assign a driver are due.
Presented results are obtained considering, for each
driver, a sequence number of about 25 for GO phase,
15 for TRACK phase and 20 for STOP phase. It
sounds reasonable to suppose that such sequence num-
bers may suffice to assign a driver. This number should
be increased for those drivers presenting doubtful as-
signment (see e.g. Driver #1 in Table 5). In the next
Section the Reference Generator and its personaliza-
tion, according to the driver behaviour analysis results,
will be described.

6. REFERENCE GENERATOR
PERSONALIZATION

The problem of the reference generation plays a
key role for the longitudinal vehicle control in the



ACC/S&G driving task. In principle, the acceleration
profile must be generated taking into account safety
and comfort of the required driving manoeuvres but
also driver personalization features can be considered
too. Moreover, it appears reasonable to differentiate
the reference generation according to the Stop and Go
phases outlined in Section 3. The switching among
the three different phases is handled by a supervision
logic, here not described, that, on the basis of the
acquired signals, enables the correct generation pro-
cedure.
GO Considering this phase, the reference generation
structure of Figure 3 can be suitably exploited. As it
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Fig. 3. GO and CRUISE phases reference generator.

can be seen, only the measured signal vF is used for
the reference generation while the other two acquired
signals dR and vR are only considered for switching
logic purposes. This scheme can be actually person-
alized taking into account the mean value µ(sα ) of
parameter sα (see Table 1) related to the GO cluster
which the considered driver has been assigned to. The
required acceleration profile are f can then be obtained
by fixing the reference generator “internal" input as
vtar = vα

F where vα
F is the vehicle speed obtained

by applying to the vehicle a ramp throttle signal α
with the considered slope µ(sα ). Note that, given the
driver characteristics, signal vα

F can be precomputed
and stored. This way, the reference generation for the
GO phase forces the vehicle longitudinal control to
follow the personalized speed reference vtar until the
TRACK phase is reached. The parameters KP and KI
can be tuned taking into account the comfort charac-
teristics of the acceleration profile. To this end, let us
consider the scheme depicted in Figure 4. This scheme
can be regarded as a reasonable linear approximation
of the real behaviour of the controlled longitudinal
vehicle dynamics. Coefficient η < 1 represents, as a
first approximation, the rate of the speed that has been
really rendered to the vehicle, detracted the friction
losses and aerodynamic effects. The transfer function
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++

-

vtar ∫
+

vF

vE dE

aref

∫

η

Reference Generator

Controlled
Vehicle

 Dynamics

Fig. 4. Approximated controlled longitudinal vehicle
dynamics and reference generation scheme.

Gre f (s) between the input vtar and the output of the
reference generator are f is given by:

Gre f (s) = η s
KPs+KI

s2 +KPs+KI
(1)

Then, in order to obtain the smoothest and the fastest
acceleration profile, the poles of the transfer function
(1) have to coincide. This can be obtained by posing

KI = K2
P

4 . The value of KP may be chosen to tune the
response speed of are f . Typical values for KP range

from 0.5 to 0.7 s−1.
CRUISE All the reasoning made for the GO phase are
still valid with the only difference that, after the GO
phase transient, vtar is set to a constant value selected
by the driver according to the speed limitation: vtar ≤
70 km/h.
TRACK This phase is characterized by the tracking
of the target distance dS:

dS = s0 +TH · vF (2)

where TH is the headway time, vF is the vehicle speed
and s0 can be regarded as a fixed safety distance. In
this case the reference generation structure showed in
Figure 5 may be adopted.

vF

KP

KI
+

-

+

s0

dS

vR

dR aref

KF

+

+ +

Fig. 5. TRACK phase reference generator.

Now, considering the scheme in Figure 5 and equation
(2), the most natural way to personalize this feature is
to set KF = µ(TH), where µ(TH) is the mean value
of TH of the TRACK cluster which the driver has
been assigned to (see Table 2). The values of KP
and KI may be computed in order to ensure comfort
characteristics to the generated acceleration profile by
following similar criteria as done in the GO and the
CRUISE phases.
STOP During this phase a deceleration is required
whose intensity depends on the way the preceding
vehicle is going to be approached or, in other words,
to the level of emergency induced by the approaching
manoeuvre. The smoothness characteristics of the ac-
celeration profiles generated by both the schemes in
Figure 3 and 5 may not suffice to avoid collision in
dangerous situations. Consequently, a purely kinemat-
ics approach of the form:

are f = γ · v2
R

2(dR − d̄S)
(3)

can be adopted, where γ = γ(TC ) ≥ 1 is a coefficient
measuring of the emergency level required by the
braking manoeuvre (Persson et al., 1999) and d̄S is a
fixed stop distance. As it results from the statistical
analysis described in Section 4, it is not possible to
put in evidence significant differences among drivers
during this phase. For this reason equation (3) is used



to generate are f by setting d̄S to a fixed value, not
depending on the driving style.

In order to show the effectiveness of the proposed
driver assignment and reference generation proce-
dures, we have simulated the controlled vehicle dy-
namics supposing that the speed of the preceding ve-
hicle was made up by the real acquired speed profiles
vL = vF +vR. Then, the simulated variables have been
compared with the corresponding real recorded ones.
The advantages of the personalization can be shown
by computing the rms error between the simulated
variables and the measured ones. In particular, the
rms errors of the vehicle speed vF and of the relative
distance dR related to the TRACK phase have been
computed for every sequence of each driver consid-
ered in Section 4. This computation was carried on
using the personalized parameters of the “GO” refer-
ence generator set to the value corresponding to the
cluster the driver has been assigned to and fixing the
personalized parameters of the “TRACK” reference
generator to the different values of the three clus-
ters. In Tables 7 and 8 the mean values of the rms
errors evF

and edR
between the simulated variables

and the measured ones computed considering all the
sequences for a given driver are reported respectively.
It can be seen from the boldface values in Tables 7

Table 7. rms error evF
(km/h).

TRACK Cluster 1 2 3
Driver #1 3.04 3.05 3.25
Driver #2 2.80 2.96 3.10
Driver #3 3.34 2.92 2.60

Table 8. rms error edR
(m).

TRACK Cluster 1 2 3
Driver #1 3.09 3.02 3.24
Driver #2 2.70 3.23 3.80
Driver #3 6.18 4.48 3.07

and 8 and considering Table 5 that the lower values
of the rms errors are obtained when the considered
personalized reference generator parameters are set
to the values corresponding to the cluster the driver
has been assigned to. It can also be noted that for the
Driver # 1 there is only a slight difference between
the considered rms errors obtained by considering the
personalization parameters of TRACK cluster 1 and
2. This fact sounds reasonable comparing this results
with the TRACK phase assignment data for Driver #1
presented in Table 5.

7. CONCLUSIONS

The problem of suitably modelling the human perfor-
mances to be implemented in automatic driving tasks
has been afforded in order to personalize an Adaptive
Cruise Control with Stop and Go features for a ur-
ban scenery. To this aim, the possibility to distinguish
different driving styles has been demonstrated by tak-
ing into account the driver behaviour characteristics.
These latter have been evaluated by means of a sta-
tistical analysis performed on data collected, for a set
of drivers, during a common urban journey. Moreover
a driver assignment procedure has been introduced to

classify the driving behaviour upon the features de-
fined by the predetermined cluster. At last, it has been
shown that the personalization of the ACC/S&G task
can be effectively obtained by a suitable tuning of the
parameters of a reference generator without modifying
preexistent control strategy.
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