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Abstract: Control of a linear time-varying uncertain dynamical system with delayed
inputs is considered. The model parameters, disturbance inputs and model structure
errors are unknown but bounded, and the parameter value can abruptly change. The
objective is to keep the system output within prescribed limits regardless of the
uncertainty scenario. A model predictive type of controller is designed that utilises a set
bounded model of the uncertainty and employs safety zones modifying the original
constraints so that the control input feasibility can be guaranteed. The controller is
applied to quality control in a benchmark Drinking Water Distribution System, and its
performance is validated by simulation. Copyright © 2002 IFAC
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1. INTRODUCTION

Model Predictive Control (MPC) is an effective tool
to deal with time-delay and hard constraints in a
systematical way. The issues of optimisation
feasibility, stability and performance for linear
systems have been investigated to a sufficient
maturity in the literatures (Mayne, 2000). The
situation gets highly complicated when the output
constraints are present and there are model-reality
differences. Several properties of MPC have to be
rechecked, such as the performance, stability and
constraint fulfilling (Beporad and Morari, 1999). The
feasible controller action may violate the constraints
when applied to the physical system. Much of the
work on the MPC that was carried out in rent years
addressed this issue. In the papers of Bemporad and
Garulli (2000) and Chisci (2001) feasible MPC
algorithm was developed that uses a set bounded
state estimation and an extra constraint added to the
optimisation problem in order to improve the
computational efficiency.

In this paper, as in (Brdys, et al, 1998), a method of
fulfilling output constraint by introducing so called
safety zones into the original constraints under the
uncertainty in the systems is proposed. For the
modified set of constraints a feasible region in a
control space is shrank comparing to the original one.
Hence, with suitably chosen safety zones the model
feasible control input also satisfies constraints of a

physical system if the uncertainty radius is not too
large. The safety zones are validated and redesigned
at each step of MPC, if necessary, by applying a
robust plant response prediction based on a set-
membership bounded uncertainty model with the
proposed control action and an estimate of a system

state at a present time instant.

The paper is organised as follows. The problem is
formulated in section 2. The robust MPC is
performed in section 3, and its design is described in
section 4. The controller is applied to quality control
in a benchmark Drinking Water Distribution System
(DWDS), and its performance is validated by
simulation. The results are presented in section 5.
The quality control in DWDS is at present extremely
important application field still waiting for
practically sound solution (Polycarpou, et al, 2001).

2. PROBLEM FORMULATION

2.1. Time-varying Bounded Model and
Control Objective

The discrete time-varying SISO system is described
by the input-output model:

YO = $b,O¥ -1+ Ta,Out-)+2,0) (1)

where y(¢),u(t),b,(t),a,(t) and ¢,(t) eR, teZ,
y(¢) is the output, u(¢) is the plant input, b,(¢)



and a,(t) are time-varying model parameters, &,(f)
is the composite error of modelling and disturbance
input, the integer i/, and i, define range of delays in
the control input, and Z denotes set of integers.

Let o) =[6,() 6,.(1)]
=[b,(t) b, (1) a,(®)
n=gq+i, —i+1
=D =[p =1yt =q) ult=i)-u(t=i,)]

Then equation (1) can be compactly written as:
(@) =0t =1 +5,(1) 2)
The 0(-) and ¢,(-) constitute the model uncertainty.

a, ()]

where

Let y[ ,() denote the plant response to input
u, () over time period [7,,7]. Clearly there exist
the trajectories of 6(-) and &,(-) so that with these

scenarios of the model uncertainty the model
response equals to the plant response, that is

Vi) =20 () . It is assumed that the control input
is valued on a compact set so that the trajectories of
6(-) and ¢,(-) can be bounded above and below over
a time interval [¢,,¢, +T, ] by the bounded envelopes
0"°C¢), 0"() and &!°(), &°() respectively,
where ¢, is the initial time and 7, is the modelling
horizon. The tightest envelopes are not known. It is
assumed that at 7, a priori envelopes 6"(-), 6'(")

and &, (), &,(-) sufficiently well approximate the

unknown envelopes so that no bounding
modifications will be considered during control
design. Hence the following holds:

o1 0@, ON= R :0'()<0<0"(1)) (3)

A
£,()€E (1) ,E, (t)={¢, e R: (1) < &, <&l (1)} (4)
The envelopes known at ¢, covers the period over
control horizon and the uncertainty radius must be
sufficiently small so that the control objectives can
be robustly achieved. Although there is a modelling
error, there is no one set of true parameter values
matching the model and plant for all inputs. The
model structure reflects well real plant dynamics so
that the parameter and modelling error bounds are
reasonable.
The control aims at keeping the plant output y” (")
within the output constraints described by the lower-
upper bounds:
yrm <y <y™@) &)
over the control horizon ¢ e [to,to +T, ‘], and there are
constraints on the control input to be satisfied:
u™ @) <u(t)<u™
(O <u@®)<u (t) ©)
|u(®)—u(—1) 1< Au
As the control problem is under constraints and the
inputs are delayed the Model Predictive Control
(MPC) will be applied to design the controller.
Hence, it is assumed that 7, <7, .

2.2 Parameter Piece-Wise Constant Bounded Model

Parameter 6(¢f) can abruptly change their values at
time instant ¢, € [to,to +Tm], Jj=12,--N, and
ty, =t,+T,. Within the time interval [z _,,7/] the

changes can be assumed slow and also, only certain
parameters are active, that is their values are
nonzero. The instants ¢, are assumed known. Under

these assumptions the whole model horizon 7, can

be partitioned into N, time slots, defined as:

A
S,=ltez:t, <t<t}j=12,-N, (7
Let 7, define set of active parameter indices over
S,. Hence, 6’ =1{0, }, ., is the active parameter
sub-vector over §,. Hence, (t)=6’ for tes§,,
and 6’ is treated as constant. The corresponding

bounds on @’ are calculated as follows:
0}, = minlo) )., . 0L = maxlo; 0}, ®
Hence, the parameter bounding orthotope ©, over

Sj. can be calculated as:

A( . ) ) .
©, = cR™ 10/, <0’ <0/ 1S | (9)
The uncertainty in &,(-) is tackled similarly.

Finally, the piecewise constant parameter model is
given as:

Model R(): () =0t -1 +e,(t)  (10)
0(t)=0" ,for tes, (11)
0'cO, &)<k, (12)

It is understood that the vector ¢(-) changes its

structure following changes of the parameter vector.
Model R(-) of (10)-(12) is called the parameter
piece-wise constant bounding model that will be
applied for MPC design. Piecewise constant model
is preferred for practical reason of the computational
and model identification efficiency.

3. CONTROLLER STRUCTURE

3.1 MPC Based on Nominal Model and Modified
Constraints

The nominal model N(-) is defined by the nominal
scenario of uncertainty. Let us take some kind of
centre of ©, as the nominal parameter value for

teS§,, denoted as 6’ . For example:

6’ = (0., +6..)/2 (13)
Hence, the nominal parameter trajectories satisfy
é(t) =0’ for te S, . It is assumed without any loss
of generality that £, =0. The optimisation problem
of MPC at time instant ¢ can be formulated as:
JO)=U'QU+uly(t+H, [0~y T (14
Y=[p+1]0 y+H, D]
U =[u(t]t) u(t+H, 110

Ye+k|) =00 +k)pt+k-1), k=1, H, (15)



where H, , H are the control dimension and the
prediction horizon respectively, H, <H  , and Q is
a positive-definite matrix. The terminal output of the
finite predictive horizon is penalised to the reference
value y, by applying a tuning knob . The delays
imply that at least i, <H k. However, preferably
i, <H,. Hence, availability of sufficiently tight

uncertainty bounds needed for achieving the control
objectives and the delay range may be faced.

Notice that the deterministic nominal model allows to
quickly generate control sequence that is optimal for
the selected scenario of the uncertainty. However, it
is suboptimal, if feasible, for the real plant. The
optimality robustness can be improved by
formulating the optimisation problem as the min-max
one. This however is not further pursued in the paper
as solving constrained min-max problem would
greatly increase the computational burden even for
linear-quadratic problem at hand. The feasibility
problem however, needs to be addressed.
Minimisation of the performance index giving by
(14) over the constraints described by (5) and (6)
where the nominal model is used to replace unknown
plant mapping y”(:) yields the solution that may not
be feasible when applied to the plant. In order to
guarantee the feasibility the nominal model based
constraints are modified by introducing so called
safety zones. The modified constraints define
narrower set for the control actions and this is the
price to be paid for model-reality differences.

The output constraints over the prediction horizon
described by the upper and lower limits are:

vy = o ymerH)] (16)

Ymax — [ymax(t_"_l) ymaX(t +Hp)]7 (17)
They are modified by the safety zones o', " as:
Ysmin — Ymin + GI Kmax — Ymux _Gu

1 1
O'H,,]T

[6" o']leX
A
Y={lo' o¢"]:0, 20,0/ 20, for i=1---H, and

min

YU+ +o <y™(+i)-o'} (18)

The modified model based constraints read:
Kmin < )’} < Kmax (19)
The condition (18) is needed in order to make sure
that the modified constraints define nonempty set.
The input constraints are treated as hard constraints
in the optimisation formulation. The actuator error
g, will also be considered in implementing a control

T
o' =lof - o]

P

command. Hence, the input constraints are modified
in order to cater for the actuator error as:

U™ <U<U™ and —AU™ <AU <AU™ (20)
U™ = () +e, u™ @+ H, ~)+e,]
U™ =™ ()¢, W H, ~T)—s,]

AU™ =[Au™ (1) -2e, A+ H, -1)=2¢.]
Finally, the MPC optimisation task at ¢ reads:

g min(/(0)

subject  to

~ a
U(o',o")= .
UEQS (21)

Al A A A ~ A N o
QS:{UER”"’: cS(U,Y)SO,Y:U—>Y}

where c,(-) is the mapping describing the modified
input and output constraints (20) and (19).
The feasibility is assessed by performing at ¢ a robust

prediction of the plant response to U (c',0"). If
U(c',o") is feasible for the plant then u(z|¢) is

applied, else o', o" are redesigned and new control

actions are generated as before. This repeats till
suitable safety zones are determined.

3.2 Assessment of Feasibility by Robust Prediction

Set bounded model of uncertainty that is used in this
paper enable us to calculate upper and lower
envelopes bounding real plant response to a specific
input. Comparing these envelopes against the bounds
defining the plant output constraints allows to assess
the input feasibility. An algorithm for the envelope
calculating shall now be presented. The errors in the
plant output measurements and in executions of the
control inputs (actuator error) are bounded as:
ly"(-y"(OIse, and |u' () -u@)|<e, (22)
where y”(¢) is the plant output measurement, u°(¢)
is the controller output or the actuator input and
¢, and ¢, are the error bounds.
The plant output prediction at ¢ over [t,¢+H ] is

performed based on a priori information contained in
the past inputs and output measurements, future
inputs, input-output model equations and uncertainty
bounds. This a priori information has been described
in a form of equalities and inequalities constraining
outputs over [f,¢+H ,]. Any output trajectory
satisfying these constraints can be the plant
response. The robust output prediction provides the
intervals:

Y, =[y,(t+1]1) y,(t+H, [D]
Y =[y,+1]1) yy(t+H, D]
over [t,t+H ] bounding the plant output values
over [£,1+ H ,]. Hence,
y,(t+k| )<y (t+k)<yi(t+k|t) k=1---H ,(23)
Based on model R(:) of (10)-(12), the plant output
bounding constraints at +k can be summarised as:
yE+m|t)=0(t+m)p(t+m—1) € E({+m)
O(t+m) e O(t+m)
[y "(t+k—m)—y"(t+k—m)Le,, for k-m<0,
lu“(t+k—m)—u(t+k-m)<e,, m=1,---,k
where E(t)=E,,0()=0 for teS, . Let P"
denote the set of all y(¢+k|¢) satisfying the above

constraints. Hence, the k—th step robust output
prediction at time instant ¢ can be defined as:
min[y(¢+k | 7)]

Ltk =
i 9 subjectto y(t+k|t)e P*

24



max[y(z+k|1)]
subjectto y(t+k|t)e P*
If the predicted plant output satisfy:
Y, >y and Y <y™ (26)

y;(t+k|t): (25)

then clearly, the assessed control sequences U is
guaranteed to be feasible. In other words it is
robustly feasible.

3.3 Operation of Robust MPC Controller

In general, determining suitable safety zones requires
a number of iterations to be performed. The
algorithm for iterative calculation of the safety zone
will be described in the next section. The overall
robust MPC controller is of iterative type and it
operates as follows:

(i) Let [6' ¢"]=0, solve U using (21);

(i) Calculate Yp’ , ¥, using (24),(25) respectively;
If (26) is satisfied go to (iv)
Else go to (iii)

(iii) Redesign [¢' "], and calculate U based on
this safety-zone design, then go to (ii)

(iv) Let u“(#)=u(t|?)

4. ROBUST PREDICTIVE CONTROLLER
DESIGN

In the previous section a structure of robust MPC
controller has been proposed. An implementation of
this structure needs dedicated algorithms for solving

variety of problems. Firstly, calculating U (c',0")

requires solving constrained linear quadratic
optimisation problem. A number of efficient solvers
exist to perform this task. Secondly, performing the
robust plant output prediction requires solving the
nonlinear and non-convex optimisation problems
(24) and (25). An approximated solving approach is
proposed by piece-wise linearisation, with the
linearisation error included in the modelling error.
The final problem to be solved is a linear mixed-
integer programming (MIP) problem, and it can be
solved by using a standard solver. Thirdly, in order to
calculate suitable safety zones a penalty function as
in (Teo, et al, 1991) related to the constraints (26) is
employed. Let us define:

Clo',a)=[f (") [, )] 27
V=, v, 1=l =y -y ]

X if x>g"
f(xX)=3(x+&) /4" if - <x<g& (28)
0 if x<-&"

where ¢ is small positive number. Notice, that if
C(c',06")=0 holds then (26) holds as well
Moreover, the constraint C(c',0)=0 can get

arbitrarily close to (26) by setting ¢* sufficiently
small. The multiplier type of penalty function
associated with (27) is defined as (Fletcher, 1987):

¢(01,0“,‘P,/\)=%[C(O'Z,O'”)]T‘1’[C(O",O'")]
~AC(c',0")
where ¥ =diag,, v,, A=[4, Ao, 1, A, are

the multipliers. Under rather mild conditions there
exists such value A" of the multiplier A that the
safety zones can be calculated by solving the
following problem (Fletcher, 1987):

arg min  J(c',0",¥,A")

[

1= (29)
subject to [c'c'ley
If the optimum value of the penalty function is equal
to zero then the wanted safety zones are found. If it
is nonzero then it means that the MPC controller is
not able to produce control that feasibility can be
robustly assessed. In this situation, assuming good
controllability of the plant, the uncertainty radius
must be reduced in order to regain robustly feasible
operation of the MPC controller. Noticing that
solution for (29) is not unique, finding the smallest
safety zones remains an open problem. Following
(Powell, 1969) an algorithm for simultaneous
solving (29) and finding A" shall be derived. A key
assumption needed is second order Fréchet
differentiability of the mapping C(-,-) . This mapping
is a composition of the mappings describing the
nominal model based MPC generation (21), robust
plant output prediction (24-25) and f() (28).
Clearly, the later one is smooth. The former ones are
defined by a solution of a constrained optimisation
c',o"

problem parameterised by and by

U (c',0") respectively. As the parameters enter the

constraints the elegant sufficient conditions for
differentiability of the solution do not exist (Hager,
1979; Clarke, 1983). However, for broad class of
problems the differentiability holds (Findeisen, et al,
1980). Hence, an existence of all derivatives needed
is assumed in the sequel. The algorithm I can now be
stated as:

Algorithm I:

(i) Set k=0, A=A", ¥ =¥ ||C? |, =oo0;

(i1) Find the minimizer of (29) x(W¥,A) ;
(iii) If || C||w>%|| c*.,, ViiC, |>%|| C* |, set

v, =10y, , and go to (ii);

(iv)Set k=k+1,AY =A,¥P =¥,C* =C;

(v) Set A=A" —¥PC® and go to (ii) until the
constraint is fulfilled with desired accuracy,
where x =[c’,0"],C = C(x).

The algorithm can ensure global convergence with

the convergent rate of 0.25 by online tuning in step

(iii). If A" is known, (29) can be attempted by
Newton methods. Applying the Newton algorithm
we obtain that:

Vd(x)= AYC(x)— AN where A=VC(x)

Vig(x) =V C(xX)[PC(x)- A1+ A¥YA" =W,
For large values of y,, the following approximation
holds (Fletcher, 1987):



(AW ' A] = ¥ (30)
Hence, assuming the inverse of 4 exist,
W!'=(A"H)'¥Y'4"
and Newton method of solving (29) yields:
x@ =xP —ADHTCEY-PTAT (3D
It is a special property of our problem that A is
square matrix so that existence of 4~ is not unusual.
As A" does not depend on W then W 'A"~0 for
large values of ,. Finally, a greatly simplified
algorithm is obtained as:
x* = x® (4" C(x?) (32)
Notice that the iteration (32) does not require A" any
longer. It is surprising at the first glance. However,
the formula (32) has a very appealing form. Namely,

new safety zones are calculated by a correction of the
present ones using the extend of constraint violation.

As calculating (4")™' may be still computationally
demanding further simplification is proposed that
consist in replacing (A7) by constant scalar gain.

The resulting algorithm becomes of standard
relaxation type:
Algorithm 11:

(i) Set x=[c' 0©"]=0;

(i) Solve U using (21), if C(x) =0 then go to (iv);

(iii) Using x*™ =x® —vC(x™) find new safety-
zone [0’ o], go to (ii);

(iv) Set u“(t)=u(t|?).

where v is the relaxation gain and its possible choice

is v =max(diag[VC(0)]) .

5. SIMULATION RESULT
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Fig. 1 A Drinking Water Distribution Network

The network structure in Fig.1 was investigated. The
chlorine concentrations at node 16 and 8 are the two
outputs y;and y,. Two booster stations are
installed at the nodes 5 and 10. The chlorine
concentrations at the injection nodes are the inputs
uand wu,. It is a 2-input 2-output system. The

chlorine concentrations at the monitored nodes
should be maintained within 0.20[mg/[]-0.30[mg/I]

y™ =0.30[mg /1] and
y™ =0.20[mg /[]. As quality controller is the lower

limits. Hence,

layer in a hierarchical integrated quantity and quality
control structure (Brdys, et al, 2001), quantity
information is available before run quality control.
The same as for the quantity control a 24-hour
control horizon is considered. The sampling period
is 5 minutes yielding totally 288 steps for the whole
control horizon.The water network was implemented
using EPANET2.0(Rossman, 2000) in order to
simulate the plant responses. The chlorine
concentration can be described by an input-output
model as in (Polycarpou, 2001):
2 2 i=24
y,(O=b, 0Oy, (-D+3 Ta,, (O,

where n=12, a, , describes an impact of the
injection input m that is delayed by i steps on the
output n. The delay range is 6-24, yielding 76
parameters. Fig.2 shows the envelopes bounding the
parameters a,,, over a whole horizon of 288 steps.

Notice that the parameters are active only over
certain time periods. With these parameter
estimation results, the modelling error was +4% of
the plant output value.

In the following presentation of the simulation
results, the chlorine concentration was scaled by the
factor of 0.25mg/l, so the upper and lower output
limits are converted into 0.8 and 1.2 respectively,
and the output reference is y, =1.0. The

measurement and actuator error were +2.5% of the
measurement value and controller output value
respectively, and the corresponding error bounds of
€,.€, were obtained. The MPC described in section

2 was designed wusing algorithm II, where
H,=H,=36. The controller starts with zero

safety zones. Its operation over a whole horizon and
the output constraint violation are illustrated in Fig.
3. The violation is about 5% above the output limit
around steps t=140 and t=230. The operation of the
controller over the same time period but with the
modified output constrains by safety zones is shown
in Fig.4, hence achieving the feasibility. The safety
zones generated at step =204 are illustrated in Fig.
5. The relaxation gain used was v =1.0.

6. CONCLUSION

A robust MPC controller has been developed for
keeping an output of a linear time varying systems
under uncertainty within prescribed limits with
delayed inputs. The uncertainty in: time varying
parameters, measurement and actuator errors and
modelling error has been modelled applying set-
bounded models. The safety zones have been
introduced to modify the model-based output
constraints so that control input feasibility can be
robustly achieved. The safety zones have been
iteratively designed at each generation time instant
of the MPC based on the envelopes bounding the
predicted plant output responses. Algorithms for



generating the safety zones based on the constraint
violations extend over the MPC prediction horizon
have been derived and their convergence has been
analysed. An efficient simple relaxation scheme has
been designed to reduce the computational burden.
The controller has been applied to a DWDS to
maintain chlorine concentration at a monitored
demand node within prescribed limits by controlling
injection of the chlorine at the booster station nodes.
The simulation results have illustrated good
performance of the controller.
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Fig.2 Piece-wise Constant Model:Parameter
Example
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Fig.3 Controller Performance with Zero Safety
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Fig.4 Controller Performance with Safety Zone
(Dashed: Upper Limit, Dash-Dot: Lower Limit)
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Fig.5 An Example of Safety Zone Design
(Solid: Modified Output Constraints
Dashed: Robust Output Prediction Envelope
Dash-Dot: Original Output Constraints)



