
SCHEDULING POLICY FOR ORDERS BASED ON
EVENT-DRIVEN PERTURBATION ANALYSIS

Carsten Thierer, Uwe Kiencke

Institute of Industrial Information Technology
University of Karlsruhe, Hertzstraße 16, Building 06.35

D-76187 Karlsruhe, Germany
E-Mail: Carsten.Thierer@etec.uni-karlsruhe.de

Abstract: In the framework of designing a decentralised environment to decide upon
schedule of orders and resource allocation, first an effective policy for one single sched-
uler has to be found that is suitable for extension towards multi-scheduler interaction.
Thus the motivation to have a deterministic and effective approach. In this paper, an
appropriate discrete, event-driven model is presented. The scheduling strategy is based on
cost-effectiveness. Order delays and dynamic addition of orders to an existing schedule
are taken into account. The technique of perturbation analysis is employed to determine
an optimised schedule that minimises the cost function introduced.

Keywords: Discrete-event systems, Scheduling algorithms, Planning, Perturbation
analysis, Time delay, Optimization problems, Nonlinear systems

1. INTRODUCTION

In this article, focus is laid on scheduling policy for
orders of one single scheduler. The central problem
to solve is the dynamic placement of one newly ac-
quired order at run time, as this order represents
an addition to an existing, static schedule of orders.
While minimising the incremental costs involved, the
decision remains to be made which already sched-
uled, future orders are to be delayed, and for which
amount of time units. This decision shall as well offer
the option to interrupt a currently processed order in
favour of the newly arrived one, weighing the costs
accordingly. Furthermore, for the application frame-
work addressed, a suitable scheduling model should
be extendable to a distributed decision environment
that consists of multiple, interacting schedulers. In
this context, ”distributed” is characterised by a dis-
tributed information acquisition, processing and stor-
age, (Kiencke, 1997). The aim of this framework is
to realise a collection of communicating schedulers
that acquire orders decentralised and cost-effectively
for subsequent execution within their respective pro-

duction sites, (Thierer et al., 2001). Rather than cop-
ing with stochastic or heuristic models, instead the
motivation for a deterministic approach arises, which
advantageously is both simple and effective.

However, the scheduling problem itself inherits both
stochastic and dynamic influence. Delays that are not
predictable, for instance resource failures, are stochas-
tic in length and instant of appearance. Arrival of a
new, important order and the changes imposed on the
static schedule show a dynamic behaviour. One ele-
gant solution for such types of discrete event-driven
problems, that allows deterministic calculation and
optimisation, is the technique of perturbation analysis
(Cassandras and Lafortune, 1999). The basic idea is
to predict incremental changes to performance, i.e.
incremental costs in the context of this paper, that
are due to the change in some system parameters.
Prediction is merely based on a sample path, i.e. the
observation of a given system during nominal be-
haviour plus subsequent processing of available sys-
tem knowledge and information. Rather than explic-
itly modelling the underlying stochastic, instead the

Copyright © 2002 IFAC
15th Triennial World Congress, Barcelona, Spain

{ {{ {T1
0 Tk

TBk�1 Bk(dk) Fk(dk)

dk
�
�Ik

�+ Rk Zk

�
Bk(dk)

�
Order execution

Inter-arrival time

Fig. 1. Order model of single scheduler

parameter-dependent reaction of the system is esti-
mated as deviation between perturbed sample path
and observed sample path. Basic concept and initial
idea for the model discussed in this paper relates to
(Panayiotou and Cassandras, 2001) and stems from an
altogether different application area, namely air traffic
ground holding policies. In order to be adequately
suited to the scheduling problem described, the appro-
priately adapted order model, required modifications
and extensions, as well as options and parameters are
presented in the sequel.

2. ORDER MODEL

For the purpose of this paper, one single scheduler is
considered.

2.1 Events

The model introduced in this section is addressed as a
discrete event system. The events involved are defined
as arrival event corresponding to the time instant the
order is made available to the scheduler and ready for
being processed, as begin event corresponding to the
time instant the execution process of order is sched-
uled to be started, and as finish event corresponding
to the time instant the order is completed (thus the
subsequently scheduled order may begin).

2.2 Notations and abbreviations

Notations used in this paper (k 2 IN):

Bk(dk) scheduled begin event of Ok, if a delay of
dk relatively to Tk is assigned

CI , CH constant cost factors per unit time for in-
terrupting or postponing a scheduled or-
der (CI) and for putting a newly acquired
order on hold (CH). Restriction (2) ap-
plies.

dk time interval that delays Ok relatively to
Tk. dk is system parameter.

Fk(dk) finish event of Ok, if a delay of dk rela-
tively to Tk is assigned

Ik if positive, idle time interval between sub-
sequently scheduled orders Ok�1 and Ok

Ok k-th order in processing queue
Rk fixed run time interval of Ok
Tk fixed time of arrival event of Ok

Zk(Bk(dk)) additional run time interval of Ok,
if Bk(dk) is provided. Zk succeeds Rk.

The domain of all expressions comprises the set of real
values IR, except where stated differently. The order
model of one single scheduler, cp. Fig. 1, is derived
from the standard queuing system, as it can be found
in (Kleinrock, 1975).

As abbreviation used in the latter, define:

[x]+ := maxf0;xg � 0 ; 8x 2 IR (1)

2.3 Order arrival Tk:

For a given, overall production time interval [0;T [of
length T , a set of N > 0 orders O1; : : : ;ON is assumed
to be a-priori known to the scheduler for future execu-
tion. The time of arrival, Tk, of order Ok is acquainted
as the instant the order is available to the scheduler
for processing. For all N statically fixed orders, Tk is
negative in this model, whereas dynamically acquired
orders at run time are distinguished by Tk > 0, (section
2.5).

2.4 Order delay dk as system parameter:

Delays dk � 0 between order arrival Tk and sched-
uled start of manufacturing Bk (section 2.5) are only
due to congestion at a scheduler’s manufacturing site.
Possible causes may for instance be dynamic addition
of a new order (section 2.5), maintenance or resource
failure (stochastic in nature, section 2.7).

2.5 Scheduled start Bk(dk) and cost factors CI ;CH:

At the time Tk � 0 of a new, dynamic order arrival,
the scheduler may already be busy with a preceding
order. With the option to immediately interrupt a cur-
rently processed order at Tk, it remains to be judged
whether to wait for completion of the current order
is preferable to interruption, depending on the respec-
tive costs incurred. Putting the current order on hold
will reduce tolerances towards meeting order dead-
lines and double setting-up times of the manufacturing
resources. Note that only immediate interruption is
an option of this model. To adequately model this
behaviour, a delay dk for the start of new order Ok with
Bk(dk) = Tk +dk � 0 can be assigned. Constant, order
independent cost factors per unit time for interrupting

{{ { { {

0 TB1 B2 Bw�1 Bw Bx�2 Bx�1 Bx BN

S0 S1 Sw�1 Sx�1 SN

Bk(dk = 0) Bk(dk = ∆Bx + t)Bk(∆Bx)

dk = ∆Bx + t

∆Bx t

Fig. 2. Dynamically acquired order Ok

or postponing an already scheduled order, CI , and for
putting a newly acquired order on hold, CH , will be
applied:

CI >CH > 0 (2)

Inequality (2) shall hold to ensure that it is not nec-
essarily preferable to interrupt a currently proceeded
task at once, depending on the dimension of CI in
relation to CH .
Extending the concept of Bk(dk) to statically fixed
orders alike, Tk < 0, a flexible method of scheduling is
introduced, with dk as system parameter. The absence
of delay dk = 0 represents an immediately scheduled
order Ok at its arrival time, Bk(0) = Tk.

2.6 Fixed run time Rk:

The execution of order Ok takes at least a time interval
of run time Rk > 0. Rk is fixed, a-priori known at
arrival of order Tk and includes worst-case tolerances,
based upon former experiences for this kind of order
and/or customer.

2.7 Additional run time Zk(t) and completion Fk(dk):

As actual run time of an order may vary due to
congestions, maintenance and delays dk, one way to
formalise this stochastic perturbation is to introduce
additional run time Zk(t), succeeding Rk, which may
be both time dependent (t) and order dependent (k).
Zk(t) is provided by the scheduler’s processing site as
a feedback function that represents the actual condi-
tion of the manufacturing resources. The concept of
additional run time is quite general. Allowing Zk(t)
to accept negative values will in fact reduce the fixed,
positive minimum run time Rk by its magnitude, j Zk j,
and thus consider earlier completion of order O k as
well, by a subsequently triggered re-scheduling run.
The time instant order Ok is finished, Fk(dk), corre-
sponds to the end of additional run time, if this order
has started with an assigned delay dk. For calculation
of Fk(dk), see equation (6).

2.8 Idle times Ik as precondition of order model:

Idle time intervals Ik = Bk�Fk�1 between the pro-
cessing of two subsequent orders are fixed for all N

orders, and, in combination with Bk of known orders,
pre-planned to be positive (Ik � 0) if possible. For
formal completeness of I1, set F0 := 0. To supply pre-
planned idle times is a vital precondition to be ensured
for the order model, as it allows for run time variations
and delays to have less effect and to induce less costs.

2.9 Simplification:

For practical simplicity 1 , this paper assumes that:

Zk(t +∆t)� Zk(t) ; ∆t small
) ∆Zk;k(∆t) := Zk(t +∆t)�Zk(t)� 0 (3)

3. PERTURBATION ANALYSIS

At any given time, the set of all N > 0 fixed orders Oi,
i = 1; : : : ;N, is assumed to have arrival times Ti as well
as already scheduled, corresponding starting times B i
within time horizon [0;T [, cp. Fig. 2:

0� B1(d1)< :: : < BN(dN)< T (4)

The choice of Bi shall respect the vital precondition
to ensure idle times between (any) two orders if pos-
sible (section 2.8). As di is a-priori fixed, so will
Bi(di) = Ti +di, thus one may simply write Bi to de-
note Bi(di). Similarly, Fi denotes Fi(di). The sequence
of begin events Bi imposes N +1 time slots Si onto
time horizon [0;T [:

Si :=
�
Bi;Bi+1

�
; i = 0;1; : : : ;N ;

B0 := 0; BN+1 := T
(5)

Each scheduler maintains a list of N a-priori fixed
orders Oi, i = 1; : : : ;N. Each newly acquired order
Ok := ON+1 represents a dynamic addition to this
static schedule, resulting in incremental costs due to
additional delays imposed on the set of subsequent
orders. One idea how to minimise the overall, future
costs imposed is to assign a cost-effective delay dk
to order Ok. On basis of the provided and observed
schedule thus a sample path has been created, allow-
ing the order model to apply perturbation analysis

1 For a small ∆t , a resource failure (or its absence) at time t
may still be of similar magnitude for the subsequent order at time
t +∆t , regardless of order index k. However, assumption (3) is not
necessary for the model to succeed. For higher accuracy, simply the
administrative efforts of tracking all values of ∆Zi;i(Bi) in (15) is
required.

techniques as introduced in (Cassandras and Lafor-
tune, 1999), with dk as system parameter. The dynam-
ics involved may best be represented in a recursive
way, cp. Fig. 1,

Fk(dk) = max
�

Bk(dk);Fk�1(dk�1)
	

+Rk +Zk

�
Bk(dk)

� (6)

in correspondence with the standard Lindley equation
(Kleinrock, 1975). Perturbation analysis would inter-
pret the max-operation in (6) to decompose a sample
path into busy and idle periods. With Bk(dk) as result
of the max-operation, the execution of order O k will
be scheduled after the previous order Ok�1 has been
finished: idle period [Fk�1;Bk[, [Ik]

+ = Ik). If the max-
operation results in Fk�1(dk�1), order Ok�1 is not yet
finished, while order Ok is assigned for start already:
busy period [Bk;Fk�1[, [Ik]

+ = 0).

With a given static schedule Bi, i = 1; : : : ;N, next
a new arrival Tk � 0 of an order Ok is dynamically
acquired. Note that Tk < 0 would imply a static
pre-scheduling as a-priori knowledge rather than the
need for a dynamic one at run time. The objec-
tive is to determine delay dk such that the addi-
tional costs imposed are minimised. Tk shall fall into
time slot Sw�1 = [Bw�1;Bw[. So will Bk(0) = Tk, pro-
vided that there is no delay assigned to order Ok yet,
dk = 0. In general for dk > 0, however, time slot
Sx�1 = [Bx�1;Bx[3 Bk(dk), x� w will be affected for
dk > 0 by:

Bk(dk) = Tk +dk = Bk(0)+dk � Bk(0) = Tk (7)

To simplify coming calculations, it is preferable to
divide the yet to be determined delay dk into two parts,

dk =: ∆Bx + t � 0 (8)

with ∆Bx representing the execution delay as if begin
event of Ok is scheduled for the same instant as Bx�1,
and with t the remaining delay relatively to start of
time slot Sx�1, cp. Fig. 2.

∆Bx :=
�
Bx�1�Bk(0)

�+
� 0 ; 8x� w (9)

Note that in (9) the max-operation with zero is re-
quired for x = w. ∆Bx constrains t by the length of
the respective slot:

0� t < Bx�Bx�1 =j Sx�1 j ; ∆Bx > 0
0� t < Bx�Bk(0) = Bw�Tk ; ∆Bx = 0

(10)

It is important to realise that dynamic acquirement of
new order Ok results in a begin event Bk(dk) > Bx�1,
in compliance with (4). Thus the schedule of finish
events Fi, i� x�1, will not be affected by order Ok,
except for Fw�1 in case of immediate interruption.
However, due to propagated delay explicitly caused by
Fk(dk), Bk(dk) may increase execution times respec-
tively instants of finish events for orders Oi, i > x�1

and for order Ow�1 in case of interruption. Applying
sample path technique, the additional delay ∆Fi(dk)
for order Oi may be expressed as

∆Fi(dk) := eFi(dk)�Fi � 0 ; i = 1; : : : ;N (11)

Fi is interpreted as fixed and scheduled finish event
of Oi (nominal sample path) and eFi(dk) as expected
finish event of Oi that depends on the assigned de-
lay dk of dynamically added order Ok as parame-
ter (perturbed sample path). It is ∆Fi(dk) = 0 for
i = 1; : : : ;(x�2), because prior to arrival of Ok it
holds Bx�2 < Fx�2 � Bx�1 < Bk(dk). The incremen-
tal, future cost explicitly caused by acceptance of Ok
as a function of delay dk = ∆Bx + t may now be for-
mulated as a sum:

Ck(∆Bx; t) =Ck(dk = ∆Bx + t)
=CH � [∆Bx + t]+CI �

�
Fx�1�Bk(∆Bx + t)

�+
+CI �∆Fw�1(t)+CI � ∑

fi>x�1g

∆Fi(t) (12)

The first term corresponds to the cost of putting new
order Ok on hold for delay interval dk, cost factor CH
per time unit. The second term represents the cost for
possibly postponing the drafted schedule of order O k
in favour of completion of currently executed order
Ox�1 (cost factor CI > CH per time unit). This cost
term is positive only if Fx�1 > Bk(∆Bx + t). Similarly,
the third term

∆Fw�1(t) =�
�
Fw�1�Bk(t)

�+
�

t +CH

CI
(13)

solely appears if an immediate interruption of Ow�1
occurred 2 , as operation (1) limits non-negative t in
accordance to (10). Depending on the ratio CH

CI
< 1 be-

tween absolute cost factors CH and CI , (13) advocates
in favour of (CH !CI) respectively against immediate
interruption (CH ! 0). The last term in (12) comprises
the sum of costs, factor CI , incurred to all subsequent
orders, (11). As all these orders Bi, i > x�1, begin af-
ter Bx�1 < Bk(dk)< Bi has occurred, ∆Fi(dk) =∆Fi(t)
will depend on t only. Similarly, for the third term it
holds ∆Fw�1(dk) = ∆Fw�1(t).

The objective now is to minimise Ck(dk) =Ck(∆Bx; t)
by determining delay dk = ∆Bx + t. As cost function
(12) is not differentiable, a way to solve this prob-
lem nevertheless is to observe that differentiability
problems only relate to cases of event order changes.
Rather than minimising dk, for every possible ∆Bx a
continuous t� restricted by (10) is to be found such
that Ck(∆Bx; t�) � Ck(∆Bx; t), 8t respecting (10). In
a second step, the discrete value ∆B�

x with minimal

2 Note that only immediate interruption, i.e. ∆Bx = 0 and x = w,
is an option of this model. This is because in terms of costs, to
postpone Ok is preferable to interrupt a subsequently scheduled
order Ox, x > w. In the latter case, it holds dk � ∆Bx > 0, i.e. one
is already delaying Ok by dk > 0 anyhow, thus there is no point in
interrupting a future order.

costs is to be chosen, Ck(∆B�
x ; t

�)�Ck(∆Bx; t�), 8∆Bx

possible. Another advantage of this scheme lies in the
ability to easily respect absolute finishing deadline Dk
of newly acquired order Ok by simply introducing an
upper bounded range for possible intervals ∆B x:

Tk +∆Bx
!
< Dk�Rk�Zk(Tk +∆Bx)< T (14)

3.1 Determination of ∆Fi(t) and initial ∆Fx(t) in
Ck(∆Bx; t):

With x fix and i > x, it follows from (11), recursion (6)
and Ii = Bi�Fi�1 :

∆Fi(t) = maxfBi;
eFi�1(t)g+Ri +Zi(Bi + t +Rk)

�
�
maxfBi;Fi�1g+Ri +Zi(Bi)

�
= ∆Zi;i(Bi)+

�
Ii > 0 : maxf0;∆Fi�1(t)� Iig
Ii � 0 : ∆Fi�1(t)

= ∆Zi;i(Bi)+
�
∆Fi�1(t)� [Ii]

+
�+

;8i > x (15)

(15) describes a recursive expression of how pertur-
bation in a sample path will be propagated from its
origin. Although tracking of additional run time Z i is
possible, for simplicity assumption (3) shall be ap-
plied, i.e. ∆Zi;i(Bi) � 0 and ∆t = t +Rk small. With x
fix, the newly acquired order Ok causes an initial delay
∆Fx for order Ox that is propagated through succeed-
ing orders. Employing idle times as a means to reduce
overall delay of all subsequent orders, a distinction
of idle time sequences is introduced. For any i with
Ii � 0, it yields [Ii]

+ = 0, i.e. no idle time to spare
between subsequent orders Oi�1 and Oi. Thus recur-
sion (15) provides ∆Fi(t) = [∆Fi�1(t)]

+ = ∆Fi�1(t),
as ∆Fj � 0, 8 j by definition (11). Consequently, or-
der Oi will be postponed by the same delay as the
previous one. In contrast, Ii > 0 will result in idle
time [Ii]

+ = Ii > 0 to spare, thus recursively de-
liver ∆Fi(t) = [∆Fi�1(t)� Ii]

+. Consider the ordered
set of subsequent idle times J := (Ix+1; : : : ; IN). Let
(I
(µ2)

; : : : ; I
(µM)

)� J be the ordered sub-set of J indi-

cating positive idle times I
(µ j)

> 0, j = 2; : : : ;M only.

Formally set µM+1 := N +1 and µ1 := x. In case of
absence of interruption, reset Ix := 0, see section 3.1.
Applying this distinction, any µv and µv+1 indicate
subsequent positive idle time intervals to spare, Iµv > 0
and Iµv+1

> 0, with µv+1�µv describing the number
of orders in between, i.e. length of sequence with no
spare idle time 3 . One may now write as equivalent for
∑fi>x�1g∆Fi(t):

M

∑
v=1

(µv+1�µv) �

"
∆Fx(t)�

v

∑
j=1

I(µ j)

#+
(16)

With Ix = Bx�Fx�1 (section 2.8), it can be derived 4

when examining all distinct cases that either:

3 Note that there is no intention to create an idle time for order Ok.
4 Note that complete case studies and extensive derivations for
(17), (18), (19) and (20) would exceed the space allotted.

∆Fx(t) =

=

8>><>>:
Ix > 0 : max

n
Fx�1 +Rk +Zk(Tk + t)�Bx;

[Tk +∆Bx + t +Rk +Zk(Tk + t)�Bx]
+
o

Ix � 0 : Rk +Zk(Tk + t)
(17)

in case of absence of interruption as assumed in (17),
Ix := 0, or

∆Fx(t) = max
n

Bx; eFx�1(t)
o
�max

�
Bx;Fx�1

	
=
h
(eFx�1(t)�Fx�1)� [Ix]

+
i+

=
�
(Rk +R�

k(t))� [Ix]
+
�+ (18)

in case of interruption of order Ow�1 in favour of Ok,
where x=w holds. Here, R�

k(t)� 0 is introduced in ad-
dition to its fixed run time Rk to model setting-up times
and perturbations Zk caused by interrupting order
Ok. Consequently, eFx�1(t)�Fx�1 = (Rk +R�

k(t))> 0
holds. Finally, the behaviour of (18) is identical to
recursive expression (15), which is why in the case of
interruption, one may simply set ∆Fx(t) := Rk +R�

k(t)
and include Ix unmodified into recursive calculation
(16).

3.2 Optimal solution:

Finally, by distinction of all different cases, it can be
shown 8t of any fixed slot Sx�1 respecting (10) that
for every corresponding ∆Bx, with exception of case
interruption, t = t�(∆Bx) minimises Ck(∆Bx; t), if:

t�(∆Bx) =�min
�

0;Fx�1�Bk(∆Bx)
	

+min
�

Fx�1�Bk(∆Bx);Bx�Bk(∆Bx)
	 (19)

The exceptional case of interruption, where ∆Bx = 0
and x =w, results in the appearance of additional third
term (13) for costs (12) and a local minimum at:

t�I =

�
CI +(Fw�1�Bk(0))

2
�CH

�+
(20)

Operator (1) implicitly constrains t to interval
[Bk(0);Fw�1[, where interruption is possible.

3.3 Algorithm to determine cost-optimal solution:

A-priori provide with Bi, (4), a static schedule of
N > 0 orders, including calculated instants of finish
events Fi, fixed run time Ri and idle time Ii. Then,
based on the model, the algorithm in Fig. 3 decides on
optimal delay d�k that minimises the additional, incre-
mental costs Ck(∆Bx; t), (12) for a new, dynamically
acquired order Ok at the time of order arrival Tk � 0.

There are three stopping conditions. If ∆Bx �CH �CInt ,
costs for holding order Ok would exceed the costs
that occurred if Ok would have started immediately at

arrival Tk, even including optional interruption. In case
of ∆Bx +Tk �Dk�Rk, optionally assigned deadline
Dk of order Ok is exceeded, (14). Stopping condition
x > N +1 will take care if the last statically scheduled
order is effected.

t := 0; w := 1+ max
fi=1;:::;Ng

fi j Bi < Bk(0)g

Fw�1 > Bk(0) t := t�I [5]

x := w; ∆Bx := 0; dk := ∆Bx + t

CInt :=Ck(∆Bx; t) [6]; Cmin :=CInt

∆Bx �CH �CInt _∆Bx +Tk � Dk�Rk

Ck(∆Bx; t)<Cmin [7]

t := t�(∆Bx) [
8]

Cmin :=Ck(∆Bx; t)
dk := ∆Bx + tx := x+1

x > N +1

∆Bx := Bx�1�Bk(0)

Add Bk(dk) for order Ok to schedule.
Set N := N +1. Return optimum d�k := dk

Fig. 3. Algorithm for cost-optimal delay d �
k

To obtain an initial static schedule for N already given
orders Ok consisting of Bi, Fi and Ii, execute:

(1) B1 =B0 =F0 = I0 := 0. BN+1 = T . d1 :=B1�T1.
F1 := F1(d1). [

9]. I2
N := I1

O. M := 1.
(2) IF fM � Ng THEN f GOTO (11). g.
(3) CALL algorithm in Fig. 3 WITH PARAME-

TERS fM orders instead of N, Ok := OM+1,
k := M+1, w := 2, ∆Bx := B1�Tkg AND OMIT
THE LAST STEP.

(4) IF fTk +d�k = B1 = 0g THEN fx := 2:g.
ELSE fx := 1+maxfi=1;:::;Ngfi j Bi < Tk +d�k :g.

(5) IF fTk +d�k < Fx�1g THEN fx := x�1:g.

(6) fB;F; Igi
N := fB;F; Igi

O
; i = 0; : : : ;x�1:

Ix
N := Ix

O.
(7) IF fx�M+1g THEN fIM+2

N := Ik
O
:

FM+1
N := BM+1

N +Rk +Zk(BM+1
N):

BM+1
N := FM

O + IM+1
O: GOTO (11). }.

(8) Bx
N := Bx

O. Fx
N := Bx

N +Rk +Zk(Bx
N).

Ix
O := Ik. ∆dx := Fx

N �Bx
N + Ik.

5 Using (20) due to case interruption, where ∆Bx = 0 and x = w.
6 Using (12), (16) and either (17) for Fw�1 � Bk(0) or
∆Fx(t) := Rk +R�k(t) plus (13), for Fw�1 > Bk(0) (interrupt).
7 See previous footnote.
8 Using (19).
9 Using (6).

(9) fB;Fgi+1
N := fB;Fgi

O +∆dx ; Ii+1
N := Ii

O;

i = x; : : : ;M: IM+2
N := IM+1

O .
(10) BM+2 := T . M := M+1. GOTO (2).
(11) BN+1 := T . di := Bi�Ti; i = 1; : : : ;N: END.

Note that X N refers to the set of actual values for X ,
derived from the set X O of the previous iteration. The
choice of appropriate, positive idle time values may be
set off by a (generous) constant first, and subsequently
be updated and refined. Similarly, Zk(Bk(d

�
k)) may be

either set off by a (order-specific) safety or mainte-
nance constant, or simply set to the current value of
Zk(t0) at the instant t0 a re-scheduling run is triggered.
To request a re-scheduling is always recommended for
each new order arrival.

4. CONCLUSIONS AND FUTURE WORK

We have introduced a cost functionality that is tolerant
to possible order delays, stochastic in nature, and to
the addition of a new, dynamically acquired order. An
optionally set deadline for a new order can be ensured.
Furthermore, the costs incurred by optional interrup-
tion of a currently processed order are included. Based
on our event-driven model applicable for planning or-
ders of one single scheduler, a deterministic solution
on scheduling policy has been delivered. This solution
proved to be optimal for minimising the given cost
functionality, using perturbation analysis techniques.
A clear algorithm summarised the steps for easy calcu-
lation of this optimal solution. To establish the initial,
static schedule necessary for the model introduced,
one method has been demonstrated that relied on re-
peated employment of the above algorithm.

In a next step, the interaction of multiple schedulers
in a distributed decision environment towards optimi-
sation in a global sense can be addressed, based on
an extension of the deterministic and scalable scheme
introduced in this paper.

REFERENCES

Cassandras, C. G. and S. Lafortune (1999). Introduc-
tion to Discrete Event Systems. Kluwer. Boston.

Kiencke, U. (1997). Ereignisdiskrete Systeme, Model-
lierung und Steuerung verteilter Systeme. Olden-
bourg. Deutschland.

Kleinrock, L. (1975). Queueing Systems. Volume I:
Theory. John Wiley and Sons. New York.

Panayiotou, C. G. and C. G. Cassandras (2001). A
sample path approach for solving the ground-
holding policy problem in air traffic control.
IEEE Transactions on Control System Technol-
ogy 9(3), 510–523.

Thierer, C., P. Bort and U. Kiencke (2001). States in
distributed systems based upon logical time. Pro-
ceedings of Third IFAC Workshop on Advances
in Automotive Control ’01, Karlsruhe, Germany,
March 28-30, pp. 171–182.

