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Abstract: The problem considered here is that of detecting events from the analysis
of sensing signals. Our approach is based on the continuous wavelet transform and
defines pseudo power signatures, as functions of the resolution and characterizing
the power distribution of an event. Detection of their presence can be used to
identify an event. These pseudo power signatures are, ideally, independent of the
duration of the event and can be therefore used to provide fast detection of changes
as required, for example, in fault detection problems.
The paper gives an overview of the concept of pseudo power signatures and their
application to signal classification problems, focusing in fault detection. The paper
also introduces new computational algorithms that are much more efficient than
those previously available.
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1. INTRODUCTION

The initial impetus for this research is a situ-
ation in shallow stratigraphy (first 50m), where
one estimates underground layers by illuminating
the subsurface with electromagnetic pulses and
analyzing the echo signal. The formalization of the
problem leads to the classification problem:
There exists a collection, C = {E1, E2, . . . , En},
of events. Each event may leave an imprint on
a sensing signal, x(t), t0 ≤ t ≤ tf . Assuming
that only one event may affect the signal at any
given time, the time interval may be partitioned
as t0 < t1 < t2 . . . < tk, . . . < tf such that the
segment, xk(t), tk−1 < t < tK , is only affected by
the event Ej . Determination of the time partition
and the event sensed in each segment is the clas-
sification of the signal.
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It is easy to see that the formulation fits many
different problems in signal processing. In fact
some of the techniques developed have been tested
on speech signals. In this case, the events would
be phonemes and the classification would become
a speech recognition problem.

An application of particular importance, and that
is the focus of our current research, is fault detec-
tion. In the simplest form, the signal is a sensor
reading and there are only two events; i.e, normal
operation and faulty operation. The classification
of the signal would be a fault detection system.
If different types of faults are associated to dif-
ferent events then the classification provides both
fault detection and identification. As opposed to
residue-based fault detection, this approach does
not require an explicit mathematical model of the
system and, in particular, does not require mea-
surements of the inputs to a system. The fault de-
tection scenario has some additional features that
make it specially attractive as a signal processing
problem.
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Our approach for solving the classification prob-
lem is to use the continuous wavelet transform
to associate, to each event, a signature that can
searched in the test signal. This signature should
be independent of the time interval where the
event affects the test signal. Transitions from one
signature to another would mark transitions from
one event to another, e.g., from normal to faulty
operation. And ideal signature would permit the
representation of the continuous wavelet trans-
form as a separable function of the scale (reso-
lution) and the time parameters.

The paper reviews the essential features of an
SVD-based technique to create signatures. This
approach is made computationally attractive with
a novel technique to compute the continuous
wavelet transform at any set of pre-specified reso-
lutions. Simple examples offer proof of concept for
the use of these signatures to detect changes. We
show also that more realistic applications to fault
detection, point to the need of improving the qual-
ity of the signatures. An original analysis shows
the difference between finding the best separable
approximation to the wavelet transform, as per-
formed in the SVD-based approach, and the de-
termination of the separable approximation that
best approximates the signal itself. The analysis
establishes a new technique for improving the de-
termination of signatures, requiring the solution
of an inverse projection problem. We show here a
new numerical algorithm for the determination of
the improved signatures.

1.1 Notation and Mathematical Preliminaries

This section gives the minimal mathematical de-
tails necessary to formulate the problem and in-
troduces an efficient approach to perform compu-
tations with the continuous wavelet transform. In
the following, ψ(t) ∈ L2 is an admissible wavelet
and the family of its translations and dilations is
ψab(t) = 1√
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We know ([5]) thatH = A⊗L2 and the continuous
wavelet transform is the map Γ : L2 →H defined
by cxψ = Γ[x]; x ∈ L2 with
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The adjoint transformation, Γ∗ : H → L2, has the
definition xc = Γ∗[c]; c ∈ H, with
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It is essential to our developments that the space
of the continuous wavelet transforms (CWT ) is
a proper closed subspace, M ⊂ H. Moreover, we
have been able to show ((Venkatachalam, 1998))
that,, regardless of the wavelet chosen, no function
in M can be of the form s(a)r(b) . This result
indicates that the determination of a signature is
not a wavelet selection issue and must be solved
as an approximation problem. Technically, the
result implies that the inverse transformation can-
not be applied to separable functions. However,
the adjoint transformation is always valid. The
relationship between the adjoint and the inverse
wavelet transform is shown below :

Lemma 1.1. (see (Venkatachalam, 1998)) If Γ is
the wavelet transform operator defined in Eq(1)
then

K = ΓΓ∗ (3)

is an orthogonal projector in H with range M.
Moreover, one has Γ∗Γ = IL2 (<)

1.2 CWT Computations using FFT

To complete our mathematical preliminaries, we
present here an efficient numerical algorithm for
the computations of CWTs. If in the definition of
the CWT given in Eq. (1) one takes the Fourier
transform of cxψ(a, b) with respect to the time
parameter b one obtains the new transformation

C(a, ω) =

∞Z

−∞

cxψ(a, b)e−jωbdb (4)

=
√
aΨ(aω)X(ω) (5)

In obtaining the previous result one assumes that
orders of integration can be interchanged. The
representation shows that for any given scale
the computation of the transform can be effi-
ciently performed in the frequency domain, for
any selected set of scales. Thus, one has a scale-
discretized wavelet transform. For numerical im-
plementations, one will also perform a discretiza-
tion in the frequency domain leading to a dis-
cretized wavelet transform (dWT). We note that
for any selected pair (ai, ωk) one can write

C(ai, ωk) = C(ai, ωk) =
√
aiΨ(aiωk)X(ωk)

Hence,



Cd (X) = [C(ai, ωk)]

Moreover, one can establish conditions on the
set of selected scales that will insure the in-
version of the dWT (Aravena and Venkatacha-
lam, 2000). The overall computational complexity
of this dWT is comparable to that of an ordinary
2-D FFT and has a high degree o parallelism.

2. A SINGULAR VALUE DECOMPOSITION
APPROACH

Since no element of the form s(a)r(b) can be
a wavelet transform, given a wavelet transform,
cxψ(a, b), it is reasonable to look for the separable
term that is, in some sense, closer to the trans-
form. The usual approach is based on the singular
value decomposition. In this case one solves the
minimization problem

J [s, r] =


cxψ(a, b)− s(a)r(b), cxψ(a, b)− s(a)r(b)

�
H

(actually one would write σs(a)r(b) with s(a), r(b)
on their respective unit balls). For our first numer-
ical implementations (Venkatachalam, 1998) we
established that, under certain conditions, one can
well approximate the problem with a conventional
matrix SVD problem. The numerical implemen-
tation was based on an algorithm developed by
Shensa (Shensa, 1992) . As supporting example,
we created three chirp signals {x1, x2, x3} given
by

x1(t) = ej.5πtsinc(
t

3
)

x2(t) = ej.55πtsinc(
t

3
)

x3(t) = ej1.55πtsinc(
t

3
)

The signals, their frequency spectra {f1, f2, f3}
(the axis is expressed as a fraction of π) and their
pseudo power signatures {S1, S2, S3} are shown
in figure 1. The signatures were generated using
the Db4 wavelet. Next we created a signal by
concatenating segments of each signal class: x1
over the interval [-125:-50], x2 over the interval
[-50:50], and x3 over the interval [50:115]. In
(Venkatachalam, 1998) we show that in this case,
neither the STFT , nor the CWT permit a clear
the identification of the component signals or the
transition points. Furthermore, direct comparison
of the CWTs of each signal class with the CWT of
the composite signal is not feasible either because
the CWT support is dependent on the signal
duration which is, in general, unknown.

One can get an accurate picture of the signal
composition, with particular reference to the loca-
tion of the transition points, if one determines the
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Fig. 1. The 3 signals and their signatures
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correlation of each Si with the discretized CWT
of the composite signal for each b. The results
are presented in Figure 2 and show quite clearly
that there are 2 transition points in the signal,
(the first around −50, and the second around
50), a situation which is not very evident upon
examination of the signal. Here, one can make the
legitimate assumption that the correlation values
must remain fairly constant over a range for the
signal to be classified as having support in that
range. Hence, one can conclude from the graphs
that the support of x1 is [−125 : −50], that of
x2 is [−50 : 50], and that of x3 is [50 : 115].
The high correlation values of S1 in the range
[−50 : 50] can be disregarded since S2 has a
higher correlation in that range than S1, and is
more likely to be present in the range [−50 : 50].
In the following section we report an application
of the SVD-based signatures to a fault detection
situation. The system used is a public domain,
one-degree of freedom, F14 model available in
MATLAB. The measured variable is the angle
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Fig. 3. Angle of attack sensor reading for normal
and faulty situation

of attack. The stick position is a colored noise
emulating a combat situation.

3. SVD SIGNATURES FOR MODEL-FREE
FAULT DETECTION. A CASE STUDY

In order to establish the validity of a DSP, model
free, approach for fault detection we first verified
the capability of regular DSP techniques to en-
hance ordinary sensor data. Results of these ex-
periments are presented in (Aravena and Chowd-
hury, 2001). In a representative experiment we
simulated a drastic change in the time constant
of the actuator moving one of the ailerons. The
value was changed from its nominal value to four
times its nominal value in a discontinuous manner.
The processing used to enhance the effect of the
failure is the decomposition of the signal into 16
orthogonal components using a multi-resolution
generated filter bank. The wavelets generating the
multi resolution are Daubechis’ compact support
wavelets (Daubechies, 1992).

The graphs in figures 3 and 4 display a repre-
sentative result showing the sixteen orthogonal
components of the angle of attack. Figure 3 shows
the angles of attack in the faulted case and the
difference with the angle for the case of no fault.
As can be seen, the differences are very small
and essentially invisible in the sensor reading. The
graph in figure 4, on the other hand, shows that
some orthogonal components have very different
behavior pre and post fault. Hence, the onset of
the fault can be readily established.

Moreover, it is apparent that a fault creates a
unique redistribution of the spectral energy. We
submit that if the goal is only fault detection,
one can easily enhance its effect by creating an
indicator that combines only those bands that
are more strongly affected by the change. In
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Fig. 5. Signatures obtained using 512 points and
window increment of 256 points

effect, one creates a multi-band filter tuned to
a fault. A conventional detection of change of
variance can be applied to the enhanced signal.
This approach is currently under development.
Preliminary results are encouraging.

We use the data from the F14 simulation to report
here our first results in the application of pseudo
power signatures for fault detection and classifi-
cation. The effect of the fault is very small and a
pseudo power signature of the sensor signal might
not be sensitive enough. In the case of residue-
based detection, one obviates the problem by us-
ing readings referred to a normal model. Since we
assume no model and the orthogonal components
appear sensitive to the fault, we created a baseline
behavior using the lowest resolution view of the
sensor data. The difference between this baseline
and the actual sensor reading is the details signal.
The assumption is that the effect of the signal will
be, most likely, more significant at high frequen-
cies. Hence the details signal will show better the
effect of the fault. In view of the behavior of the
orthogonal components, the assumption appears
reasonable.

The first step in our detection approach is to cre-
ate a pseudo power signature for the normal, pre-
fault condition. This is accomplished by comput-
ing the dWT of pre-fault details, computing the
SVD of the dWT and selecting the principal com-
ponent of the scale matrix. In order to establish
the consistency of the signatures we used a sliding
window and determined pre-fault signatures using
512 data points with distance between window
centers of 256 data points. Figure 5 shows three
such pre-fault signatures. The number of scales
used is 20. As can be seen, the consistency of the
signatures is very good, supporting the concept of
a signature for normal operation.
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This normal operation signature was used in an
attempt to detect the onset of the fault. For this,
we computed the dWT for a record of sensor data
containing pre- and post-fault behavior. For each
value of the time parameter the correlation be-
tween the dWT and the signature was computed.
Figure 6 shows a typical result. It is evident that,
from the display, no conclusion can be derived
with regard to the onset of the fault.

A post-mortem analysis of these results suggests
several possibilities. First, a comparison of nor-
mal operation signatures with faulty operation
signatures showed that, even though there are dif-
ferences between signatures, these differences are
not very significant, especially at the lower scales.
Hence, either one must be more selective in the

scales used, or the SVD approach for computing
signatures must be refined.

In this paper we focus on the problem of im-
proving the determination of signatures. Using
an original development., we first examine the
approximation problem and show that the best
approximation to the CWT need not yield the
best approximation to the signal. We then proceed
to develop a new approach to compute pseudo
power signatures.

Since K = ΓΓ∗ is an orthogonal projector and
separable terms cannot belong to the range of this
projector, for any separable term one can write

eH = cxψ −K[s⊗ r] + (I −K)[s ⊗ r] (6)

= Γ[x− Γ∗[s⊗ r]] +m⊥ (7)

where m⊥ 6= 0 ∈ M⊥. Hence

||eH||2 = ||x− Γ∗[s⊗ r]||2 + ||m⊥||2

The SVD approach minimizes the sum on the
right but does not guarantee that the time func-
tion obtained from the separable term is a good
approximation to the signal. We postulate that
the better signatures can be obtained by mini-
mizing the term ||x− Γ∗[s⊗ r]||2.

4. INVERSE PROJECTION SIGNATURES

In (Aravena and Venkatachalam, 2000) we show
how the minimization of the approximation error
eH, defined in Eq. (6), can be approached from
frequency domain approach. The map Γ∗ when
applied to separable terms takes the form

Γ∗[s⊗ r] =
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Let now xsr = Γ∗[s ⊗ r] ∈ L2(<). For its Fourier
transform, one can show that

Xsr(ω) =C−1
ψ
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This last equation permits the definition of a map
Û as follows

Û [s](ω) =C−1
ψ
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The expression for eH, transformed to the fre-
quency domain, becomes

EH(ω) =X(ω)− Û [s](ω)R(ω) (11)

Minimization with respect to both s(a) and r(b) is
possible. However, before attempting this general
minimization we explore a special, but significant
case where the signal x(t) is band limited. In this
case one can define an energy signal, r(b), such
that

R(ω) = e−jτ(ω), ω ∈ support of X(ω)

with τ(ω) any pre-defined function. Our first ap-
proach determined a scale function s(a), yield-
ing the minimum norm solution of the equa-
tion X(ω)R(ω) = Û [s](ω). This problem was
approached from a computational point of view
by discretizing both the scale and the frequency,
solving the set of equations

X(ωn)R(ωn) =C−1
ψ
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; n = 1, 2, . . .N

The signatures use the scale function

s(a) =
qX

k=1

σk
√
aΨ(aωk) (12)

In this case one can show that to determine the
vector σ = col{σ1, . . . , σq} one must solve the
linear equation

Xd =Uψσ (13)

where Uψ is a matrix with entries

U(n, k) =
Z

a

Ψ(aωn)Ψ(aωk)
da

a

We have found that a serious limitation of this
approach is the lack of criteria for the selection of

the frequency values, {ωk}, used to define the scale
function. Our computations show that the signa-
tures and the resulting quality of the detection are
sensitive to those values. Since there is no criterion
to guide the selection of those frequencies we are
currently designing signatures by direct minimiza-
tion of the error function in Eq.(11) without any
constraints in the scale function s(a). For the spe-
cial case when |R(ω)| = 1 in the support of X(ω)
we have shown that the optimal scale function is
a solution of the simple equation

Û∗[XR(ω)] =U∗U [s(a)] (14)

Moreover, if the map, Û [s] defined in Eq (10)
is evaluated using a rectangular numerical inte-
gration rule then Eq(14) becomes a simple linear
algebraic equation.

5. CONCLUSIONS

We have solid evidence that signal processing can
be effectively used to process sensor data and pro-
vide early fault detection. We are proposing the
use of pseudo power signatures as tools to imple-
ment a fault detector. However, signatures based
on SVD of the discretized continuous wavelet
transform appear not to have sufficient discrim-
inatory capability. One current line of research
is developing refined signatures using a frequency
domain approach. Another important issue that
is also under investigation is based on the effect
of noise on the sensitivity of the signatures. Fi-
nally, it should be pointed out that the concept
of pseudo power signatures, as used in our work,
is not restricted to the wavelet transform and can
be applied to any time-frequency distribution.
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