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Abstract: This paper deals with the regulation of water flow and level in water-ways
made up of channels separated by spillways. This control problem is solved by using
boundary control based on Riemann invariants. The control performance is illustrated

with an experiment for the Sambre river.
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Fig. 1. A spillway.
1. INTRODUCTION

Canalised waterways are often made up of a cas-
cade of reaches separated by hydraulic structures
such as mobile spillways (see Fig. 1). When the
water flow rate is slow enough, the water passes
over the nappe and the discharge depends on the
upstream lip but does not depend on the down-
stream. In order to guarantee the navigation, an
important issue is to stabilize the water level in
the reaches in spite of variations of the natural
flow rate of the river. In this paper, the flow
is modelled using the Saint Venant PDEs. The
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stabilization problem is solved by using boundary
control based on Riemann invariants. The control
performance is illustrated with a realistic simula-
tion experiment for the Sambre river in Belgium.
The paper is organized as follows:

In Section 2, we present the Saint Venant par-
tial differential equations for the modelling of an
horizontal reach. The steady-state of the system is
calculated and the control objective is formulated.
Section 3 is devoted to the stability analysis of the
steady-states and the control design. The model
is reformulated in terms of Riemann invariants
which are more convenient for our purpose. The
stability of the steady-states is analysed in The-
orem 1 which is derived from a general result of
(Greenberg and Li, 1984) concerning the stability
of quasilinear wave equations. On this basis, a
control law based on Riemann invariants is pro-
posed. Its efficiency is illustrated with a simulation
experiment.

Finally in Section 4, we investigate the applica-
bility of this control approach to a part of the
Sambre river (Belgium) composed of a cascade of
7 reaches for a total length of about 50 km.



2. MODEL OF A HORIZONTAL REACH
2.1 Saint Venant equations

We consider a one-dimensional portion of canal
as represented in Fig. 2. The dynamics of the
system are described by Saint Venant equations
(see e.g. (Malaterre, 1994; Chow, 1954; Graf, 1998;
Gerbeau and Perthame, 2000)). We restrict our
attention to the case of an horizontal reach with
a prismatic section, without viscous friction terms
and we suppose that the flow is sub-critical (3), so
that the dynamical equations simplify as follows :

Continuity equation :

0H +0,(VH) = 0. (1)

Dynamical equation :

V2
OV +ds(gH + =) =0, (@)

where x € [0, L] is the space coordinate, ¢ € [0, T
is time, 0,, 0; are the partial derivative w.r.t. z,t
respectively, L is the reach length, V(z,t) is the
water velocity (at point x and time t), H(x,t) is
the water level (at point  and time ¢) and g is the
gravity constant. The sub-critical flow condition

1S :
V <gH (3)

The water flow rate is defined as (we suppose an
unitary width):

Qx,t) = V(z,t)H(z,t) (4)
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Fig. 2. The horizontal reach.

The inflow rate at x = 0 is therefore:

Q(0,t) = V(0,1)H(0,1) ()

The control action is provided by one weir gate
located at the right end (z = L) of the reach
(see Fig. 1). The gate opening is denoted u. A
standard discharge relationship of weir gates (see
e.g. (Graf, 1998, Chapter 4)) is as follows :

V(L H(L,t) = k(H(L,t) — )™ (6)

where k& > 0 and m € [1,3/2] are constant
parameters.

Equations (5) and (6) are the boundary conditions
at = 0 and x = L, associated with the PDEs

(1)-(2).

2.2 Steady-states

For given constant opening % and constant inflow
rate ), there exists a steady state solution (V, H)
of equations (1), (2) which satisfies, from (5) and
(6), the following relations :
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2.3 Statement of the control problem

The control objective is to stabilize the system
(1), (2), (5), (6) around a set point (H, Q). The
control action is the gate opening u. The water
level H(L,t) supposed to be measured online at
each time instant ¢. The water level set point H
is selected in order to satisfy navigability require-
ments. The flow rate set point Q is selected on the
basis of meteorological forecasts.

3. STABILITY ANALYSIS FOR
STEADY-STATES AND CONTROL DESIGN

3.1 Characteristic velocities

We can rewrite system (1)-(2) in a matrix-vector

form :
o, (5) +A(H, V)0, <5) 0 (8

with the characteristic matrix :
V H
A= (7 )

The eigenvalues of this matrix:

ca(H, V)=V +/gH, cs(H, V)=V —+/gH

(10)
are called the characteristic velocities. The sub-
critical flow hypothesis (3) implies :

cg(H, V) <0< co(H,V) (11)

3.2 Model in terms of Riemann invariants

Let us now consider the following change of coor-
dinates:

o=V -V 2ol —\Jgl)  (12)
B=V —V —2(/gH —\[gh).  (13)

where (H,V) is an arbitrary steady-state.



With these new coordinates («, ), system (1)-(2)
is rewritten into the following diagonal form:

o (5) < (“57 )2 (5) - @)

where ¢, and cg are the characteristic velocities
now expressed in terms of «, [:

cala, B) = §a + lﬁ +V4+1/gH  (15)
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The solutions a(z,t) and B(x,t) of (14) are classi-
cally called Riemann invariants. Since the change
of coordinates (12)-(13) is a bijection H and V
can be expressed in terms of Riemann invariants :

(a —pB+4y/gH)*
16g

O‘;Fﬁﬂ’/. (18)

H =

(17)

V=

3.3 Stability Theorem

It is obvious that the equilibrium H, V expressed
in the «, [ coordinates is:

a=0 B=0 (19)
The stability of the flow in a neighborhood of this
steady state in a single reach can be analyzed with
the following theorem. The theorem is stated here

in a rather general form because it will be used
also later on for the control stability analysis.

We consider the shallow water equations (14),
expressed in («,B) coordinates, defined on the
domain (z,t) € [0, L] x [0, 00). The boundary con-
ditions are supposed to be given in the following

general form
fo(a(0,¢),3(0,t)) =0 fro(a(L,t),B(L,t)) =0
(20)
with functions fy(a, 5) and fr(«, ) being of class
C'. By differentiating these boundary conditions
with respect to time and using equations (14), we
have the following so-called boundary compatibil-
ity conditions at the initial instant ¢ = 0:

a0, 9)(0,0) 22 0, 5)(0,0) 52 0,0) +
calar (0,002 (@, (0.0 52(0,0) = 0
(1)
ol B)(2,0) 2L (a, 3) (1, 0) 5% (1,0) +
calen B)(L.0) S22 (0 B)(L.0) 32 (L,0) = 0

Theorem 1. Assume that the initial conditions
a(z,0), B(x,0) in C1([0, L])? satisfy the boundary
compatibility conditions (21) and that the follow-
ing inequality holds:

A1As <1 (22)
with
50,0 912 (0,0
Al = 75;1( ) and A2 = 788]“0‘ ( ! ) . (23)
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Then, there exist positive constants e, M, u such
that, if the initial condition is small enough:

| a(z,0) [cy0,0) + | B(x,0) [cy0,) <€ (24)
there is a unique solution «(z,t), 8(x,t) of class
C' on [0, L] x [0, 00) which decays to zero with an
exponential rate:

| a(z,t) |ey 0,0 + | B(@,1) |y, < Me™

(25)
|

This theorem is a direct application of Theorem 2
in (Greenberg and Li, 1984).

3.4 Control design with Riemann invariants

Let us assume that the inflow rate is constant:
Q(Ov t) = Q

The boundary at z = 0 is written as :
a+B+2V(a—B+4VgH)?

2 16g @
(26)

fola, B) =

The control law at © = L is selected in order to
have a linear relationship between « and 3 :

f=—a
which implies
fola, B) = B+ (27)
where v > 0 is a tuning parameter.

It follows that the stability condition A;As be-
comes:

| | <1 (28)

VgH -V
N

Using the subcritical ﬂow condition (3) in Theo-
rem 1, we have the following sufficient condition
for locally exponential convergence of the solution
to the equilibrium point :

\/g_H+V
\/gH

By inverting the change of coordinates using (17)-
(18) and (6), we have the expression of u :

Q . 1/m
= H(L,t) - <—(H : ”k)H(L’t)>

0< (29)

(30)
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Fig. 3. Inflow at x = 0.

where e, is the error on the water velocity :

o=V -V =222 (Jol —\Jgl)) (31)

From an engineering viewpoint, this control law
has several advantages : the control law (30) is lo-
cal -no communication with other gates is needed-
and it depends only on water depth measurements
-neither water speed nor flow measurements are
needed-.

3.5 Simulation result

We consider a reach of length L = 5000m and 40m
width, the initial state and steady state are:

(Q,H)i=o = (Q,H) = (10m3/s74m).

The tuning parameter v has been set to 0.1, so
the product A;As equals to 0.098. The inflow is
perturbated by a flood wave as depicted in Figure
3. The simulation has been made using a semi-
implicit Preissman scheme with a time step of 30s
and a spatial step of 100 m. The proposed control
law (30) is compared to an open loop strategy
where u is simply constant, u = @. The deviation
of the canal state with respect to the equilibrium
is measured by the entropy of the fluid, R :

_ P,V =V)2 o (H - H)?
R—/OH g to—y —dr (32)

In Figure 4, we see H(.,t) for different simulation
times. One can see that the wave is almost totally
dampened by the proposed control law. In Figure
5, we see that control law (30) asymptotically
stabilizes the channel even for a large deviation
(see Figure 3) of the inflow state.

4. PRACTICAL CASE: SAMBRE RIVER

The purpose of this last section is to investigate
the applicability of this control to the Sambre
river in Belgium
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Fig. 4. H(.,t) at different simulation time. Plain
curve for our control, dotted curve for open
loop.
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Fig. 5. Entropy R. Plain curve, Riemann based
control. Dotted curve, open loop control.

4.1 Description and model

The Sambre is a class IV (up to 1350T boat)
water-way that starts in France and is a tributary
of the Meuse river in Belgium as depicted in
Figure 6. The studied part of the Sambre - from
Marcinelle to Salzinnes - is composed of 7 reaches
separated by spillways with an average width
of 40m. The river is modelled by a cascade of
prismatic reaches as depicted in the Figure 6.

4.2 Simulation results

In order to get a more realistic model, the reaches
are described by Saint Venant equations with
friction terms of the Manning-Strickler type (K =
50) and a slight slope for some of them.



D Gate Names.
1. Monceau
2. Marcinelle
3. Montignies
4. Roselies
5. Auvelais
6. Mornimont
7. Floriffoux
8. Salzinnes
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Fig. 6. Schematic view of Sambre river from Mon-
ceau to Salzinnes gate.

A flood wave is injected at the first gate (M onceauw).
The simulation results for open loop and closed
loop strategy are presented at Figures 7, 8, 9.

Figure 7 shows the hydrogram of each gate - the
water flow passing through each gate -. One can
see that the flood wave is constantly dampened
for the open loop case, whether in the closed
loop case, the flood wave crosses the gates with
little modification. As this will be emphasized in
the next paragraph, the open loop case "pays
the price" of such behavior by producing greater
deviation of the water depth than the closed loop
case. We can also appreciate the acceleration of
convergence for the closed loop case.

Figure 8 shows the limnigram of each gate - the
deviation of the water depth at each gate -. The
open loop, by dampening the water flow, generates
high deviation of the water depth (up to 40cm).
The closed loop, which does not hold the flow,
yields to smaller deviation of the water depth (up
to 12cm). Again, one can see that the equilibrium
is reached much faster in the closed loop case.

The acceleration of the convergence can also be
assessed in Fig. 9 where the entropy is represented.
Indeed the response time in closed loop (9 hours)
is much smaller that in open loop (20 hours).

5. CONCLUSION

Our main contribution in this paper has been
to propose a control strategy based on Riemann
invariants for level and velocity control in open-
channels described by the Saint Venant equations.
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Fig. 7. Hydrogram for gate 1 to 8.

Using the characteristic of the spillways, we have
derived control laws for a single reach. The exten-
sion to multi-reach canals has been illustrated by
a simulation on a practical case : the Sambre river
in Belgium.

Related results on the feedback stabilization of
open-channels in the context of the theory of
quasilinear hyperbolic systems can also be found
in (Greenberg and Li, 1984; Li and Yu, 1985;
Leugering and Schmidt, 2002). Other relevant
references concerning the control of open-channels
systems are e.g. (Litrico and Georges, 1999; Xu
and Sallet, 1999; Malaterre, 1994; Coron et al.,
1999; de Halleux et al., 2001).
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