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Abstract: System identification of continuous-time model based on discrete-time
data can be performed using a algorithm combining linear regression and LQG-
balanced model reduction. The approach is applicable also to unstable system
dynamics and it provides balanced models for optimal linear prediction and
control.
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INTRODUCTION

A weak point in many approaches to system
identification of continuous-time linear systems
is how to find an appropriate models for col-
ored noise. For the case of discrete-time data,
Johansson (1994) suggested one approach to
find a maximum-likelihood (ML) colored-noise
model with properties similar to identification
of ARMAX models. A drawback with any use of
(approximate) ML methods is that they rely on
numerical optimization. Another issue is how
to apply these methods for multi-input multi-
output systems where properties of uniqueness
of parametrization become important. The com-
bination of these issues have inspired new ef-
forts to improve pseudolinear regression and
subspace-based models using singular value de-
composition. Pseudolinear regression is often
organized as a two-step method where the first
step involves linear regression to find a high-
order model and a second step in which the
model order is reduced and where the dis-
turbance model is found—e.g., as an iterated
Markov estimate. One alternative is to apply
balanced model reduction in the second step. As
balanced model reduction only can be applied
to stable models, there is a limited applica-

tion range for this method. However, Fuhrmann
and Ober (1999) and more recently Salomon et
al. (1999) have suggested a modified balanced
model that exploited a modified balancing ap-
proach. Instead of solving for a pair of Gramians
using Lyapunov function, it was suggested to
be replaced by Riccati equation. An immediate
application in the context of model reduction is
that unstable systems may be object for model
reduction. The idea goes back at least to De-
sai and Pal (1982) who suggested LQG-like
balanced realization for innovation models and
Kalman filters obtained in covariance analysis.

This important observation can also be ex-
ploited in the context of system identification.
In the context of pseudolinear regression, the
benefit is two-fold. Firstly, it permits the ap-
plication of pseudolinear regression to unstable
systems which, in, turn permits derivation of
disturbance models. Secondly, by virtue of the
LQG properties it permits the formulation of
optimal linear model approximation to reduced-
order models for application in LQG control and
Kalman filtering. Important application is to be
found in identification for control, Kalman filter
design and spectrum analysis.
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PRELIMINARIES

Balanced Model Reduction

Given a a linear time-invariant m-inputs p
outputs transfer matrix G(s) with a realization
given by

dx
dt

= Ax(t) + Bu(t)
y(t) = Cx(t) + Du(t)

(1)

where x ∈ Rn; u ∈ Rm, y ∈ Rp and A, B , C, D
are matrices of the corresponding dimensions.
Denote the realization of G(s) given in Eq. (1)
by S{A, B , C, D} or

S =
[

A B
C D

]
(2)

The controllability and observability Gramians
are defined as

P=
∫ ∞

0
eAtB B TeAT tdt, (3)

Q=
∫ ∞

0
eAT tCT CeAtdt (4)

Note that P, Q are also the solutions to the
Lyapunov equations

AP + PAT + B B T = 0 (5)
QA+ AT Q + CT C= 0 (6)

In the case where (A, B) is observable and
(A, C) observable, there exists a linear transfor-
mation T such that S{T AT−1, T B , CT−1, D} is
balanced—i.e, T PT−1 = (T T)−1QT−1 = Σ with
Σ = diag{σ 1,σ 2, . . . ,σ n}. Now partition of the
resulting transformed system matrix into

S =
 A11 A12 B1

A21 A22 B2

C1 C2 D

 ,
A11 ∈ Rr�r,
B1 ∈ Rr�m,
C1 ∈ Rp�r

r < n (7)

Then, a reduced-order model Sr of order r < n
can be obtained as one of the following approx-
imants

Sr =
[

A11 B1

C1 D

]
,σ r+1 ≤ iS − Sri∞ ≤ 2

n∑
k=r+1

σ k

Sr =
[

A11 − A12 A−1
22 A21 B1 − A12 A−1

22 B2

C1 − C2 A−1
22 A21 D − C2 A−1

22 B2

]
(8)

When A is unstable there is no solution to
the Lyapunov equations. Salomon et al. (1999)
showed that for (A, B) stabilizable, (A, C) de-
tectable there are still relevant solutions ob-
tained by replacing Lyapunov equations with
the Riccati equations

AP + PAT + B B T − PB B T P= 0 (9)
QA + AT Q + CT C − QCT CQ= 0 (10)

The model reduction scheme obtained using
this modification is called LQG-balanced model
reduction.

Continuous-Time System Identification

Consider a continuous-time time-invariant sys-
tem Σn(A, B , C, D) with system equations

dx
dt
= Ax(t) + Bu(t) + v(t)

y(t)= Cx(t) + Du(t) + e(t) (11)
with input u ∈ Rm, output y ∈ Rp, state vector
x ∈ R

n and zero-mean disturbance stochas-
tic processes v ∈ R

n, e ∈ R
p acting on the

state dynamics and the output, respectively.
The continuous-time system identification prob-
lem is to find estimates of system matrices A, B ,
C, D from finite sequences {uk}N

k=0 and {yk}N
k=0

of input-output data.

Discrete-Time Input-Output Data Assume pe-
riodic sampling to be made with period h at a
time sequence {tk}N

k=0, with tk = t0 + kh with
the corresponding discrete-time input-output
data {yk}N

k=0 and {uk}N
k=0 sampled from the

continuous-time dynamic system of Eq. (11).
Alternatively, data may be assumed generated
by the time-invariant discrete-time state-space
system

xk+1= Azxk + Bzuk + vk; Az = eAh, (12)

yk= Cxk + Duk + ek; Bz =
∫ h

0
eAsBds

with equivalent input-output behavior to that
of Eq. (11) at the sampling-time sequence. The
underlying discretized state sequence {xk}N

k=0
and discrete-time stochastic processes {vk}N

k=0,
{ek}N

k=0 correspond to disturbance processes v
and e which can be represented by the compo-
nents

vk=
∫ tk

tk−1

eA(tk−s)v(s)ds, k = 1, 2, ..., N

ek= e(tk) (13)
with the covariance Q ≥ 0,

E{
(

vi

ei

)(
vj

ej

)T

} = Qδ ij =
(

Q 11 Q 12

Q T
12 Q 22

)
δ ij (14)

The continuous-time stochastic processes will
have an autocorrelation function according to
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Fig. 1. Autocorrelation functions (upper dia-
gram) and autospectra (diagram below)
of a continuous-time (solid line stochastic
variable w(t) and a discrete-time (‘o’) sam-
ple sequence {wk}. The continuous-time
process is bandwidth-limited to the Nyquist
frequency ω N = π/2 [rad/s] of a sam-
pling process with sampling frequency 1
Hz. Properties of the sampled sequence
{wk} confirm that the sampled sequence is
an uncorrelated stochastic process with a
uniform autospectrum.

Fig. 1, thereby avoiding the mathematical prob-
lems associated with the stochastic processes of
Brownian motion.

From the set of first-order linear differential
equations of Eq. (11) one finds the Laplace
transform

sX = AX + B U + V + sx0; x0 = x(t0)
Y = CX + DU + E (15)

and for a corresponding innovations model

sX = AX + B U + K W + sx0; x0 = x(t0)
Y = CX + DU + W (16)

Introduction of the complex variable transform

λ(s) = 1
1+ sτ (17)

corresponding to a stable, causal operator per-
mits an algebraic transformation of the model

X = (I + τ A)[λ X ] + (1− λ)x0

+τ B [λ U ] + τ K [λ W] (18)
Y = CX + DU + W (19)

In the new operator λ , we define

Aλ = I + τ A, Bλ = τ B , Kλ = τ K (20)

The transfer-function properties for the innova-
tions model are

Y(λ(s))= (C(I − Aλ λ)−1Bλλ + D)U (s) (21)
+ (Ip + C(I − Aλ λ)−1Kλ λ)W(s) (22)
+ (1− λ)C(I − Aλ λ)−1x0 (23)

Using a matrix fraction description

AL(λ)−1BL(λ) = C(I − Aλ λ)−1Bλλ + D (24)
AL(λ)−1CL(λ) = C(I − Aλ λ)−1Kλλ + I (25)
AL(λ) = Ip + A1λ + ⋅ ⋅ ⋅+ Anλ n ∈ Rp�p[λ ]

BL(λ) = B0 + B1λ + ⋅ ⋅ ⋅+ Bnλ n ∈ Rp�m[λ ]
CL(λ) = C0 + C1λ + ⋅ ⋅ ⋅+ Cnλ n ∈ Rp�p[λ ]

To the purpose of linear regression for esti-
mation, it is straightforward to formulate this
model as counterpart to the autoregressive
moving-average model with external input (AR-
MAX) used in time-series analysis

AL(λ)Y(s) = BL(λ)U (s)+ CL(λ)W(s) (26)

and the linear regresson model

Y(s) = −
n∑

k=1

Ak[λ k]Y(s) +
n∑

k=0

Bk[λ k]U (s)

+
n∑

k=0

Ck[λ k]W(s) (27)

LQG BALANCED CONTINUOUS-TIME
SYSTEM IDENTIFICATION

Because W(s) is not available to measurement
nor as a discrete-time sequence {wk}, linear
regression cannot be applied. As a substitute,
pseudolinear regression is often applied as an
iterative procedure where the essential step is
to find a pseudoregressor sequence to substi-
tute the unknown regressor sequence. It is of-
ten suitable to choose the parameter set with
the smallest 2-norm. To the purpose of least-
squares identification, then, it is suitable to
organize model and data according to

1: Arrange for data sequences of discrete-time
data using the following notation for sampled
filtered data

u( j)k = [λ ju]k = [λ ju](tk), (28)
y( j)k = [λ j y]k = [λ j y](tk),

where {tk}N
k=0 for j = 0, 1, . . . , q, for some q> n.

2: Formulate
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yk=−A1 y(1)k − ⋅ ⋅ ⋅− An y(n)k (29)
+B1u(1)k + ⋅ ⋅ ⋅+ Bnu(n)k , yk ∈ Rp

θ = (A1 . . . An B1 . . . Bn
)T , θ ∈ Rn(m+p)�p

which suggests the linear regression model

M1 : Y N = ΦNθ (30)

3: Arrange data sequences into matrices

φk =
(
−[λ1 y]Tk . . . −[λ q y]Tk [λ1u]Tk . . . [λ qu]Tk

)T

Y N =


yT

1
yT

2
...

yT
N

 ∈ RN�p, ΦN =


φ T

1
φ T

2
...

φ T
N

 ∈ RN�n(m+p)

4: Compute the least-squares estimate θ̂ and
the residual sequence EN ∈ RN�p with rows
{ε T

k }N
k=1

θ̂ N = (ΦT
N ΦN)†ΦT

NY N (31)
EN(θ̂) =Y N − Ŷ N = Y N − ΦNθ̂

= (IN − ΦN(ΦT
N ΦN)†ΦT

N)Y N (32)

5: Formulate a pseudoregression model using
{ε k}N

k=1 to replace unknown disturbance {wk}

yk=−A1 y(1)k − ⋅ ⋅ ⋅− An y(n)k , yk, y( j)k ∈ Rp

+B1u(1)k + ⋅ ⋅ ⋅+ Bnu(n)k

+C0ε k + C1ε (1)k + ⋅ ⋅ ⋅+ Cnε (n)k

θ = (A1 . . . An B1 . . . Bn C0 . . . Cn
)T , (33)

which suggests the linear regression model

M2 : Y N = ΦNθ , θ ∈ Rn(m+2p+1)�p (34)

As a result of the non-uniqueness of param-
eters, the normal equations of the associated
least-squares estimation of θ will exhibit rank
deficit in general. It is therefore natural to apply
the least-squares solution

θ̂ N = (ΦT
N ΦN)†ΦT

NY N (35)
where (ΦT

N ΦN)† denotes the matrix pseudo-
inverse of ΦT

N ΦN . The associated least-squares
estimate then obtained has the smallest 2-norm
of all possible minimizers of the least-squares
criterion.

Step 2—LQG-balanced Model Reduction The
regression models M1, M2 suggest nonminimal
multivariable state-space models which may be
objects for model reduction.

A nonminimal state-space model may be sug-
gested as
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Fig. 2. Pole-zero map of empirical transfer func-
tion estimate before model reduction ex-
hibits many pole-zero cancellations inside
and outside the unit circle. Pole pattern
after LQG-balanced pole shifting shows a
shift into stable region. Original poles are
indicated by ’�’ and the LQG-shifted poles
as ’+’.

Ax =



−Ip− A1τ −A2τ ⋅ ⋅ ⋅− Anτ B1τ ⋅ ⋅ ⋅ Bnτ
Ip −Ip 0 0 ⋅ ⋅ ⋅ 0
...

. . .
. . .

...
...

0 Ip −Ip 0 ⋅ ⋅ ⋅ 0
0 ⋅ ⋅ ⋅ 0 −Im 0 ⋅ ⋅ ⋅ 0
0 Im −Im ⋅ ⋅ ⋅ 0
...

. . .
...

. . .
. . . 0

0 ⋅ ⋅ ⋅ 0 0 Im −Im


1
τ

Cx =
(−A1 . . . −An B1 . . . Bn

) (36)
Bx =

(
0 ⋅ ⋅ ⋅ 0 hIm 0 ⋅ ⋅ ⋅ 0

)T , (37)

and the intemediate high-order result(
ẋ
y

)
=
(

Ax Bx

Cx 0

)(
x
u

)
(38)

Application of LQG-balanced model reduction to
the state-space description of Eq. (38) which is
observable but not controllable.

LQG-balancing for Frequency-domain Methods

Frequency response fitting based on least-
squares identification in the complex frequency
domain is a natural idea which also benefits
from LQG balancing. Let the polynomial ratio

Ĝ(iω) = A−1(iω)B(iω) (39)
A(s) = snIp + A1sn−1 + ⋅ ⋅ ⋅+ An−1s+ An

B(s) = B1sn−1 + ⋅ ⋅ ⋅+ Bn−1s+ Bn

denote a transfer function estimate to be fitted
to the experimental data G(iω k) and known
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at the frequency points ω k, k = 1, 2, . . . , N. A
natural goal of optimization is to minimize the
error criterion

min
A,B

∑
k

iA(s)Y(z)− B(s)U (z)i2
s=iω k, z=eiω k (40)

where Y(z), U (z) denote z-transformed input-
output data. The linear regression problem with
parameter vector θ takes on the format

Y N =ΦNθ = (ΦY ΦU
)

θ (41)
θ = (A1 ⋅ ⋅ ⋅ An B1 ⋅ ⋅ ⋅ Bn

)T (42)
with

Y N =


(iω1)nYT(ziω1)
(iω2)nYT(ziω2)

...
(iω N)nYT(ziω N)

 (43)

and the regressor matrices

ΦY =


−(iω 1)n−1 YT(eiω1 ) ⋅ ⋅ ⋅ iω 1YT (ziω1) YT (eiω1)
−(iω 2)n−1 YT(eiω2 ) ⋅ ⋅ ⋅ iω 2YT (ziω2) YT (eiω2)

...
...

−(iω N)n−1 YT(eiω N ) ⋅ ⋅ ⋅ iω N YT (ziω N ) YT(eiω N )



ΦU =


(iω 1)n−1UT (eiω1) ⋅ ⋅ ⋅ iω 1UT (ziω1) UT (eiω1)
(iω 2)n−1UT (eiω2) ⋅ ⋅ ⋅ iω 2UT (ziω2) UT (eiω2)

...
...

...
(iω N)n−1 UT (eiω N ) ⋅ ⋅ ⋅ iω N UT (ziω N ) UT (eiω N )


The least-squares solution minimizing is then

θ̂ = (Φ∗Φ)−1Φ∗Y (44)
where Φ∗ denotes the transpose and complex
conjugate of Φ.

LQG-balanced model reduction can be applied
to the intermediate result

dx
dt
=


−Â1 −Â2 ⋅ ⋅ ⋅ −Ân

Ip 0 0 0
...

. . .
. . .

...
0 ⋅ ⋅ ⋅ 0 Ip 0

 x +


Im

0
...
0

u,

y=
(

B̂1 B̂2 . . . B̂n

)
x (45)

DISCUSSION AND CONCLUSIONS

Major application areas are to be found for
optimal control and optimal prediction us-
ing reduced-order models. Assume that LQG-
balanced model reduction exploits in the Riccati
equations

0= AP + PAT + B B T − PB B T P, (46)
0= QA + AT Q+ CT C − QCT CQ (47)

Then, for a model S{Ar , Br, Cr , Dr} of reduced
order, we have the reduced-order Riccati equa-
tions

0> (Ar − Br BT
r P−1)Pr + Pr(Ar − BrBT

r P−1
r )T

=−Br BT
r − Pr BrBT

r Pr − RP

0> Qr(Ar − Q−1
r CT

r C) + (Ar − Q−1
r CT

r C)T
r Qr

=−CT
r Cr − Qr CT

r CrQr − RQ (48)
for some matrices RP , RQ which represent the
difference between the higher-order model and
thereduced-order model. An immediate inter-
pretation is that RP, RQ represent the approx-
imation cost associated with the model approx-
imation. For example, the observer

dx̂r

dt
= (Ar − KrCr)x̂r + (Br − KrDr)u+ Kr y,

ŷ= Crx̂r + Dru, Kr = Q−1
r CT

r (49)
has an asymptotic covariance function from Qr

and its convergence rate described by

V (x̃r) = x̃T
r Qr x̃r, x̃r = x̂r − xr (50)

dV (x̃r)
dt

= x̃T
r (−CT

r Cr − Qr CT
r CrQr − RQ)x̃r

< 0, ix̃ri �= 0

Thus, the cost of optimal approximation can be
quantified by RQ in the context of optimal pre-
diction. Similarly, the degradation in optimal
control can be quantified by means of RP.

Another interesting application which is opened
up by the LQG-balanced model reduction is
state-space model identification based on em-
pirical transfer function estimates—e.g., input-
output spectrum ratios or cross-spectrum ratios.
Previously, such approaches were hampered by
the presence of unstable pole-zero cancellation
in the rational functions obtained. A remaining
problem, though, is how to treat cases with
eigenvalues of A on the imaginary axis.

An interesting question for further investiga-
tion is how to exploit relationships to subspace-
based identification and to the Krylov-Arnoldi
methods—see Gugercin and Antoulas (2000),
Antoulas et al. (2001).
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