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Abstract. The notions of externally positive and internally positive time-varying
linear systems are introduced. Necessary and sufficient conditions for the external
positivity and internal positivity of time-varying linear systems are established.
Sufficient conditions for the reachability of internally positive time-varying linear

systems are presented.

1. INTRODUCTION

Roughly speaking positive systems are systems
whose trajectories are entirely in the nonnegative

orthant R} whenever the initial state and input are

nonnegative. Positive systems arise in modelling of
systems in engineering, economics, social sciences,
biology, medicine and other areas (Farina and
Rinaldi, 2000; d' Alessandro de Santis, 1994;
Berman, Neumann and Stern, 1989; Berman and
Plemmons, 1994; Kaczorek, 2001; Rumchev, James,
1990; Rumchev, James, 1995). The single-input
single-output externally positive and internaly
positive linear time-invariant systems have been
investigated in (Farina and Rinaldi, 2000; Berman,
Neumann and Stern, 1989; Berman and Plemmons,
1994). The notions of externally positive and
internally positive systems have been extended for
singular continuous-time and discrete-time and two-
dimensional linear systemsin (Kaczorek, 2001). The
reachability and controllability of standard and
singular internally positive linear systems have been
analysed in (Fanti, Maione and Turchsano, 1990;
Klamka, 1998; Otha, Madea and Kodama, 1984;
Valcher, 1996). The notions of weakly positive

discrete-time and continuous-time linear systems
have been introduced in (Kaczorek, 2001; 1998).
Recently the positive two-dimensional (2D) linear
systems have been extensively investigated by
Fornasini and Valcher (Fornasini and Valcher, 1997,
Valcher, 1996; 1997) and in (Kaczorek 2001).

2. PRELIMINARIES

Let R™Y be the set of pXx( rea matrices and
RP := RP®. The set of px(Q real matrices with
nonnegative entries will be denoted by RP and
RP =R,

Consider the linear time-varying system

X(t)= AltX(t)+ Bltu(t), x(to) =% (1

y(t) = C(t)x(t) + D(t)u(t) (10)



vector, U(t)e R™ istheinput vector, y(t)e RP is

the output vector and A(t), B(t),C(t), D(t) are
real matrices of appropriate dimensions with
continuous-time  entries.  Solution X(t) of the

equation satisfying the initial condition X(to) =X
is given by (Gantmacher, 1959)

t
X(t)=D(tt )% + [@(t, 7B}z @

%)

where (I)(t,to) is the fundamental matrix defined by

@(tt,)= 1, + [ Akl + [ AD)] Alr,Mrdr+ .

©)

where | jisthe Nx N identity matrix.

If A(tl)A(tz) = A(tz )A(tl) for t;,t, € [to’°°)
then (3) takes the form (Gantmacher, 1959)

D(t,t,) = exp[j A(T)dTJ (3a)

The fundamental matrix (I)(t,to) satisfies the matrix
differential equation

d(tt,) = Alt)d(t,t,) @

and theinitial condition ®(t,,t,)= |

n
3. EXTERNALLY POSITIVE SYSTEMS

Definition 1. The system (1) is called externally
positiveif for all u(t)e R™, t >t, and zeroinitial
conditions (X, = 0) the output vector y(t)e Rf
for t >1,.

Let g(t)e R™™ be the matrix impulse response of

the system (1). It iswell-known that the output vector
y(t) of the system (1) with zero initial conditions

for an input vector u(t) isgiven by the formula

t

y(t)= [ gt 7h(z)de, t>t, 5)

to
where

g(t,7)=C(t)®(t,7)B(t)+ D(t)5(t — 7) for
t>7 and 8(t) isthe Diracimpulse. (6)

Theorem 1. The system (1) is externally positive if
and only if

g(t)e R™™ for t > t, ©)

Proof. The necessity follows immediately from
definition 1 and the definition of impulse response.
To show the sufficiency let us assume that (7) holds.

Then from (5) for u(t)e R", t>t, we have
y(t)e RP for t >t, m

4. INTERNALLY POSITIVE SYSTEMS
Definition 2. The system (1) is called internally
positiveif for every X, € R" andall u(t)e R the

state vector X(t)e R and y(t)e RP for t >t,.

From comparison of the definitions 1 and 2 it follows
that every internally positive system (1) is aways
externally positive.

Lemma. The fundamental matrix
d(t,t,)e R™ for t >t 6)

if and only if the off-diagonal entries
a;,i# J,i,]=1...,n of the matrix A(t) satisfy
the condition

t
J-aij(TﬂTZO for i#j,i,j=1...,n (9

to

Proof. First we shall show that (9) implies (8).
Let X (t) (z (t)) be the i-th component of the

vector X(t) (Z(t)) and

. (t)= ;(t)exp[jaﬁ (f)df} =1..n o

to

Substitution of (10) into the equation (1a) for
ut)=0, t >t, yidds (Ratajczak, 1967)

2(t)= Alt)t) (1)

where A(t) = [ﬁij (t)]e R™"



aj(t): &, (t)eXp[j. [ajj (T)_aii(f)}jTJ fori# j

0 fori = j

(12)
From (10) it follows that

z(t,)=x(t,)=0fori=1...,nif x,e R

(13)

Using (2) for u(t)=0, t >t, and (3) for (11) we
obtain

z(t) = @(t,t,)z, (14)
where

o(t,t,)= +J.Az')dz'+J'A J.A r, ) dr,d7+..

to to

(15
From (12) it follows that if (9) holds then
Alt)e R®™ and by (15) this implies
®(t,t,)e R™ and z(t)e R", t>t, for any
z,€ R". Hence by (10) and (13) X(t)e R,

t>t, for any X, € R. Therefore, (9) implies (8).
Necessity follows immediately from (3a) and the fact

t
that @(t,t,)e R™" onlyif IK(T)dT isaMetzler
to

matrix for any t 2 t, (Kaczorek, 1998). m

Remark 1. If the matrix A(t) is independent of t,
ie At)= A=[a;]and a; 20, for i # j then
A is the Metzler matrix (Farina nd Rinaldi, 2000;
Kaczorek, 2001) and q)(t,to) = exp(Alt - t, ).

Theorem 2. The system (1) is internally positive if
and only if

i) the off-diagonal entries of A(t) satisfy
the condition (9)
i) B(t)e R™™,
C(t)e R™,D(t)e R™™ for t > 0.

Proof. Necessity. Let u(t)=0 for t>t, and
Xo = €. The trgjectory does not leave the orthant
R only if X(t,)=Alty)e; =0 and this implies

(9). For the same reasons for X, = 0 we have

X(t,)=Bu(t,)>0  and this
B(t)e R™™, t>t, since u(t,)e R™ may be
arbitrary. From (1b) for u(to)z 0 we have
y(t,)=C(t, )%, € R® and C(t)e R, t>0
since X, € Rf may be arbitrary. Similarly, from
(1b) for X, =0 we
y(t,) = D(t, u(t,)e R® and D(t)e R™™ for
t >0 since u(t,)e R™ may bearbitrary.

implies

obtain

ufficiency. If the condition (9) is satisfied then by
Lemma (8) holds and from (2) we obtain X(t)e Rf

for any X,€ R" and u(t)e R", t>t,, since
B(t)e R™™ . If C(t)e R”" and D(t)e R”"
for t>0 then from (1b) we obtain Yy(t)e RP
since X(t)e R" and u(t)e R™ for t >t . m

5. REACHABILITY

Definition 3. Thestate X; (t)e R" of the system (1)
is called reachable in time t; —1, if there exist an
input vector u(t)e R™ for [t,,t,] which steersthe

state of the system from X, =0 to X; .

Definition 4. If every state X, (t)e R" of the
system (1) is reachable in time t; —t, then the
system iscalled reachableintime t; — 1.

Definition 5. If for every state X, (t)e R" there
exist t; > 1, such that the state is reachable in time
t; —1t, then the system (1) is called reachable.

A matrix Ae R is called monomia (or the

generalised permutation matrix) if in each row andin
each column only one entry is positive and the
remaining entries are zero.

Theorem 3. The internally positive system (1) is

reachableintime t; —t, if the matrix

(z)B"(z )(DT( f ’be

(T denotes the transpose) (16)

R, .t,) jcp T

is amonomial matrix.



The input vector which steers the state vector of (1)
from X, = 0 to X; isgiven by

ult)=B M (t, R, t)x, @7
for te [ty,t;]

Proof. If R(tf ,to) is a monomial matrix then the
inverse matrix R"l(tf ,to)e R™ and u(t)e R"
for [ty,t;]. We shall show that (17) steers the state
of (1) from X, =0 to X; . Substituting (17) into (2)

for t =t; and X, =0 weobtain

X(tf )= IJL(I)(tf vT)B(T)BT (T)q)T(tf vT)Ril(tf 'tO)Xf dr=

to

= ]Lq)(tf,r)B(T)BT(T)CDT(tf,be Rt toJx, =X

Therefore if (16) is a monomial matrix then the
positive system (1) isreachableintime t; —t,. m

Theorem 4. The internaly positive system (1) is
reachableintime t; —t,if

Alt)=diagla, (t). a,(t).....a,t)]  (@8)

(ag(t) i =1,...,N iscontinuous-time function)

and B(t)e R™ is a monomial continuous-time

matrix.
Proof. It is well-known (Gantmacher, 1959) that if

A(t) has the form (18) then
AL, )AL, ) = Alt,)ALL,) for t,t, € [ty, =) and

Dltt )= eprA(r)er

is aso diagona nonnegative matrix for t=t,.

Hence the matrix @(t,t,)B(t)e R™ is a
monomia matrix and the matrix

Rt t,)= [, BB (o t, oloe =

- }@(t 7B, 7)B(0)] dr

is also amonomial matrix. Then by Theorem 3 the
system (1) isreachableintime t; —t,. m

Remark 2. If the diagonal matrix (18) and B(t) are

independent of t, then from theorems 3 and 4 we
obtain the corresponding theorems 3.10 and 3.11 in
(Kaczorek, 2001)

Similar results can be obtained for the controllability
of time-varying linear systems.

6. EXAMPLE

Consider the system (1) with t, = 0 and

M- ﬂ’B“):DE 0} a9

By theorem 4 the system isreachablein time
t; —1,. Therefore, there exist input u(t) which

steers the state of the system from X, = 0 to
2
X¢ = L} intime t; =1.Using (3a), (16) and (17)

we obtain

Rlt; .to)= R1L0)= [@(1,7)B()B" (r)}p" (1, 7)dz

0

6—24(1— e’) 0



7. CONCLUDING REMARKS

The notions of externally positive and internally
positive time-varying linear systems have been
introduced. Necessary and sufficient conditions for
the external and internal positivity of time-varying
linear systems have been established. The concept of
reachability has been extended for internally positive
time-varying linear systems and sufficient conditions
for the reachability of internally positive time
varying linear systems have been established. With
dight modifications the consideration can be
extended for discrete-time varying linear systems. An
extenson of these considerations for 2D linear
systems with variable coefficients is also possible.
An open problem is an extenson of these
considerations for singular time-varying linear
systems.
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