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Abstract: Mixed Process algebra and Petri Nets (MPPN) combine Petri net constructs

and Process algebra. The modeling language implies a compact representation of

complex systems. For general resource booking problems MPPN is used for routing

speci�cations and modeling of resources. These models are formally con verted into

ordinary Petri nets. The Petri net representations are easily converted into eÆcient

Binary Decision Diagram (BDD). The BDDs are then used used for controller

synthesis. It is sho wnthat in speci�c cases very few boolean variables are required

in the BDD representation based on MPPN. This is crucial in order to calculate a

controller eÆciently.
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1. INTRODUCTION

In this paper we focus on concurrent systems that

may be modeled as discrete even t systems (DES),

and especially on routing and resource booking

problems. Suc hsystems may be described as a

set of shared resources and a set of objects. The

objects are described by the routing speci�cation

which involv es a set of operations thatare to be

executed in a certain order involving certain re-

sources. The objects may be products in a 
exible

production system, data packets in a communica-

tion netw ork or vehicles in a traÆc control system.

In order to synchronize theobjects utilization of

the a vailable shared resources, acontr olleris often
required.

Mixed Process algebra and Petri Nets (MPPNs),

is as a speci�cation and modeling language, which

combine both P etri net constructs and Process

algebra. Process operators for alternative, syn-

chronization and arbitrary order are de�ned in

order to realize a compact representation. Addi-

tional operators for join and conditional event are

de�ned in order to formally convert the MPPN

into ordinary Petri nets models, which are easily

represented as Binary Decision Diagrams (BDDs).

The huge number of states in a resource booking

system normally give vast computations in formal

veri�cation and controller synthesis. For this pur-

pose symbolic tools such as BDDs have been used

for eÆcient computations,(Bryant, 1992). For su-

pervisory control (Ramadge and Wonham, 1987)

BDDs have also been used by e.g. Gunnarson

(1997).

The transformation of both Process algebra and

P etri nets, respectively, into symbolic representa-

tions has been investigated by several researchers,

e.g. (Corno et al., 1995; Camurati et al., 1993;
Bloom et al., 1997). To successfully use BDDs it is
important to optimize the BDD tree. Apart from

variable ordering, another important issue is the

number of boolean variables, (Bloom et al., 1997).

The purpose of this paper is to introduce opera-

tors in order to formulate the conversion betw een

a high lev el representation into ordinary P etri
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nets. It is also shown that an eÆcient BDD rep-

resentation is created due to a compact resource

representations.

2. MIXED PROCESS ALGEBRA AND PETRI

NETS (MPPN)

In order to achieve a powerful tool for routing and

booking/unbooking speci�cations, process opera-

tors for standard alternative, synchronization and

arbitrary order have been introduced in Falkman

and Lennartson (2001). Operators for join and

conditional event is de�ned which makes it pos-

sible to convert the MPPN models into ordinary

PNs in a formalized manner. These are then easily

converted into BDD representations.

Petri Nets and processes The transition between

two Petri net places in an MPPN is a process P .

A process P = a1 ! P1 describes that, �rst the

event a1 occurs, then it behaves like a process P1.

In our case a process is ended after a sequence of

events P = a1 ! a2 ! : : :! an, see Figure 1.

P = a1 ! a2 ! a3 a1

a2

a3

Fig. 1. In the model to the left there is a process P at the

transition between two Petri net places. Converted

into an ordinary Petri net it creates a new place for

each event.

This implies that process P has completed its

execution when the last event an in the sequence

has occurred.

Alternative The alternative (split) operator +

speci�es that there is a choice between two pro-

cesses. Let two processes be de�ned as P = a1 !

P1 andQ= b1 !Q1. Then an alternative between

these two processes is described as

P +Q = a1 ! P1 j b1 ! Q1

using Hoare's (Hoare, 1985) choice symbol j. This

implies that either event a1 occurs followed by

process P1 or event b1 occurs followed by process

Q1.Note that the alternative operator + implies

that one explicit place for each alternative event

is created when converting the MPPN models into

ordinary PNs.

Conditional event The conditional event ab de-

scribes that event a can only occur if event b has

P +Q P Q

Fig. 2. In the model to the left there is an alternative

between two processes P and Q. Converted into an

ordinary Petri net it splits the Petri net into two

sequences.

occurred in an earlier transition. When a speci�c

event has been conditioned it must occur again

before the the condition is ful�lled. This can be

exempli�ed as

a! ba ! ca + d , a! b! d

Join operator The join operator � speci�es that

there have been an alternative operation in an

earlier transition and there is one or more parallel

sequences that are to be joined into a single

sequence.

P �Q P Q

Fig. 3. In the model to the left there is two alternative

processes P and Q. Converted into an ordinary Petri

net it joins the Petri net into two sequences based on

earlier alternative processes.

Synchronization The nonstandard synchroniza-

tion operator &, which was suggested in Lennart-

son et al. (1998), implies that processes are

to be synchronized without introducing common

events; compare with Full Synchronous Composi-

tion (FSC) (Hoare, 1985). Similar ideas for event

synchronization can be found in Fabian (1995)

and in Arnold (1994). Again, consider two pro-

cesses P = a1 ! P1 and Q = b1 ! Q1. The

synchronization operator & can be described as

P&Q = a1&b1 ! P1&Q1

This means that a1 in P occurs at the same time

as b1 in Q. This synchronized event is denoted

a1&b1. For a more detailed description, (Falkman

and Lennartson, 2001).

The synchronization operator & is useful when


exibility and reuseability are desired. Consider

the following example: the issue is to synchronize

the processes P and Q at one moment and later on

P with another process R = c1 ! R1. To specify

these synchronizations by FSC it is required to

introduce speci�c event labels for these two dif-

ferent situations in the corresponding models. By

the suggested synchronization operator & a spec-

i�cation process S including a1&b1, later followed

by a1&c1, implies that the processes P , Q and R

do not need to be modi�ed (relabeled).



Arbitrary order Arbitrary order describes that

all processes involved are to be executed, but the

order does not matter. We de�ne an arbitrary

order operator !
 for two processes as

P !
 Q = P ! Q+Q! P

and more generally expressed !
n

i=1
Pi = perm(P1 !

P2 ! : : : ! Pn) with perm denoting the sum of

all di�erent permutations of the sequence (P1 !

P2 ! : : : ! Pn). This means that perm(P1 !

P2 ! : : : ! Pn) describes n! sequences, with

an alternative of which sequence that will be

executed.

Precedence The process operators above are ex-

ecuted with the following precedence, increasing

from left to right

!
 � +; � � ! � &

This implies e.g. that

P + Q&R = P + (Q&R)

i.e. either process P occurs or processes Q and R

occurs synchronized.

Example { Converting MPPNs into ordinary

PNs

To the left in Figure 4 there is an MPPN involving
two transitions. In the �rst transition there is a
choice between two events a and b and the next
transition involves a choice between two condi-
tional events c(a) and d(b), describing that in or-
der for the event c to occur a has to have occurred
before.

a+ b

ca � db

a b

c d

Fig. 4. To the left an MPPN model, and to the right the

corresponding ordinary Petri net model with explicit

places for the alternative.

2

3. ROUTING SPECIFICATIONS AND

RESOURCES

In this section a formal description of the di�erent

building blocks in a resource booking system is

presented. These building blocks are a set of

resource models, a set of routing speci�cations and

a controller, which synchronizes the individual

objects utilization of the shared resources.

Routing speci�cation The routing speci�cation

Si describes which operations a particular object

is to undergo and the sequence these operations

are to execute. For each operation it is speci-

�ed what resource or which resources that are

required. The routing speci�cation also describes

whether there are alternative resources. The rout-

ing speci�cation may be described on two levels:

� a high level routing speci�cation (HRS) that

describes which operations an object are to

undergo, in which order these operations are

to be executed, and which resource(s) that

may be used for each individual operation.

� a booking and unbooking speci�cation, which

describes on a more detailed level how the

shared resources are to be booked and un-

booked, based on the HRS, to obtain the

desired route through the resource system.

Resource model The resources may be modeled

in several di�erent ways. Here they are modeled

with only two events; the booking event and

the unbooking event using parameterized events

which were introduced in Lennartson et al. (1998).
The free parameter x in the general resource

model to the left in Figure 5 is replaced by the

name of the corresponding routing speci�cations

Si in the evaluated to the right in Figure 5.

R
I`

`

b`(S1)

u`(S1)

b`(S2)

u`(S2)

R` b`(x)

u`(x)

Fig. 5. To the left a general resource model with param-

eterized events, and to the right the corresponding

evaluated resource model with index set I` = f1, 2g.

The resource model to the right in Figure 5 is

speci�ed to be used by the routing speci�cations

Si, where i � I`. I` is the index set corresponding to

the routing speci�cations that utilize the resource

R`. The evaluated resource model is then denoted

RI`

`
. To the right in Figure 5 the index set is

I` = f1; 2g.

Controller synthesis The purpose of the con-

troller is to synchronize the objects utilization of

the common, available resources. Unnecessary re-

strictions must be avoided, and as much 
exibility

as possible be given to the system, without danger



of running into blocking states or other forbidden

con�gurations.

As a �rst step to obtain a controller, the param-

eterized resource models are transformed based

on the current routing speci�cations. The trans-

formed resource models are synchronized with the

routing speci�cations. Assume that m speci�ca-

tions S1; : : : ; Sm are given which altogether use n

resources R1; : : : ; Rn. Then the model

S = S1jj : : : jjSm

is a �rst speci�cation of the desired behavior of

the plant

R = RI1

1
jj : : : jjRIn

n

Here jj is CSP's full synchronous composition

(FSC) (Hoare, 1985). Also note that the speci�ca-

tions Si run independently of each other, since our

modeling approach implies that the speci�cation

alphabets are disjunct. The two models R and S

give together what is called the global speci�cation

Ssp = RjjS (1)

This is a �rst candidate for a possible controller

C, and in fact it is a model of the controlled closed

loop system. This model may however be blocking

or noncomplete, (Ramadge and Wonham, 1987).

The �rst aspect has to do with liveness and the

second one is related to uncontrollable events,

which we do not consider in this paper.

The global speci�cation Ssp therefore has to be

manipulated to result in an appropriate controller.

This is formally expressed by the operator NB,

which removes blocking states from Ssp to make

it nonblocking. The synthesized controller is now

expressed as

C = NB(Ssp) =NB(R
I1

1
jj : : : jjRIn

n jjS1jj : : : jjSm) (2)

4. BINARY DECISION DIAGRAMS

Symbolic model checkers based on Binary De-

cision Diagrams (BDDs) have been used to au-

tomatically verify properties of systems with as

many as 10120 states (Burch et al., 1991).

BDDs are a very common data structure for

representing sets and functions/relations on �nite

domains. A BDD is an acyclic IF-THEN-ELSE

digraph on a set of Boolean variables with two

terminal nodes zero and one.

4.1 BDDs for controller synthesis

Based on the resource booking problem, with

the global speci�cation Ssp 1, the boolean state

vector s is composed of many partial boolean state

vectors:

s = hs0; : : : ; sn; r0; : : : ; rmi (3)

where sj is the state vector for the sub-model

representing routing speci�cation j, and rk is the

state vector for resource k (Vahidi et al., 2001).

The model used in this paper is a simpli�ed

Boolean function model hI; T i, where I(s) is true

i� s is an initial state. T (s; s
0

) is true i� there

exists one or more transitions from s to s
0

.

The initial states I(s)

I(s) = hI(s0); : : : ; I(sn); I(r0); : : : ; I(rm)i

implies that all objects are ready to start and that

all resources are free and may be booked. The

marked states M(s)

M(s) = hM(s0); : : : ;M(sn);M(r0); : : : ;M(rm)i

assumes that all objects are �nished and the

resources are back to there initial state. The

marked states may be seen as �nal or desired
states.

5. CONVERTING MPPNS INTO BDDS

In order to convert the MPPN models into re-

lations and BDDs it is important to keep the

number of required boolean state variables to a

minimum, to ensure a eÆcient BDD representa-

tion (Bloom et al., 1997). This implies that it is
better to have few large models with large number

of states then many small models. For instance,

a small model involving �ve states has to be

modeled by three boolean variables. On the other

hand a model involving 127 states only requires six

variables. This means that only two small models

with a total of states states requires the same

number of variables as one large model with 127

states.

In the resource booking system there may be

alternative shared resources that may be booked

by a number of routing speci�cations. It is then

necessary to know which resource that was booked

by which routing speci�cation. Alternative, may

be speci�ed either in the resource model or in the

routing speci�cation.

If many resources are shared by a smaller number

of routing speci�cations it may be advantageous



to specify, alternative, in the routing speci�ca-

tions with explicit states rather then the resource

model. The resource model will then only involve

two states free and booked, see to the right in Fig-

ure 5. It is only in exceptional cases advantageous

to model alternative in the resource models as to

the left in Figure 5.

5.1 Converting MPPNs into ordinary PNs

Alternative bookin/unbooking In this example

there is an object that is to undergo two oper-

ations.

S1

Op1(R1 +R2)

Op2(R3 +R4)

b1 + b2

b3 + b4&(u
b1

1 � u
b2

2 )

ub33 � ub44

S1

Fig. 6. Routing speci�cation for an alternative resource

booking sequence, represented as an High level Rout-

ing Speci�cation (HRS) to the left and to the right

as an MPPN with booking/unbooking events.

Operation Op1 require either resource R1 or R2

and operation Op2 requires either resource R3

or R4. In Figure 6 a routing speci�cation S1
is represented both as an High level Routing

Speci�cation (HRS), to the left, and an MPPN

with booking/unbooking events, to the right.

The resource booking sequence described in Fig-

ure 6 represented as an MPPN model is converted

into a booking/unbooking model represented as

an ordinary Petri net in Figure 7. This is formally

done using the join operator together with the

condition event.

S1

b1 b3

b3&u1

b3&u2

u3

b4&u1 b4&u2

u4

b5&u1

b5&u2

u5

Fig. 7. Routing speci�cation for an alternative resource

booking sequence represented as an ordinary Petri

net with explicit places for every alternative.

Operations in arbitrary order In this example

there is an object that is to undergo four oper-

ations. Operation Op1 requires either resource R1

or R2 and operation Op3, Op4 and Op5 requires

resource R3, R4 and R5, respectively. Operation

Op3, Op4 and Op5 are to be executed in arbitrary

order, which is described by the High level Rout-

ing Speci�cation (HRS) to the left in Figure 8.

S1

Op1(R1 + R2)

!
 Opi

5

i = 3

S1

b1 + b2

!
 bi & (
L

u
bj

j
+
P

u
bk

k
)

5 2 5

i = 3 j = 1 k = 3

ub33 � ub44 � ub55

Fig. 8. Routing speci�cation for an alternative and ar-

bitrary resource booking sequence, represented as an

HRS to the left and to the right as an MPPN with

booking/unbooking events.

In the second transition in the MPPN model in

Figure 8 the arbitrary booking of resources along

with the unbooking of the previously booked

resource is described.

The MPPN model to the right in Figure 8 is for-

mally converted into a booking/unbooking model

represented as an ordinary Petri net in Figure 9

with explicit places for each alternative.

Note that the formal description in Figure 8 do

not result in an Petri net model with minimal

number of states. When converting an arbitrary

order transition into an ordinary Petri net de-

scription using the suggested formalism it results

in n duplicated states, where n is the number of

operations that are to be executed in arbitrary

order. This is not a big problem due to what was

discussed in the beginning of this Section.

6. CONTROLLER SYNTHESIS

The idea behind a Discrete Event System Con-

troller is to enable and disable events in a system,

and in this way force the closed loop system to

execute a certain way since disabling some events

will remove some execution paths. A common

application is to disable all events which may lead

to a blocking state or a path leading to a blocking

state via uncontrollable events.

To generate a controller the �rst thing to do is

therefore to �nd a set of blocking states. Since

we in this paper only consider controllable events,

this only require reachability tests in order to �nd

undesirable states.

Backword reachability is used in the synthesis

procedure in order to verify which states that are



S1

b1 b2

b3&u1

b3&u2

b4&u3 b5&u3

b5&u4 b4&u5

u5 u4

b4&u1 b4&u2

b5&u4 b3&u4

b3&u5 b5&u3

u3 u5

b5&u1

b5&u2

b4&u5

b4&u3

b4&u3

b3&u4

u4 u3

Fig. 9. Routing speci�cation for an alternative and ar-

bitrary represented resource booking sequence as an

ordinary Petri net with explicit places for every al-

ternative.

visited in a path that ends in a marked state and

may be expressed as:

B0(s) =M

Bk+1(s) =Rk(s) _ (9s
0

: T (s; s
0

) ^ Bk(s
0

))

The backward reachability algorithm will answer

with a set N which contains all non-blocking

states. The Controller is the expressed as

Tcontroller(s; s
0

) = T (s; s
0

) ^N(s
0

)

which is the BDD representation of 2. With the

suggested speci�cation representation it is not

required to model the resources which gives a

reduction of required variables. This may together

with smoothing result in an eÆcient calculation of

a controller (Vahidi et al., 2001).

7. CONCLUSION

A combination of Petri nets and process algebra

is introduced as speci�cation and modeling lan-

guage for general resource booking problems. The

Mixed Process algebra Petri Net (MPPN) implies

a compact representation of complex systems.

Process operators have been introduced in order

to formally convert the MPPN models into ordi-

nary Petri nets. These Petri net models are eÆ-

ciently represented as Binary Decision Diagrams

and used for synchronization and Controller syn-

thesis. With this representation it is not required

to model the resources which gives a reduction of

required variables.
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