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Abstract: ARMA modeling of many economic time series leads to processes with heavy -
tailed marginal distribution. We present methods of estimating the parameters of such
processes. Asymptotic properties of the full information maximum likelihood and partially
adaptive estimates are discussed. We give an asymptotic description of the estimation error
process in both cases. The results are generalizations of (Philips, 1994) and (Gerencsér, 1990).
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1. INTRODUCTION

It has long been known that least squares (LS) es-
timates of ARMA parameters is not efficient if the
distribution of the error term is not normal, and even
if it is normal, LS is very sensible to the presence of
outliers. Several methods of robust estimation have
been proposed as alternatives to least squares which
are asymptotically more efficient than LS. Most of
these estimation procedures are special cases ofM -
estimation, differing only in the choice of the partic-
ular score function. For example, (Tikuet al., 2000)
consider a transformation of Student’st distribution,
(Goldfeld and Quandt, 1981) uses a generalization of
the Laplace distribution, and (McDonald, 1989) intro-
duces the generalizedt distribution, which includes
many other distributions as special or limiting cases.

In these papers the authors do not assume any par-
ticular knowledge of the marginal distribution of the
process or the distribution of the innovation pro-
cess. On the other hand, it is quite a frequent situ-
ation that one of these distributions is known to be-

long to a parameterized family of distributions. In
(Li and McLeod, 1988) the authors examine ARMA
processes with gamma and log - normal innovations,
and mention that these distributions may arise in hy-
drology in connection with daily precipitation, while
(Abraham and Balakrishna, 1999) describes statisti-
cal inference on autoregressive processes with inverse
Gaussian marginal distributions in their study that had
been motivated by problems in lifetime models. We
should also mention the recent results of (Barndorff-
Nielsen, 1977), (Eberlein and Keller, 1995), (Eberlein
et al., 1998) and (Eberlein, 1999) concerning the dis-
tribution of daily stock returns. The results of a sur-
vey carried out along the same line, examining the
marginal distribution of shares traded on the Budapest
Stock Exchange, are shown in Figures 1, 2 and 3.

If the distribution of the innovation process is known,
then maximum likelihood (ML) estimation of the
ARMA parameters can be carried out, and this esti-
mate is asymptotically more efficient than LS. In most
cases however, the true value of the parameter describ-
ing the distribution of the innovation is unknown and
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Figure 1. Daily returns of MOL, and fitted normal and
hyperbolic densities.
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Figure 2. Standard normal qq - plot.
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Figure 3. Fitted hyperbolic qq - plot.

has to be estimated too. In (Li and McLeod, 1988))
the authors describe the properties of the simultane-
ous or full information maximum likelihood(FIML)
estimation (cf. also (McDonald and Xu, 1994)), while
(Philips, 1994) proposes an iterative orpartially adap-
tive estimation method, in which the ML problem is
decoupled into two separate problems: the estimation
of the system parameters and the estimation of the
unknown parameters in the distribution of the innova-
tion. This method goes back to (Beran, 1976). How-

ever, this latter approach is carried out as a version
of M - estimation, with a score function that is a mix-
ture of zero mean normals. Both of these estimates
are shown to be

√
N consistent and asymptotically

normal.

The aim of the present paper is to generalize a result of
(Gerencsér, 1990), concerning the rate of convergence
of the LS orprediction errorestimate of ARMA pa-
rameters, to the case of ML estimates. The prediction
error process is shown to be of orderOM

(
N−1

)
. This

result holds for both FIML and partially adaptive es-
timates. We also prove that the asymptotic covariance
matrix of the partially adaptive estimate is equal to that
of the ML estimate with known distribution parame-
ters. The proposed method, with slight modification, is
applicable also for misspecified models, in which the
distributions that we consider does not contain the true
distribution of the innovation. The analysis is carried
out using the techniques of (Gerencsér, 1989).

2. NOTATION AND ASSUMPTIONS

Let y = (yn), n = 0,±1,±2, . . . be a second order
stationary ARMA(p, q) process defined by the fol-
lowing difference equation:

yn + a∗1yn−1 + · · ·+ a∗pyn−p

= en + c∗1en−1 + · · ·+ c∗qen−q. (1)

Let q−1 denote the backward shift operator acting as
(q−1y)n = yn−1 and let us define

A∗(q−1) =
p∑

i=0

a∗i q
−i,

C∗(q−1) =
q∑

i=0

c∗i q
−i,

with a∗0 = c∗0 = 1. Then (1) can be written as
A∗y = C∗e. Replacingq by the complex variablez
we get the polynomialsA∗(z−1) andC∗(z−1).

The following condition is standard in the system
identification literature (cf. (Caines, 1988), (Hannan
and Deistler, 1988), (Ljung, 1987) and (Söderström
and Stoica, 1989)).

Condition 1. The two polynomials A∗(z−1) and
C∗(z−1) are relative prime, and all of their roots have
absolute value strictly less than one, i.e.A∗(z−1) and
C∗(z−1) are stable.

Condition 2. The processe = (en) consists of a se-
quence of independent, identically distributed (i.i.d.)
random variables with zero mean, finite variance and
probability distribution functionf(x, η∗), where the
parameter vectorη∗ is in an open domainF ⊆ Rd.
We assume furthermore that

i. log f is three times differentiable in bothx and
η, and its third derivative is locally Lipschitz -



continuous with a Lipschitz constantK(x, η) that
is polynomially increasing in both of its variables,

ii. f satisfies certain standard regularity conditions
(conditions RR in (Borovkov, 1998), Chapter
24.).

Among others, Condition 1 ensures that a wide sense
stationary solution of (1) exists, while Condition
2 is introduced to enable us to use the results of
(Gerencsér, 1989).

Remark 1.It is easy to verify, using a Taylor - expan-
sion, that all the derivatives oflog f up to the order
three satisfy the conditions that we imposed on the
third derivative, and these derivatives are also poly-
nomially increasing. This consequence of Condition 2
will be necessary in the proof of Theorem 7.

3. ESTIMATION OF THE ARMA PARAMETERS

Let us introduce the notationθ∗ = (a∗1, . . . , a
∗
p, c

∗
1

. . . , c∗q)
T . The maximum likelihood (or ML) estima-

tion of θ∗ – assuming thatη∗ is known – can be carried
out using ideas which are well - known in the engineer-
ing literature (cf. (Caines, 1988) and (Ljung, 1987)).
This can roughly be described as follows. Suppose
there exist a known compact domainD0 in Rp+q such
that θ∗ ∈ intD0 ⊆ D, whereD is the (open) set of
thoseθ - s in Rp+q for which Condition 1 is satisfied.
For a givenθ ∈ D0, let εn(θ) denote the estimated
prediction error process defined as

ε = (A/C) y, n ≥ 0, (2)

using zero initial conditions. Then find the valueθ̂N

of θ such that

VN (θ) = −
N∑

n=1

log f (εn(θ), η∗) (3)

is minimized inD0. The details of this minimization
procedure will be described below. Define

W (θ) = lim
n→∞

E (− log f(εn(θ), η∗)) .

It is easy to see that the equation

∂

∂θ
W (θ) = Wθ(θ) = 0 (4)

is solved byθ = θ∗.

Condition 3. Equation (4) has a unique solution in
D0, and the Hessian - matrixWθθ(θ∗) is nonsingular.

This condition is in general difficult to verify, but for
Gaussian processes it has been verified in (Åström and
Söderström, 1974).

We define the maximum likelihood estimateθ̂N of θ∗

as the solution of the equation
N∑

n=1

∂

∂θ
log f(εn(θ), η∗) = 0 (5)

in D0 if such a solution exists, and an arbitrary point
in D0, ensuring only that̂θN is measurable, if such
a solution does not exists or there are more than one
solutions. The following result describes the asymp-
totic behaviour of this estimate. Here,ΣML denotes
the asymptotic covariance matrix ofθ̂N , i.e.

ΣML = lim
N→∞

NE

((
θ̂N − θ∗

)(
θ̂N − θ∗

)T
)

.

Theorem 2.Assume that Conditions 1, 2 and 3 are
satisfied. Then

θ̂N − θ∗

= −W−1
θθ (θ∗)

1
N

N∑
n=1

∂

∂θ
log f(εn(θ), η∗)

∣∣∣∣
θ=θ∗

+OM (N−1). (6)

For the asymptotic covariance matrix ofθ̂N , we have

ΣML = W−1
θθ (θ∗)P ∗(WT

θθ(θ
∗))−1, (7)

whereP ∗ is given by

P ∗ = lim
m→∞

E

((
∂

∂θ
log f(εm(θ), η∗)

)T

×
(

∂

∂θ
log f(εm(θ), η∗)

) ∣∣∣∣∣
θ=θ∗

)
. (8)

PROOF. Equation (6) is a special case of Theorem
A3 of the Appendix (see also Remark A4). Equation
(7) is a direct consequence of (6).

Remark 3.The analogous results for the prediction
error (PE) estimatẽθ of θ∗, defined as the value that
minimizes

VN (θ) =
N∑

n=1

ε2
n(θ)

in D0 were proved in (Gerencsér, 1990) (cf. also
(Caines, 1988) for more on the prediction error
method).

Let ΣPE denote the asymptotic covariance matrix of
the prediction error estimation. It is well known that
thatΣPE = (R∗)−1(σ∗)2 with

R∗ = lim
n→∞

E
[
εT

θn(θ∗)εθn(θ∗)
]
.

The following Lemma gives us a similar formula for
ΣML.

Lemma 4.Suppose Condition 1, 2 and 3 are satisfied,
then the asymptotic covariance matrix of the ML
estimation is

ΣML = (R∗)−1µ−1, (9)

with the notation

µ = lim
n→∞

E

(
f ′(en)
f(en)

)2

,

with the simplified notationf(x) = f(x, η∗).



Remark 5.The quantityµ introduced above is the
Fisher - information of the densityf with respect to
the location parameter.

PROOF. Defineh = f ′/f . For the matrixP ∗ defined
under (8), we have

P ∗ = lim
m→∞

E
[
εT

θ,m(θ∗)εθ,m(θ∗)
]
Eh2(em) = R∗µ.

(10)
Here we used the fact thatεn(θ∗) = en + OM (αn)
with some0 < α < 1 and thatem is independent
from εθ,m.

Similarly, Wθθ(θ∗) equals

− lim
n→∞

E

(
f ′′(εn(θ∗))
f(εn(θ∗))

εT
θ,n(θ∗)εθ,n(θ∗)

− f ′(εn(θ∗))
f2(εn(θ∗))

f ′(εn(θ∗))εT
θ,n(θ∗)εθ,n(θ∗)

+
f ′(εn(θ∗))
f(εn(θ∗))

εθθ,n(θ∗)
)

.

Sinceen is independent fromεθθ,n(θ∗), the last term
in this equation is equal to zero, for we have due to the
regularity conditions imposed onf

Eh(en) =
∫ ∞

−∞

f ′(x)
f(x)

f(x)dx =
∫ ∞

−∞
f ′(x)dx = 0,

while for the first term we get

lim
n→∞

E

(
f ′′(εn(θ∗))
f(εn(θ∗))

εT
θ,n(θ∗)εθ,n(θ∗)

)
= R∗

∫ ∞

−∞

f ′′(x)
f(x)

f(x)dx = 0,

using again the regularity off . Thus we get, using the
same arguments

Wθθ(θ∗) = Eh2(en)R∗ = R∗µ, (11)

and (9) follows from (7).

4. ESTIMATION WITH UNKNOWN
DISTRIBUTION PARAMETERS

A more realistic situation is when the parameter vec-
tor η describing the distribution of theen’s and the
system parameterθ are both unknown and to be es-
timated from data. This estimation can be carried out
in two ways, by using the„full information maximum
likelihood” (FIML) method, or by using an iterative,
or „partially adaptive” method (see (Beran, 1976),
(McDonald and Xu, 1994) and (Philips, 1994)). In
this section we concentrate on the first one, while the
iterative estimation is discussed in the next section.

Let us introduce the notationνT = (θT , ηT ) and
ν∗T = (θ∗T , η∗T ). The FIML method gives us an
estimateν̂N of ν∗ in essentially the same way as the
estimatêθN was given in the preceding section. Define

VN (ν) = −
N∑

n=1

log f(εn(θ), η),

W (ν) = − lim
n→∞

E (log f(εn(θ), η)) . (12)

Let F denote the interior of the set of thoseη - s in
Rd for whichf(x, η) is defined and suppose that there
exist a known compact domainF0 in Rd such that
η∗ ∈ intF0 ⊆ F .

Condition 4. ν∗ is the unique solution of the equation
Wν(ν) = 0 in D0 × F0, andWνν(ν∗) is a positive
definite matrix.

The FIML estimateν̂N = (θ̂N , η̂N ) of ν∗ is the
solution of the equation

Vν,N = −
N∑

n=1

∂

∂ν
log f(εn(θ), η) = 0, (13)

in D0 × F0, if such a solution exists, and an arbitrary
point inD0×F0, ensuring only that̂νN is measurable,
if such a solution does not exists or there are more than
one solutions. The following lemma describes a very
useful property of this estimate, which is proved by
calculating the asymptotic covariance matrix ofν̂N .

Lemma 6.Suppose Condition 1, 2 and 4 are satisfied.
Then the estimateŝθN and η̂N are asymptotically
uncorrelated.

PROOF. The statement is a straightforward conse-
quence of Theorem A3, but the calculations are quite
cumbersome, therefore we present only the final form
of the asymptotic covariance matrix ofν̂N , which we
denote byΣ. With ∆ defined as

∆ = − lim
n→∞

E

(
fηη(en, η∗)
f(en, η∗)

−
fT

η (en, η∗)fη(en, η∗)
f2(en, η∗)

)

= lim
n→∞

E

(
fT

η (en, η∗)fη(en, η∗)
f2(en, η∗)

)
,

we have

Σ =
(

(R∗)−1
µ−1 0

0 ∆

)
. (14)

The fact that the FIML estimates of the system param-
eterθ∗ and the distribution parameterη∗ are uncorre-
lated suggests (following Philips, (Philips, 1994)), that
if we are initially given a ”sufficiently good” estimate
of the distribution parameters, and we use this value
instead of the true parameter vectorη∗ to estimate the
system parameters as in Section 2, then the finalθ̂ will
also have ”good” properties. This is described in the
next section.



5. PARTIALLY ADAPTIVE ESTIMATION OF
ARMA PARAMETERS

Let us be given an initial estimatêηN of η∗ which
satisfies

η̂N − η∗ = OM

(
N−1/2

)
. (15)

We assume also that̂ηN ∈ F0, and therefore we can
define the partially adaptive estimateθN (η̂N ) of θ∗ as
the solution of the equation

VN (θ) = −
N∑

n=1

∂

∂θ
log f(εn(θ), η̂N ) = 0, (16)

if such a solution exists, and an arbitrary point inD0

if such a solution does not exist. The next theorem
describes the asymptotic behaviour of this estimate.

Theorem 7.Under Condition 1, 2 and 4 we have

θN (η̂N )− θ∗

= −(R∗)−1µ−1 1
N

N∑
n=1

∂

∂θ
log f(εn(θ), η∗)

∣∣∣
θ=θ∗

+OM (N−1). (17)

PROOF. For a fixedη ∈ F we may write, due to
Theorem A3 and Remark A4

θ(η)− θ∗

= −W−1
θθ (θ, η)

∣∣∣
θ=θ∗

1
N

N∑
n=1

∂

∂θ
log (f(εn(θ), η)

∣∣∣
θ=θ∗

+OM (N−1), (18)

with W (θ, η) defied as in (12). LetF ′ ⊆ F0 be
a compact domain such thatη∗ ∈ F ′ and for any
η ∈ F ′ the matrixWθθ(θ∗, η) is bounded away from
singularity, or more precisely

sup
η∈F ′

‖W−1
θθ (θ∗, η)‖ ≤ K < ∞. (19)

The existence of such anF ′ is justified by Condition 4
and the continuity of the functionWθθ(θ∗, η) in η. We
modify our initial estimatêηN so that̂ηN ∈ F ′. Let us
introduce the notation

gn(θ, η) =
∂

∂θ
log(f(εn(θ), η)).

Since the process(gn(θ∗, η)) is L - mixing (uniformly
in η ∈ F ′) by Theorem A1, it follows from Theorem
A2 that

1
N

N∑
n=1

∂

∂θ
log (f(εn(θ), η))

∣∣∣
θ=θ∗

= OM

(
N−1/2

)
,

(20)
uniformly in η ∈ E′. Furthermore, it follows from
(15) and (19) that

‖W−1
θθ (θ∗, η̂N )−W−1

θθ (θ∗, η∗)‖ = OM

(
N−1/2

)
,

(21)
except for an event of probabilityOM

(
N−1/2

)
. If we

truncateW−1
θθ (θ∗, η̂N ) on this event to be the identity

matrix of appropriate dimension, then we see from
(20) and (21) that the asymptotic behaviour of the
estimation errorθN (η̂N ) − θ∗ is – up to an error of
orderOM (N−1) – determined by the sum in (18), that
is

θN (η̂N )− θ∗

= −(R∗)−1µ−1 1
N

N∑
n=1

gn(θ∗, η̂N )

+OM (N−1). (22)

To handle this expression we use the Taylor - expan-
sion ofgn(θ∗, η) aroundη∗, which is

gn(θ∗, η̂N )

= gn(θ∗, η∗) +
∂gn

∂η
(θ∗, η∗) (η̂N − η) + OM (N−1).

The statement of the theorem now follows from (15)
and from Theorem A1 and A2 applied to the process
un = ∂gn

∂η (θ∗, η∗).

Remark 8.Comparing (17) and (24) we see that the
asymptotic covariance matrix of the partially adaptive
estimator ofθ∗ is equal to the upper - left diagonal
block of the FIML estimator ofν∗.

The following lemma describes one of the many pos-
sible methods that one can obtain an initial estimation
η̂ satisfying (15).

Lemma 9.Let θ̃N denote the PE estimator ofθ, and
let η̂N be the solution of

VN (η) =
1
N

N∑
n=1

∂

∂η
log f(εn(θ̃N ), η) = 0. (23)

Thenη̂N satisfies (15).

PROOF. The proof is similar to that of Theorem A2.

6. CONCLUSION

A strong approximation result for the maximum -
likelihood estimation of non - Gaussian ARMA pro-
cesses has been presented, which is a direct gener-
alization of the results of (Gerencsér, 1990). Further
more we have developed a computationally efficient
method to get a statistically efficient estimator of the
system parameters. The application of these results for
quatifying the error of adaptive predictors, following
(Gerencsér, 1994) is under progress.
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9. APPENDIX

For the definition ofM - boundedness,L - mixing and
some related properties the reader is asked to consult
(Gerencsér, 1989) and (Gerencsér, 1990).

Theorem A1.Let (xn) be anL - mixing process with
respect to(Fn,Fn

+), and letf(x) be a Lipschitz -
continuous function. Then the process(yn) = (f(xn))
is alsoL - mixing with respect to(Fn,Fn

+).

PROOF. Let us definex+
n,n−τ = E

(
xn|F+

n−τ

)
and

y++
n,n−τ = f(x+

n,n−τ ). LetK be the Lipschitz constant
of f . Then we have

γq(τ, y) ≤ 2E1/q
∣∣yn − y++

n,n−τ

∣∣q
= 2E1/q

∣∣f(xn)− f(x+
n,n−τ )

∣∣q ≤ 2Kγq(x, τ),

by the previous lemma, and the claim follows by
definition.

Define

∆x/∆αθ = |xn(θ + h)− xn(θ)| /|h|α

for n ≥ 0, θ 6= θ + h ∈ D with 0 < α ≤ 1.

Theorem A2.Suppose that the processes(xn(θ)) and
∆x/∆θ are bothL - mixing uniformly inθ, θ+h ∈ D,
andExn(θ) = 0 for all n ≥ 0 andθ ∈ D. Then, for a
compact domainD0 ⊆ intD

sup
θ∈D0

∣∣∣∣∣ 1
N

N∑
n=1

xn(θ)

∣∣∣∣∣ = OM

(
N−1/2

)
.

Theorem A3.Let the process(yn) be given by (1), and
assume that Conditions 1, 2 and 4 are satisfied. Then
we have

ν̂N − ν∗

= −W−1
νν (ν∗)

1
N

N∑
n=1

∂

∂ν
log f(εn(θ), η)

∣∣∣∣
(θ∗,η∗)

+OM (N−1). (24)

PROOF. The proof of this result is analogous to the
proof of Theorem 2.1 of (Gerencsér, 1990) and is
omitted for the sake of brevity.

Remark A4.It is easy to see that the statements of
equation (6) and (18) are consequences of this re-
sult. Indeed, since by Lemma 6 the two components
of ν̂N = (θ̂N , ν̂N ) are asymptotically uncorrelated,
equation (24) holds ”componentwise”, and this is
equivalent to saying that (18) is true for anyη ∈ F0,
and (6) is (18) withη = η∗.


