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Abstract: ARMA modeling of many economic time series leads to processes with heavy -
tailed marginal distribution. We present methods of estimating the parameters of such
processes. Asymptotic properties of the full information maximum likelihood and partially
adaptive estimates are discussed. We give an asymptotic description of the estimation error
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1. INTRODUCTION long to a parameterized family of distributions. In
(Li and McLeod, 1988) the authors examine ARMA
processes with gamma and log - normal innovations,
If[ has long been known that I_east squares (ITS) €S-and mention that these distributions may arise in hy-
timates of ARMA parameters is not efficient if the drology in connection with daily precipitation, while

.‘}"?‘T'b“"o” olf the error term 'S,bTOt noLmaI, and ever; (Abraham and Balakrishna, 1999) describes statisti-
! |tl!s norgna, LIS IS vEn:jsenfa s to the _pregenCﬁ O cal inference on autoregressive processes with inverse
outliers. Several methods of robust estimation have 5, ggjan marginal distributions in their study that had

been proposgd as alternatiyeg to least squares Whic%een motivated by problems in lifetime models. We
are asymptotically more efficient than LS. Most of should also mention the recent results of (Barndorff-

the_se e_stima_tion_procedu_res are SPeCia' cased Of Nielsen, 1977), (Eberlein and Keller, 1995), (Eberlein
estimation, dlffe_rmg only in the ch0|ge of the partic- et al, 1998) and (Eberlein, 1999) concerning the dis-
ular score functl?n. Fo_r exafmple, (T'l,el, al._, 20_00) tribution of daily stock returns. The results of a sur-
con|3|?elr a transformation o StudenztadlstrlblL'Jtmr'\, fvey carried out along the same line, examining the
(Goldfeld and_ annqt' 1981) uses a genera lza_tlon o marginal distribution of shares traded on the Budapest
the Laplace distribution, and (McDonald, 1989) intro- g\ Exchange, are shown in Figures 1, 2 and 3
duces the generalizeddistribution, which includes o ' _ . ' _ '
many other distributions as special or limiting cases. [f the distribution of the innovation process is known,
then maximum likelihood (ML) estimation of the
In these papers the authors do not assume any parapya parameters can be carried out, and this esti-
ticular knowledge _Of t_he _marglnal dls_tr|but|o_n of the mate is asymptotically more efficient than LS. In most
process or the distribution of the innovation pro- .,seq however, the true value of the parameter describ-

cess. On the other hand, it is quite a frequent situ-j, e distribution of the innovation is unknown and
ation that one of these distributions is known to be-
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Figure 1. Daily returns of MOL, and fitted normal and
hyperbolic densities.
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Figure 2. Standard normal qq - plot.
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Figure 3. Fitted hyperbolic qq - plot.

has to be estimated too. In (Li and McLeod, 1988)) ¢
the authors describe the properties of the simultane-

ous orfull information maximum likelihoodFIML)

estimation (cf. also (McDonald and Xu, 1994)), while

(Philips, 1994) proposes an iterativepartially adap-
tive estimation method, in which the ML problem is

decoupled into two separate problems: the estimation

ever, this latter approach is carried out as a version
of M - estimation, with a score function that is a mix-
ture of zero mean normals. Both of these estimates
are shown to be/N consistent and asymptotically
normal.

The aim of the present paper is to generalize a result of
(Gerencsér, 1990), concerning the rate of convergence
of the LS orprediction errorestimate of ARMA pa-
rameters, to the case of ML estimates. The prediction
error process is shown to be of ordey, (N~!). This
result holds for both FIML and partially adaptive es-
timates. We also prove that the asymptotic covariance
matrix of the partially adaptive estimate is equal to that
of the ML estimate with known distribution parame-
ters. The proposed method, with slight modification, is
applicable also for misspecified models, in which the
distributions that we consider does not contain the true
distribution of the innovation. The analysis is carried
out using the techniques of (Gerencsér, 1989).

2. NOTATION AND ASSUMPTIONS

Lety = (yn),n = 0,4+1,+2,... be a second order
stationary ARMA (p, ¢) process defined by the fol-
lowing difference equation:

Yn + a1Yn—1+ -+ ayYn—p

=ent+cien 1+ +Chen g

1)

Let ¢~ ! denote the backward shift operator acting as
(¢*y)n = yn_1 and let us define

P
A*(qil) — Zaquz’
=0

q
C«*(qfl) — Zchfz,
=0

with af = ¢f = 1. Then (1) can be written as
A*y = C*e. Replacingg by the complex variable
we get the polynomialgl*(z~1) andC*(z71).

The following condition is standard in the system
identification literature (cf. (Caines, 1988), (Hannan
and Deistler, 1988), (Ljung, 1987) and (Sdderstrom
and Stoica, 1989)).

Condition 1. The two polynomials A*(z~1) and
C*(2~1) are relative prime, and all of their roots have
absolute value strictly less than one, i4.(z~!) and
*(z71) are stable.

Condition 2. The procesg = (e, ) consists of a se-
guence of independent, identically distributed (i.i.d.)
random variables with zero mean, finite variance and
probability distribution functionf(z,n*), where the
parameter vecton* is in an open domaid C R

We assume furthermore that

of the system parameters and the estimation of the

unknown parameters in the distribution of the innova-
tion. This method goes back to (Beran, 1976). How-

i. log f is three times differentiable in both and
7, and its third derivative is locally Lipschitz -



continuous with a Lipschitz constaht(x, n) that in Dy if such a solution exists, and an arbitrary point
is polynomially increasing in both of its variables, in Dy, ensuring only thaty is measurable, if such

i. f satisfies certain standard regularity conditions a solution does not exists or there are more than one
(conditions RR in (Borovkov, 1998), Chapter solutions. The following result describes the asymp-

24.).

Among others, Condition 1 ensures that a wide sense

stationary solution of (1) exists, while Condition

2 is introduced to enable us to use the results of

(Gerencsér, 1989).

Remark 1.It is easy to verify, using a Taylor - expan-
sion, that all the derivatives dbg f up to the order
three satisfy the conditions that we imposed on the
third derivative, and these derivatives are also poly-
nomially increasing. This consequence of Condition 2
will be necessary in the proof of Theorem 7.

3. ESTIMATION OF THE ARMA PARAMETERS

= (ai,...,ap,c]
..,cq)T. The maximum likelihood (or ML) estima-
tion of 8* — assuming that* is known — can be carried

out using ideas which are well - known in the engineer-

ing literature (cf. (Caines, 1988) and (Ljung, 1987)).

Let us introduce the notatio&*

*

This can roughly be described as follows. Suppose

there exist a known compact domdir in RP4 such
that0* € intDy C D, whereD is the (open) set of
thosed - s in RP*¢ for which Condition 1 is satisfied.
For a givend € D, let¢,(0) denote the estimated
prediction error process defined as

e=(4/C)y, n=0, (2)
using zero initial conditions. Then find the valdg
of 6 such that

N
Vn(0) == log f (en(6),7") ®3)
n=1

is minimized inDg. The details of this minimization
procedure will be described below. Define
W(0) = lim E(—log f(en(6),n"))-
It is easy to see that the equation
0
%W(e) =Wy(0) =0
is solved byp = 6*.

(4)

Condition 3. Equation (4) has a unique solution in
Dy, and the Hessian - matri¥/yy(6*) is nonsingular.

This condition is in general difficult to verify, but for

totic behaviour of this estimate. HerEas 1, denotes
the asymptotic covariance matrix 6f;, i.e.

lim NE ((éN _ 0*) (éN _ 9*)T> .

Theorem 2.Assume that Conditions 1, 2 and 3 are
satisfied. Then

Oy — 0

1L 9
=W 0= =log f(e.(0),n*
99( )N,;ae ng(S()n)eze*
+OM(N7Y). (6)

For the asymptotic covariance matrixg, we have

S =Wy (07)P*(Wye(6%)) 7, 7
whereP* is given by
8 T
P = m@@@E( (39 logf(fm(e),n*))
a *
< (gt ento) ) ) ®)
0=6~

PROOF. Equation (6) is a special case of Theorem
A3 of the Appendix (see also Remark A4). Equation
(7) is a direct consequence of (6).

Remark 3.The analogous results for the prediction
error (PE) estimaté of 6*, defined as the value that
minimizes

N

Vn(0) = 252(9)

n=1
in Dy were proved in (Gerencsér, 1990) (cf. also
(Caines, 1988) for more on the prediction error
method).

Let X pr denote the asymptotic covariance matrix of
the prediction error estimation. It is well known that
thatYpp = (R*)"!(c*)? with

R* = lim E [f,(0%)e0n(67)] -
The following Lemma gives us a similar formula for
EML-

Lemma 4.Suppose Condition 1, 2 and 3 are satisfied,
then the asymptotic covariance matrix of the ML

Gaussian processes it has been verified in (Astrém andgStimation is

Soderstrom, 1974).
We define the maximum likelihood estimdtg of 6*
as the solution of the equation

> 9
> g loa fEn(0),1) =0 5)
n=1

Sz = (R ut,
with the notation

C)

with the simplified notatiorf (x) = f(z,n*).



Remark 5.The quantity . introduced above is the

Fisher - information of the density with respect to Vn(v)=— Z log f(e,(0),n)
the location parameter. =
W(v) =— lim E(log f(en(0),n)).  (12)

n—oo

PROOF. Defineh = f’/f. For the matrixP* defined

under (8), we have Let F' denote the interior of the set of thoges in

R for which f(z,n) is defined and suppose that there
P*= lim E [gam(g*)gg m (0 )] Eh?(en) = R*pu. exist a known compact domaif, in R? such that
m— o0 (10) n* € intFy C F.

Here we used the fact that, (6*) = e, + Op(a™)
with some0 < o < 1 and thate,, is independent
fromeg .

Condition 4. v* is the unique solution of the equation
W,(v) = 0in Dy x Fy, andW,,,(v*) is a positive
definite matrix.

Similarly, Wy, (0*) equals

" * . ~ . N ~ %
 lm E (f (en(0 ))Egn(9*)€9,n(9*) The FIML estimatedy = (On,7n) of v* is the

n—0c0 fen(0%)) solution of the equation
F'(en(67)) N (g* !
N ))f@n(e Debn(0)e0.n(0%) Z g Fe (B — 0. (13)
+ (57( ))690/ (9*)) .
flen(6%)) "

in Dy x Fy, if such a solution exists, and an arbitrary
Sincee,, is independent fromag, ,,(6*), the last term  pointin D, x Fy, ensuring only thaty is measurable,
in this equation is equal to zero, for we have due to the if such a solution does not exists or there are more than

regularity conditions imposed oh one solutions. The following lemma describes a very
useful property of this estimate, which is proved by
Eh(e,) = f / f(z calculating the asymptotic covariance matrixgf.
while for the first term we get Lemma 6.Suppose Condition 1, 2 and 4 are satisfied.
Then the estimate$y and 7y are asymptotically
. [ En(0) 7 s . ) uncorrelated.
lim F | ———¢5 ,,(0")e0.n (0
ol ( f(En(e*)) 9,n( ) 0 L( )
oo 1
- R* f (x)f(gj)dx =0, PROOF. The statement is a straightforward conse-
— f(2) guence of Theorem A3, but the calculations are quite
using again the regularity of. Thus we get, using the cumbersome, therefore we present only the final form
same arguments of the asymptotic covariance matrix of;, which we
denote byy. With A defined as
Woo(0*) = Eh*(en)R* = R*pu, (11)
. fnn(evu 77*)
and (9) follows from (7). A=—lim F| —F—F——"--
( ) ( ) n—0o0 ( f(en,??*)
I ens ) fulen )
f2(en7 77*)
4, ESTIMATION WITH UNKNOWN
DISTRIBUTION PARAMETERS b E o (ens ) folens )
 n—oo f2(€n7 Ti*) 7

A more realistic situation is when the parameter vec-
tor n describing the distribution of the,’s and the ~ we have

system parametet are both unknown and to be es- 5 ((R*)_1 pt 0)
timated from data. This estimation can be carried out - 0 A)
in two ways, by using thefull information maximum
likelihood” (FIML) method, or by using an iterative,
or ,partially adaptive” method (see (Beran, 1976),
(McDonald and Xu, 1994) and (Philips, 1994)). In
this section we concentrate on the first one, while the
iterative estimation is discussed in the next section.

(14)

The fact that the FIML estimates of the system param-
eter@* and the distribution parametet are uncorre-
lated suggests (following Philips, (Philips, 1994)), that
if we are initially given a "sufficiently good” estimate
of the distribution parameters, and we use this value
Let us introduce the notation” = (67,»T) and instead of the true parameter vectgrto estimate the
T = (0*T,*T). The FIML method gives us an  system parameters as in Section 2, then the fimell
estimatery of v* in essentially the same way as the also have "good” properties. This is described in the
estimate)y was given in the preceding section. Define next section.



5. PARTIALLY ADAPTIVE ESTIMATION OF
ARMA PARAMETERS

Let us be given an initial estimatgy of n* which

satisfies
N —n" =0n (N71/2> .

We assume also thgtv € Fy, and therefore we can
define the partially adaptive estimatg (1) of 0* as
the solution of the equation

Ny
—;@logﬂen(a),m

if such a solution exists, and an arbitrary pointZig
if such a solution does not exist. The next theorem
describes the asymptotic behaviour of this estimate.

(15)

Vn(0) = )=0, (16)

Theorem 7.Under Condition 1, 2 and 4 we have

On(n) — 6
@ LS Lo a0 )
N £ 00 P g
+O00(N7H). 17)

PROOF. For a fixedn € F we may write, due to
Theorem A3 and Remark A4

O(n) —6*

Y9
= Wil 0m)],_, 5 3 gglos e,
oY), (18)

with W(6,n) defied as in (12). Lett” C F;, be

a compact domain such that € F’ and for any
n € F’ the matrixWyy(6*,n) is bounded away from
singularity, or more precisely

sup [|[W,' (0, m)]| < K < cc. (19)

ner’

The existence of such & is justified by Condition 4
and the continuity of the functioWy, (6*, 1) in 1. We

modify our initial estimatej so thatjy € F’. Letus
introduce the notation

9u(0,1) = V0B (21(0) ).

Since the procesg, (6*,n)) is L - mixing (uniformly
inn € F') by Theorem Al, it follows from Theorem

A2 that
= O (N712),

Z
(20)

uniformly in € E’. Furthermore, it follows from
(15) and (19) that

IWag! (0%, i) = W (0% )| = Ons (N72))
(21)
except for an event of probability,, (N~1/2). If we
truncatelV,,' (9*, 1) on this event to be the identity

log (f

en(0),)) |

6=6*

matrix of appropriate dimension, then we see from
(20) and (21) that the asymptotic behaviour of the
estimation errofy (7x) — 0* is — up to an error of

orderO,; (N 1) —determined by the sum in (18), that

is
On (ﬁzv)*9*
= -t _1N Zgn anN
+Om (N )- (22)

To handle this expression we use the Taylor - expan-
sion of g, (6*,n) aroundn*, which is

gn(o*aﬁN)
4 %nw*,n ) (i — ) + One(N).

The statement of the theorem now follows from (15)
and from Theorem Al and A2 applied to the process
Uy = %(9*,77*).

= gn(07,1")

Remark 8.Comparing (17) and (24) we see that the
asymptotic covariance matrix of the partially adaptive
estimator of* is equal to the upper-left diagonal
block of the FIML estimator of*.

The following lemma describes one of the many pos-
sible methods that one can obtain an initial estimation
7 satisfying (15).

Lemma 9.Let § denote the PE estimator 6f and
let 77y be the solution of

Z

Thenry satisfies (15).

0.

logf (en(On),m) = 0. (23)

PROOF. The proof is similar to that of Theorem A2.

6. CONCLUSION

A strong approximation result for the maximum -
likelihood estimation of non-Gaussian ARMA pro-
cesses has been presented, which is a direct gener-
alization of the results of (Gerencsér, 1990). Further
more we have developed a computationally efficient
method to get a statistically efficient estimator of the
system parameters. The application of these results for
quatifying the error of adaptive predictors, following
(Gerencsér, 1994) is under progress.
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9. APPENDIX

For the definition ofd/ - boundednesd, - mixing and
some related properties the reader is asked to consult
(Gerencsér, 1989) and (Gerencsér, 1990).

Theorem AlLet (z,,) be anL - mixing process with
respect to(3,,3."), and let f(xz) be a Lipschitz-
continuous function. Then the procégs) = (f(z,,))
is alsoL - mixing with respect tds,, g,ﬁ).

PROOF. Let us definer}, . = E (x|, _,) and
yn b= f(z},_,). LetK be the Lipschitz constant
of f. Then we have

,YQ(Ta y) S 2E1/q |yn - y'nqnfr
:2E1/q|f(xn)_f(x+ )|q < QKWQ(I,T),

n,n—Tr
by the previous lemma, and the claim follows by
definition.

++ |f1

Define

Az [A%0 = |zn(0 + h) — 20 (0)] /[R]*
forn>0,0£40+he Dwith) <a <1.
Theorem A2.Suppose that the processes (6)) and
Az /A0 are bothL - mixing uniformly in6, 6+h € D,

andEz,(0) = 0foralln > 0andf € D. Then, for a
compact domai, C intD

— Oumr (N—1/2) .

Theorem A3.Let the proces§y,, ) be given by (1), and
assume that Conditions 1, 2 and 4 are satisfied. Then
we have

ﬁN—V*

DI AR
=-W,, (V )N Z glng(en(a)an)

n=1

+O0p(N7Y).

(6*,m*)
(24)

PROOF. The proof of this result is analogous to the
proof of Theorem 2.1 of (Gerencsér, 1990) and is
omitted for the sake of brevity.

Remark A4.It is easy to see that the statements of
equation (6) and (18) are consequences of this re-
sult. Indeed, since by Lemma 6 the two components
of by = (On,0n) are asymptotically uncorrelated,
equation (24) holds "componentwise”, and this is
equivalent to saying that (18) is true for anye Fy,

and (6) is (18) withy = n*.



