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1. INTRODUCTION

The methodology based on bayesian update of the
probability distribution over the set of possible
models (Havlena et al., 1996) enables description
of a plant by a mixture distribution (Titterington
et al., 1985; Böhm and Kárný, 2001), .

LQ/LQG control algorithm based on such mixture
distribution by a set of parallel models with given
probabilities is developed in this paper. The solu-
tion is given for optimal state feedback controller
in case of measurable state and optimal output
controller if only the outputs of the system are
available.

The outline of the paper is as follows: in Section
2 Bayesian approach to state estimation for a set
of parallel models is formulated in a general way
and implementation based on a bank of Kalman
filters is described.

1 Partially supported by Grant 102/01/0021 of the Grant
Agency of the Czech Republic

In Section 3, optimal state feedback controller is
developed for measurable state of the plant.

In Section 4, optimal output feedback controller
is developed and separation principle is discussed
for the case of mixture distribution model.

2. BAYESIAN APPROACH TO STATE
ESTIMATION

2.1 Process model and state estimation

In this section we will review a process model from
the bayesian viewpoint.

For the design of manipulated input, the knowl-
edge of the process output based on a finite set of
observed input and output data up to time t−1

Dt−1 = {u(1), y(1), . . . , u(t−1), y(t−1)} (1)

is required. It can be described by a set of c.p.d.f.

p
(
y(t)

∣∣Dt−1, u(t)
)

for t = 1, . . . . (2)
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If there exist a finite-dimensional vector variable
x(t) such that

p
(
x(t+1), y(t)

∣∣Dt−1, x(t), u(t)
)
=

= p (x(t+1), y(t)|x(t), u(t)) (3)

i.e. it contains all the relevant information for the
prediction of the process output y(t) and state
x(t+ 1), then it is called the state of the process.

To obtain the predictive c.p.d.f. (2) given as

p
(
y(t)

∣∣Dt−1, u(t)
)
= (4)

=

∫
p (y(t)|x(t), u(t)) p

(
x(t)

∣∣Dt−1
)

dx(t),

the c.p.d.f.

p
(
x(t)

∣∣Dt−1, u(t)
)
= p

(
x(t)

∣∣Dt−1
)

(5)

representing our knowledge about the state of
the process must be also propagated in time.
This c.p.d.f. is called the state estimate. The
condition (5) introduced by (Peterka, 1981) is
called the natural condition of control. It will be
used repeatedly in the following text.

The c.p.d.f. p (y(t)|x(t), u(t)) is defined by the
output (measurement) equation of the state-space
model of the process

y(t) = Cx(t) +Du(t) + e(t), (6)

where e(t) is the measurement noise with known
distribution with zero mean and covariance ma-
trix cov {e(t)} = Γe, independent of the state and
input of the process.

The incorporation of the information contained
in a new pair of data {u(t), y(t)} (the data-update
step of the algorithm) can be described as

p
(
x(t)

∣∣Dt
)
=

p (y(t)|x(t), u(t))

p (y(t) |Dt−1, u(t) )
× (7)

×p
(
x(t)

∣∣Dt−1
)
.

The time-update step of the algorithm, i.e. the
predictive c.p.d.f. p (x(t+1) |Dt ) is given as

p
(
x(t+1)

∣∣Dt
)
= (8)

∫
p
(
x(t+1)

∣∣x(t),Dt
)

p
(
x(t)

∣∣Dt
)

dx(t)

To complete this step, a state development model
defined by the c.p.d.f.

p
(
x(t+1)

∣∣x(t),Dt
)
= (9)

= p (x(t+1)|x(t), u(t), y(t))

which can be obtained from (3) is necessary. The
c.p.d.f. p (x(t+1)|x(t), u(t)) is usually defined by

the state transition equation of the state-space
model of the process

x(t+1) = Ax(t) +Bu(t) + v(t), (10)

where v(t) is the process noise with known dis-
tribution with zero mean and covariance matrtix
cov {v(t)} = Γv, independent of the state and in-
put of the process. The role of the term y(t) in the
condition of (9) is discussed in (Havlena, 1993).

2.2 Multiple state development models

Suppose a set of h alternative state development
models (9) parameterized by the index of active
models m(t) = 1, . . . , h

pi (x(t+1)|x(t), u(t)) = (11)

= p (x(t+1)|x(t), u(t),m(t) = i)

is given. Then several approaches to simultaneous
filtering of the state and detection of the active
model can be developed.

The simplest possibility is to propagate the state
estimates based on the i-th model in parallel and
compute the probability distribution over the set
of models. In this setting, no changes in the ac-
tive model are modeled but the (constant) active
model is classified from the set of candidates.

g g g- -

g g g- -

p1(x(t)|t−1) p1(x(t)|t) p1(x(t+1)|t)

p2(x(t)|t−1) p2(x(t)|t) p2(x(t+1)|t)

Fig. 1. State filtering and model classification with
parallel models

Suppose the initial probability distribution (p.d.)
over the set of candidate models is given

p
(
m(0) = i

∣∣D0
)
= 1/h. (12)

The probabilities αi(t) = p (m(t) = i |Dt ) can be
updated by the data as

p
(
m(t) = i

∣∣Dt
)
∝ p

(
y(t)

∣∣Dt−1, u(t),m(t) = i
)

× p
(
m(t) = i

∣∣Dt−1
)

(13)

where the predictive c.p.d.f. of the output

p
(
y(t)

∣∣Dt−1, u(t),m(t) = i
)

is given by (4), where the c.p.d.f. of the state based
on the i-th model



pi
(
x(t)

∣∣Dt−1
)
= p

(
x(t)

∣∣Dt−1,m(t)− i
)

(14)

=N (x̂i(t|t−1), Pi(t|t−1))

is used (see Fig. 1). The time-update step of the
algorithm given as

p
(
m(t+1) = i

∣∣Dt
)
= p

(
m(t) = i

∣∣Dt
)
(15)

corresponds to a hypothesis that the active model
is not supposed to vary in time. To enable tracking
of the changes in the active model, some form of
obsolete information forgetting or model mixing
(Blom and Bar-Shalom, 1988) has to be intro-
duced. “Total forgetting” can be implemented us-
ing the prior distribution

p
(
m(t) = i

∣∣Dt−1
)
= 1/h (16)

at each step, resulting in maximum likelihood
estimates

p
(
m(t) = i

∣∣Dt
)
∝ (17)

∝ p
(
y(t)

∣∣Dt−1, u(t),m(t) = i
)
.

3. STATE FEEDBACK CONTROLLER

In this section LQ controller for state feedback
based on a set of parallel models with known
probabilities (mixture distribution) and resulting
in ”mixture” form of Riccati equation will be
developed.

Suppose a set of h state development models are
given

pi (x(t+1)|x(t), u(t)) = (18)

= N (Aix(t) +Biu(t),Γvi
(t))

where Γvi
(t) = cov {vi(t)}. Then the state predic-

tion based on the measured state x(t) is

p (x(t+1)|x(t), u(t)) = (19)

=

h∑

i=1

αipi (x(t+1)|x(t), u(t))

Consider a loss function

V (x(t), uN−1
t , t) = E

{
xT (N)Q(N)x(N) (20)

+

N−1∑

τ=t

xT (τ)Q(τ)x(τ) + uT (τ)R(τ)u(τ)
}

where

uN−1
t =

{
u(t), . . . , u(N−1)

}
(21)

and its optimal value

V ∗(x(t), t) = min
uN−1

t

E
{
xT (N)Q(N)x(N) (22)

+
N−1∑

τ=t

xT (τ)Q(τ)x(τ) + uT (τ)R(τ)u(τ)
}

Suppose the state-dependent part of the optimal
value of the cost function is given by a quadratic
form

V ∗(x(t), t) = xT (t)P (t)x(t) + . . . (23)

Then one step of the algorithm of dynamic pro-
gramming, starting with P (N) = Q(N), can be
written as

V ∗(x(t−1), t−1) = (24)

= min
u(t−1)

E
{
xT (t−1)Q(t−1)x(t−1)

+uT (t−1)R(t−1)u(t−1)

+V ∗(X(t), t)
∣∣t−1

}

= min
u(t−1)

E
{
xT (t−1)Q(t−1)x(t−1)

+uT (t−1)R(t−1)u(t−1)

+ E
{
xT (t)P (t)x(t)

∣∣t−1
}}

where the mean can be obtained as

E
{
(xT(t)P (t)x(t)|t−1

}
= (25)

= xT(t−1)
h∑

i=1

αiA
T
i P (t)Aix(t−1)

+ xT(t−1)
h∑

i=1

αiA
T
i P (t)Biu(t−1)

+ uT(t−1)
h∑

i=1

αiB
T
i P (t)Aix(t−1)

+ uT(t−1)
h∑

i=1

αiB
T
i P (t)Biu(t−1)

+

h∑

i=1

αi trace (P (t)Γvi
(t−1))

etc. for t = N − 1, . . . , 1. Using completion of
squares, the minimization (24) results in optimal
control law

u∗(t) =−

(
R(t) +

h∑

i=1

αiB
T
i P (t+1)Bi

)−1

(26)

×
h∑

i=1

αiB
T
i P (t+1)Aix(t)

and the Riccati equation

P (t) =

h∑

i=1

αiA
T
i P (t+1)Ai +Q(t)− (27)



−

(
h∑

i=1

αiA
T
i P (t+1)Bi

)
×

×

(
R(t) +

h∑

i=1

αiB
T
i P (t+1)Bi

)−1

×

×

(
h∑

i=1

αiB
T
i P (t+1)Ai

)

with final condition P (N) = Q(N). The optimal
value of the loss function (22) is

J∗ = V ∗(x(0), 0) = xT (0)P (0)x(0) + (28)

+

N−1∑

t=0

{
h∑

i=1

αitr P (t)Γvi
(t)

}

4. OUTPUT FEEDBACK CONTROLLER

In this section, LQG controller for output feed-
back based on a set of parallel model (mixture
distribution) will be developed and the validity of
separation principle for multiple parallel models
will be investigated. The set of models is restricted
to compatible models, i.e. models with different
parameters within the same structure.

For the output feedback controller, the set of
models available is given by a set of predictive
c.p.d.fs

pi
(
x(t+ 1)|Dt

)
= (29)

= N (x̂i(t+1|t);Rxi
(t+1|t)) .

Then the state prediction based on the measured
data Dt is

p
(
x(t+ 1)|Dt)

)
=

h∑

i=1

αipi
(
x(t+ 1)|Dt

)
(30)

Then a single step of the algorithm of stochastic
dynamic programming can be written as

V ∗(t) =min
u(t)

E
{
xT (t)Q(t)x(t) + (31)

+ uT (t)R(t)u(t) +

+ V ∗(t+1) |Dt−1, u(t)
}

where V ∗(t) is the optimal value of loss function
(20) based on the limited information Dt−1.

Let the backward solution starts for t = N

V ∗(N) = E
{
xT (N)Q(N)x(N) | DN−1

}
(32)

=

h∑

i=1

αix̂
T
i (N |N−1)P (N)x̂i(N |N−1)

+

h∑

i=1

αitr(Q(N)Rxi
(N |N−1).

Let us further continue with evaluation of V ∗(t)
for time t = N−1, . . . , 1

V ∗(t−1) = min
u(t−1)

E
{
xT (t−1)Q(t−1)x(t−1)+(33)

+ uT (t−1)R(t−1)u(t−1)

+

h∑

i=1

αix̂
T
i (t|t−1)P (t)x̂i(t|t−1) +

+

h∑

i=1

αitr Q(t)Rxi
(t|t−1)

∣∣∣Dt−2, u(t−1)
}

The optimal value of the loss function can be
rearranged as

V ∗(t−1) =
h∑

i=1

αitr (Q(t)Rxi
(t|t−1))+ (34)

+ min
u(t−1)

{ h∑

i=1

αix̂
T
i (t|t−1)P (t)x̂i(t|t−1) +

+ uT (t−1)R(t−1)u(t−1)

+E
{
xT (t−1)Q(t−1)x(t−1)

∣∣Dt−2, u(t−1)
}}

The mean in the previous expression equals

E
{
xT(t−1)Q(t−1)x(t−1)|Dt−2, u(t−1)

}
= (35)

=

h∑

i=1

αix̂
T
i (t−1|t−2)Q(t−1)x̂i(t−1|t−2)

+

h∑

i=1

αitr (Q(t−1)Rxi
(t−1|t−2))

and the state estimates x̂i(t|t− 1) are given by
Kalman filters for individual models as

x̂i(t+1|t) =Aix̂i(t|t− 1) +Biu(t) + (36)

+Li(t) (y(t)− Cix̂i(t|t− 1))

Rxi
(t+1|t) =AiRxi

(t|t− 1)AT
i + Γvi

−

−Li(t)CiRxi
(t|t− 1)AT

i

where Kalman gains equal

Li(t) =AiRxi
(t|t− 1)CT

i × (37)

×
(
CiRxi

(t|t− 1)CT
i + Γei

)−1

and the matrices Rxi
(t|t − 1) are the covariance

matrices of state estimation errors.

After the substitution of (35) and (36), the loss
function (34) results in

V ∗(t−1) =
h∑

i=1

αitr (Q(t)Rxi
(t|t−1))+ (38)



+

h∑

i=1

αitr
(
LT
i (t−1)P (t)Li(t−1)Qε(t−1|t−2)

)
+

+ min
u(t−1)

{
uT (t−1)R(t−1)u(t−1) +

+

h∑

i=1

αix̂
T
i (t−1|t−2)Q(t−1)x̂i(t−1|t−2)

+

h∑

i=1

αi (Aix̂i(t−1|t−2) +Biu(t−1))
T

×P (t) (Aix̂i(t−1|t−2) +Biu(t−1))
}

where Qε is the prediction error covariance matrix

Qε(t−1|t−2) = CRxi
(t−1|t−2)CT + Γei

. (39)

Completing the squares the minimization of (38)
results in optimal control law

u∗(t) =−
(
R(t) +

h∑

i=1

αiB
T
i P (t+ 1)Bi

)−1

(40)

×
h∑

i=1

αiB
T
i P (t+ 1)Aix̂i(t|t− 1)

Using state feedback gain matrices

Ki(t) =
(
R(t) +

h∑

j=1

αjB
T
j P (t+ 1)Bj

)−1

(41)

×BT
i P (t+ 1)Ai,

the optimal output feedback control equals

u∗(t) = −
h∑

i=1

αiKi(t) x̂i(t|t− 1) (42)

i.e. it is a convex combination of feedback control
laws for individual models. This result proves
the validity of separation principle, however the
individual control laws (41) cannot be evaluated
independently.

Riccati equation for P (t) is equivalent with the
state feedback case (27) and the optimal value of
quadratic criterion equals

J∗ = V ∗(0) =
h∑

i=1

αix̂
T
i (0)P (0)x̂i(0) + (43)

+
N∑

t=0

h∑

i=1

αi

{
tr Q(t)Rxi

(t|t− 1)

+tr LT
i (t)P (t+ 1)Li(t)Qε(t−1|t−2)

}

where the second term reflects the stochastic input
in the system and the last term the uncertainty of
the state estimate.

Note that each model i can have a different
structure and a different dimension of its state
xi(t).

5. CONCLUSION

In many practical situations a set of multiple
process models valid under different process con-
ditions are available. Using a unified bayesian
framework, the probability distribution over the
set of models can be evaluated.

Then standard LQ/LQG control law can be rigor-
ously designed for plant model given by a mixture
distribution.
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