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Abstract: This paper proposes guaranteed cost design of robust output feedback
controller for continuous linear parametric uncertain systems. Proposed algorithms are
computationally simple and tightly connected with the Lyapunov stability theory and
the LQR optimal state feedback design. The proposed approach allows for prescribing
the structure of the output feedback gain matrix (including the decentralized one) by
the designer. New design method proposed in this paper, exploit genetic algorithm
to design robust controller with guaranteed cost for polytopic linear continuous time
systems. Numerical example is given to illustrate the performance of the proposed
robust controller.
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1. INTRODUCTION

In the excellent survey on static output feedback
controller design in (Syrmos et al,1997 ) is stated
that the static output feedback problem is one
of the most important open questions in con-
trol engineering. Simply stated, the problem is
as follows: given a dynamic system, find a static
output feedback so that the closed loop system
has some desirable characteristics. During the last
two decades numerous papers dealing with the
design of robust output feedback control schemes
have been published ( Benton and Smith, 1999;
El Ghaoui and Balakrishnam, 1994; Imai, 1997;
Iwasaki, Skelton and Geromel, 1994; Kose and
Jabbari, 1999; Kozák, 1995; Li Yu and Jian Chu,
1999; Xu and Darouch, 1998; Yong Yan Gao and
You Xian Sun, 1998; Veselý and Sekaj, 2000; Hei
Ke Tam and Lam,1999). Various approaches have
been applied to study the two aspects of this sta-
bilization problem, namely the conditions under
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which a linear system described in the state space
can be stabilized via output feedback and the
respective procedure for obtaining a stabilizing
control law (Kučera and De Souza, 1995; Syrmos
et al,1997). In the above papers, the authors ba-
sically conclude that despite the availability of
many approaches and numerical algorithms the
static output feedback problem is still open. This
is justified by the fact that up to now there are no
testable necessary and sufficient conditions avail-
able to test stability of a static output feedback
system.
Recently it has been shown that an extremely
wide array of robust controller design problems
can be reduced to the problem of finding a feasible
point under a Biaffine Matrix Inequality (BMI)
constraint. The BMI has been introduced in (Goh
et al, 1995) as a geometric reformulation of many
robust control problems. However it is known that
BMI problems are NP-hard (Toker and Ozbay ,
1995). The main result of (Toker and Ozbay ,
1995) shows that it is rather unlikely to find an
algorithm for solving general BMI problems and it
has also been shown that simultaneous stabiliza-
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tion of N plants via static output feedback is an
NP- hard problem. The BMI feasibility problem
is discussed and a branch and bound global opti-
mization algorithm to find an ε− global minimum
in a finite number of iterations is presented in
(Goh et al, 1995). In the above papers, the authors
explain why the BMI feasible problem inevitably
holds such a central place in the robust control
synthesis problem.
The theory of linear matrix inequalities (LMIs)
(Boyd et al, 1994) has been used to design ro-
bust output feedback controllers in ( Benton and
Smith, 1999; ) , Li Yu and Jian Chu, 1999; Yong
Yan Gao and You Xian Sun, 1998 ). Most of
the above works present iterative algorithms in
which a set of equations, or set of LMI problems,
are repeated until certain convergence criteria are
met. In (Yong Yan Gao and You Xian Sun, 1998)
a necessary and sufficient condition for simultane-
ous stabilizability via static output feedback has
been obtained and an iterative LMI algorithm
has been proposed to obtain the output feedback
gain. The authors in ( Kose and Jabbari, 1999)
study conditions under which the designed out-
put feedback controllers can be divided into two
stages and the dynamic output feedback can be
obtained. In ( Benton and Smith, 1999) a LMI
based algorithm has been proposed which does
not require iteration of the LMI solution. The
goal is to eliminate the need for iteration by an
appropriate choice of initializing state feedback
matrix. The proposed algorithm can be used to
robustly stabilize a polytopic system via static
output feedback. The V-K iteration algorithm
proposed in ( El Ghaoui and Balakrishnam, 1994
) is based on an alternative solution of two convex
LMI optimization problems obtained by fixing the
Lyapunov matrix or the gain controller matrix.
This algorithm is guaranteed to converge, but not
necessarily, to the global optimum of the problem
depending on the starting conditions.
In this paper, the alternative way to BMI and
LMI problem of robust static output feedback con-
troller design is given using the genetic algorithm.
From the Lyapunov stability theory, the well
known necessary and sufficient conditions to sta-
bilize continuous time systems via static output
feedback have been used to design a robust con-
troller with guaranteed cost for polytopic systems.
The paper is organized as follows. In Section 2 the
problem formulation and some preliminary results
are brought. The main results are given in Section
3. In Section 4 the obtained theoretical results are
applied to an example. We have used the standard
notation. A real symmetric positive (negative)
definite matrix P is denoted by P > 0(P < 0).
Much of the notation and terminology follows
from references ( Benton and Smith, 1999; Boyd
et all, 1994; Kučera and De Souza, 1995).

2. PRELIMINARIES AND PROBLEM
FORMULATION

In the context of robustness analysis and robust
controller synthesis for linear time invariant sys-
tems the following uncertain model is commonly
used

ẋ = (A + δA)x + (B + δB)u (1)

y = Cx, x(0) = x0

where x ∈ Rn, u ∈ Rm and y ∈ Rl are the state,
control and output vector, respectively; A,B and
C are known matrices of appropriate dimensions;
δA = {δaij}, δB = {δblk} are unknown but
norm bounded uncertainties. The following types
of uncertainty descriptions are often used in the
robustness investigations.

• Norm bounded uncertainties, unstructured
model

‖δA‖ ≤ qa, ‖δB‖ ≤ qb (2)

where ‖.‖ represents any matrix norm, and
qa and qb are nonnegative constants.

• Element bounded uncertainties, structured
model

|δA|m ≤ Am, |δB|m ≤ Bm (3)

where |.| represents the modules of corre-
sponding matrix, Am = {am

ij}, Bm = {bm
lk}

are matrices with nonnegative entries and
corresponding dimensions, respectively, and

am
ij ≥ |δaij |, bm

lk ≥ |δblk|
• Matrix affine type uncertain structure

δA =
p∑

i=1

εiAi, δB =
s∑

j=1

γjBj (4)

εi ≤ εi ≤ εi, γj ≤ γj ≤ γj

where Ai, Bj are known matrices, εi, γj are
unknown parameters. The εi, γj can vary
in time arbitrarily fast provided that each
element is within given bounds. In general, a
polytope description of uncertainties results
in less conservative controller designs than
other uncertainty characterizations ( Boyd et
al, 1994).

• Matrix bounded uncertain structure

δAT δA ≤ γaQa, δBT δB ≤ γbQb (5)

where γa, γb are nonnegative constants, Qa, Qb

are nonnegative definite matrices.
• Uncertainties satisfying ”matching condi-

tions”

δA = UWA1, δB = UWA2 (6)

where U,A1 and A2 are known matrices and
W is an unknown matrix satisfying WT W ≤



I, I being an identity matrix of correspond-
ing dimension.

The problem studied in this paper can be for-
mulated as follows. For a continuous linear time
invariant system described by (1) a robust static
output feedback controller is to be designed with
the control algorithm in the form

u = FCx (7)

so that the closed loop system

ẋ = (A + BFC)x + (δA + δBFC)x (8)

is stable for all admissible uncertainties described
by (2)- (6). A cost function associated with the
system (1) is

J =

∞∫

0

(xT Qx + uT Ru)dt (9)

where Q = QT ≥ 0, and R = RT > 0 are matrices
of compatible dimensions.
Definition. Consider the uncertain system (1). If
there exist a control law u∗ and a positive scalar
J∗ such that for all admissible uncertainties, the
closed loop system is stable, and the cost function
(9) satisfies J ≤ J∗, then J∗ is said to be
the guaranteed cost and u∗ is said to be the
guaranteed cost control law for uncertain system
(1). 2

The nominal model of the system (1) is given

ẋ = Ax + Bu, y = Cx (10)

Let us recall some commonly used notions for
continuous time systems. Matrix D ∈ Rn×n is
called stable when all its eigenvalues lie in the
left half complex plane, Re{λi(D)} < 0 for i =
1, 2, ..., n. The system (10) with a stable A is called
a stable system. System (10) is called to be output
feedback stabilizable if there exists a real output
feedback gain matrix F such that A + BFC is a
stable matrix. The pair (A,C) is called detectable
if there exists a real matrix X such that A +
XC is stable. The following lemma is well known
(Lankaster 1969).
Lemma 1. Suppose P to be a solution to the
following Lyapunov matrix equation

AT P + PA + Q = 0 (11)

Then A is stable iff P > 0 and Q > 0. 2

If there exists such a P , the matrix A is said to
be quadratically stable. A linear time invariant
system is stable if and only if it is quadratically
stable. It is possible, however, for example for
polytopic linear systems to be stable without
being quadratically stable (Boyd et al,1994). In
the next development we will consider exclusively
quadratically stable systems.

3. DESIGN OF ROBUST CONTROLLERS

In this paragraph we will present a design proce-
dure of a robust static output feedback controller
for the continuous time system (1). Note that it is
well known (Syrmos et al, 1997) that a fixed order
dynamic output feedback of order less or equal to
n is a special case of the static output feedback
problem. The well known results are summarized
in the following lemma.
Lemma 2. Consider the linear uncertain contin-
uous time system (1). Then, the following state-
ments are equivalent.

• The system (1) is robust static output feed-
back stabilizable.

• There exist a positive definite matrix P =
PT > 0 and a matrix F satisfying the
following matrix inequality

(A + BFC)T P + P (A + BFC)+ (12)

Qo < 0

where

Qo = (δA + δBFC)T P + P (δA + δBFC)

2

In general, a polytope description of uncertainties
results in a less conservative controller design than
other characterizations of uncertainty (Boyd et al,
1994). However, with the increasing of uncertain
parameters the number of vertices increases expo-
nentially, and the design time increases exponen-
tially, too. Let the system be represented by the
state realization (1) with uncertainties (4)

ẋ = (A +
p∑

i=1

εiAi)x + (B +
p∑

i=1

εiBi)u (13)

y = (C +
p∑

i=1

εiCi)x

The system represented by (13) is a polytope of
linear systems. The genetic algorithm approach
requires the system (13) to be described by a list
of its vertices, i.e., in the form

{(Av1, Bv1, Cv1), ..., (AvN , BvN , CvN )} (14)

where N = 2p .
The system represented by (14) is quadratically
stable if and only if there is a Lyapunov matrix
P > 0 such that (Boyd et al, 1994)

AT
viP + PAvi < 0, (15)

i = 1, 2, ..., N .
Consequently, the system (14) is static output
feedback quadratically stabilizable if and only if



there is a Lyapunov matrix P > 0 and a feedback
matrix F such that

(Avi + BviFCvi)T P + P (Avi+ (16)

BviFCvi) < 0, i = 1, 2, ..., N

If (16) holds for P > 0 and some F , then the
vertices of the polytope (14) are said to be simul-
taneously quadratically stabilized by F . It is well
known that if P is a common Lyapunov matrix
for the vertices of the polytope (14), it serves
as a common Lyapunov function for the uncer-
tain system (13) for all admissible uncertainties
εi ∈< εi, εi >, i = 1, 2, ..., p. Each vertex in (14)is
computed for a different permutation of the p
variables εi, alternatively taken at their maximum
and minimum values.
Theorem 1. Consider the system (14). Then the
following statements are equivalent.

• The system (14) is static output feedback si-
multaneously stabilizable with a guaranteed
cost

∞∫

0

(xT Qx + uT Ru)dt ≤ xT
0 Px0 = J∗(17)

and P > 0.
• There exist matrices P > 0, R > 0, Q >

0 and a matrix F such that the following
inequality holds

(Avi + BviFCvi)T P + P (Avi+ (18)

BviFCvi) + Q + CT
viF

T RFCvi ≤ 0

for i = 1, 2, ..., N .

Proof. Consider the output feedback control algo-
rithm to have the form

u = Fy = FCvix

then for the closed loop system results

ẋ = (Avi + BviFCvi)x, i = 1, 2, ..., N

For V = xT Px, the time derivative of V along the
system (14) is

dV

dt
= xT [(Avi + BviFCvi)T P+

P (Avi + BviFCvi)]x

If the inequality (18) holds then there exist ma-
trices P > 0, R > 0, Q > 0 and F such that

dV

dt
≤ −xT (Q + CT

viF
T RFCvi)x < 0

for i = 1, 2, ..., N . Therefore the closed loop
system is asymptotically stable. Furthermore, by

integrating both sides of the inequality from 0 to
T and using the initial condition x0 we obtain

V (0)− V (T ) ≥
T∫

0

xT (Q + CT
viF

T RFCvi)xdt

As the closed loop system is asymptotically stable
for T →∞

x(T )T Px(T ) → 0

Hence, we get
∞∫

0

xT (Q + CT
viF

T RFCvi)xdt ≤ xT
0 Px0 (19)

and the control algorithm u = Fy is a guaranteed
cost control law and

J∗ = xT
0 Px0

is a guaranteed cost value for the uncertain closed
loop system. 2

Based on the Theorem 1 it is possible to reduce
the robust controller design procedure to search
for a matrix P and a feedback matrix F such that
the condition (18) holds. As mentioned before, for
the solution of this problem the genetic algorithm
(GA) has been used.
Genetic Algorithms are numeric, stochastic-based
and robust search or optimization procedures de-
rived from the principles of natural search and
natural genetics. They are sufficiently described in
( Goldberg, 1989; Michalewicz, 1992 and others).
GA are able to approach the best solution or the
best representative from the space of all possible
solutions. Normally, their only limitation is the
required computation time or computation effort.

In the application of GA for our controller design
the task is to find such a symmetric and positive
definite matrix P and a feedback matrix F , that
for chosen matrixes Q and R the condition (18)
is fulfilled for each i of the polytopic description
of the system. A general form of a chromosome,
which is a linear string of potential solution pa-
rameters is in our case

string = {p11, p12, ..., pnn, f11, ..., fmm}

where pij are the entries of the matrix P and fij

are entries of the matrix F . That means that the
matrix P and F are searched concurrently. The
cost function JG, to be minimized is calculated
for each string using the following algorithm:

if min(eig(P))> 0
if max(eig(Mvi) ≤ 0 for all i
JG =-sum(eig(Mvi))



else JG = 104 ∗ (π + σ)
else JG = 106 ∗ µ

where: eig(P ) is the vector of matrix P eigen-
values, eig(Mvi) is the vector of the matrix Mvi

eigenvalues, which is equal to the left hand side
of the inequality (18), π is the number of positive
eigenvalues of Mvi, σ is the sum of all positive
eigenvalues of Mvi and µ is the number of all non-
positive eigenvalues of P . Using this cost func-
tion the GA has the following effect: During the
solution the non-negative eigenvalues of the left
hand side of (18) are moved to the left half-plane
and the negative eigenvalues are moved to zero
from left. The algorithm allows to find such a
feedback matrix F , which ensures the negative
semidefinitness of the left hand side of (18) and
minimizes the absolute value of its eigenvalues. It
is known, that GA’s converge to global optima
(Holland,1975; Goldberg, 1989).
Remark: The used cost function, which ensures
fulfilment of the closed-loop robust stability condi-
tion can be extended, using computer simulation
of the minimization of some other performance
index (e.g. absolute control error, input energy,
settling time, overshoot, their combinations etc.).
This can ensure also fulfilment of additional per-
formance requirements.

4. EXAMPLE

The example has been borrowed from (Benton
and Smith, 1999) to demonstrate the use of the
proposed algorithm. Note that in (Benton and
Smith, 1999) the LMI based algorithm has been
used. It is known that the presented system is
static output feedback stabilizable. Let (A,B,C)
in (1) be defined as

A =




−0.036 0.0271 0.0188 −0.4555
0.0482 −1.010 0.0024 −4.0208
0.1002 q1(t) −0.707 q2(t)

0 0 1 0




B =




0.4422 0.1761
q3(t) −7.59222
−5.520 4.490

0 0


 C =

[
0 1 0 0

]

with parameters bounds −0.6319 ≤ q1(t) ≤
1.3681, 1.22 ≤ q2(t) ≤ 1.420, and 2.7446 ≤ q3(t) ≤
4.3446. Find a stabilizing output feedback ma-
trix F . The nominal model of (A,B) is given
by the above matrices when we substitute for
the entries A(3, 2) = 0.3681, A(3, 4) = 1.32 and
B(2, 1) = 3.5446. The structured model uncer-
tainty (4) (A1, A2, B1) are matrices with the fol-
lowing entries A1(3, 2) = 1, A2(3, 4) = 0.1 and
B1(2, 1) = 0.8 with εi ∈< −1, 1 >, i = 1, 2

and γ1 ∈< −1, 1 >. Other entries of the above
uncertain matrices are equal to zero. The nominal
model is unstable with eigenvalues:

eig{−2.0516, 0.2529± 0.3247i,−0.2078}

Let the structure of F be defined as

FT = [F (1, 1) F (2, 1)]

For R = I, εm = 1 the matrix Q has been in small
steps changed from Q = .1 ∗ I to Q = 1.5 ∗ I. The
corresponding closed loop maximal eigenvalues of
the four polytopic system ( ε1 = γ1) moves as
follows:
for Q = .1 ∗ I CLosedEIG = {−.055,−.2 ±
1.55i,−12},
for Q = 1.5 ∗ I CLosedEIG = {−.086,−.3 ±
1.1i,−81}.
For the first case the gain matrix F is

FT = [−1.0389 0.7613]

Moreover, for the guaranteed cost we obtain
λM (P )‖x0‖2 = 7.405‖x0‖2.
Above results have been compared with the re-
sults of the V-K iteration method (El Ghaoui
and Balakrishnan,1994). For this example the V-
K iteration method does not give feasible solu-
tion. Note that the number of GA generations are
20000. As the closed loop system is quadratically
stable in all its vertices, robust stability of the un-
certain system (13) with the above designed static
output feedback gain matrix F and uncertainties
(4) has been proved.

5. CONCLUSIONS

The main aim of this paper has been to propose
new, alternative to BMI and LMI method genetic
algorithm for solving the robust controllers design
via static output feedback for linear continuous
time systems and guaranteed cost.
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