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Abstract: The paper considers the development of a new type of artificial neural network 
and its applicability to non-linear system identification. This is the functional-link neural 
network with internal dynamic elements. The net consists of a single layer where the non-
linearity is firstly introduced by enhancing the input pattern with a functional expansion. 
The internal dynamic elements are auto-regressive moving average filters that implement 
local activation feedback and local output feedback, respectively. Experimental results 
demonstrate a better capability of generalisation of the suggested neural network in 
comparison with the functional-link net with static structure and external dynamic 
elements, used so far to perform system identification. Copyright © 2002 IFAC 
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1. INTRODUCTION 
 
Artificial Neural Networks (ANNs) have become a 
powerful tool for many complex applications such as 
function approximation, optimisation, non-linear 
system identification, and pattern recognition. This is 
due to the fact that they are capable to learn from 
examples and to perform non-linear mappings. Under 
certain assumptions, it is possible to identify dynamic 
non-linear systems using ANNs (Patra, et al., 1999). 
The major problem that arises here is that of coping 
with dynamics. In this respect, the paper suggests a 
new dynamic structure based on the Functional-Link 
Neural Network (FLNN) and its application to 
system identification. 
 
The FLNN has been developed as an alternative 
architecture to the multi-layer perceptron network 
with application to function approximation and 
pattern recognition. The FLNN is a flat network with 
a single neuron that has an increased input space 
given by the functional expansion of its initial inputs 
(Chen, et al., 1999; Pao, et al., 1994; Patra, et al., 

1999). The main advantage of the FLNN is the 
reduced computational cost in the training stage, 
while maintaining a good performance of 
approximation. The present paper suggests the 
introduction of dynamic elements within the FLNN 
structure. In this way, the approximation and the 
generalisation capabilities of the resulted neural 
network are improved, whilst the training time is still 
reduced. 
 
The paper is organised as follows. In section 2, the 
architecture of the static functional-link net is 
presented. A new dynamic functional-link neural 
structure is presented in section 3. Three case studies, 
using the suggested dynamic neural architecture, are 
described in section 4. These refer to system 
identification of the following: a simulated system 
(Patra, et al., 1999), a three-tank laboratory system 
(Amira, 1993), and an evaporation sub-process from 
a sugar factory (Bartys and Wasiewicz, 1998). 
Conclusions about the efficiency of the suggested 
approach and further research are given in section 5. 
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2. FLNN WITH STATIC STRUCTURE 
 
The FLNN is a feed-forward single layer neural 
network with a number of enhancement nodes 
referred to as functional links. These are used as 
supplementary inputs within the network (Pao, et al., 
1994). Different types of non-linear enhancements 
have been investigated (Chen, et al., 1999; Pao, et 
al., 1994; Patra, et al., 1999). A flat network results 
for which only the connection weights and the bias 
term must be learned. Thus, the back-propagation 
learning algorithm (Hagan, et al., 1996), used for 
adapting the FLNN�s parameters, becomes very 
simple. 
 
The structure of a FLNN is depicted in Fig. 1. The 
initial N inputs of the net, Nnun ,...,1, = , are 
functionally expanded to constitute the actual inputs 
of the neuron, MNmvm += ,...,1, . In the following, 
the functional expansion given by a sub-set of 
orthogonal trigonometric functions is considered. 
This provides a more compact representation of the 
function to be approximated, in the mean-square 
sense, than other orthogonal basis functions (Patra, et 
al., 1999). 
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Fig. 1. The structure of a functional-link neural 
network. 

 
For a pre-specified order of the functional expansion, 
S, the actual inputs of the neuron are given by the 
following set: 
 

NnSsususu nnn ,...,1;,...1)}};sin(),{cos(,{ ==ππ . 
 

In this way, M=2⋅S⋅N supplementary inputs of the 
neuron are added to the initial N ones. The single 
neuron of the network is considered to have the 
activation function of hyperbolic-tangent type: 
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where y�  is the output of the neuron, [k] represents 

the sampling time instant k, oθ  is the bias term, and 
x is the sum of the original and expanded neuron�s 
inputs using the connection weights mw : 
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In order to perform the identification of dynamic 
systems, the FLNNs have to be provided with 

dynamic elements and appropriate learning methods 
(Isermann, et al., 1997). One way of doing this is by 
considering the FLNN with external dynamic 
elements. The implementation of the dynamic 
elements as simple tapped delay units is the most 
applied. 
 
To model a non-linear process, the most suitable 
structure for the neural net is the input-output format. 
For the sake of simplicity, a Single-Input Single-
Output (SISO) dynamic system is considered. In this 
case, the input-output model obtained using a neural 
network is: 
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where Pu  denotes the process input, Py  represents 
the process output, and y�  denotes the approximated 
output given by the trained ANN. The maximum 
time delays uk  and yk  are the dynamic orders of the 
process, and d denotes the dead-time. 
 
The number of time delay units requires that the 
system dynamics must be known beforehand. In 
practice, a trial-and-error tuning of these parameters 
is applied. The ANNs with internal dynamic 
elements overcome this drawback. Moreover, the 
dimension of the input space of the ANN with 
external dynamics increases, depending on the 
number of the used past values of the input and the 
output of the process to be modelled (Ayoubi, 1996). 
 
 

3. FLNN WITH DYNAMIC STRUCTURE 
 
Another way of providing ANNs with dynamic 
elements is achieved by including delay elements and 
recurrent connections within the structure of the net. 
This kind of networks does not require past values of 
the process measurements. The approximation of the 
output of a SISO process is therefore given by: 
 

])1[],[(][� PP −= kykufky .    (2) 
 

Lately, the locally recurrent globally feed-forward 
neural networks have been the subject of research 
(Ayoubi, 1996; Isermann, et al., 1997). Their 
architecture is based on static feed-forward ANNs 
that have been extended with local recurrence. In the 
following, the FLNN is considered with a linear filter 
before the activation unit of the neuron and with a 
linear transfer function from the output to the input of 
the neuron. The architecture of the suggested FLNN 
with dynamic structure (DFLNN) is presented in Fig. 
2. This integrates the structures suggested by Marcu, 
et al. (2001), where an Auto-Regressive Moving 
Average (ARMA) filter has been placed either before 
the activation function of the neuron or on the back 
connection from the output to the neuron�s input. 
 
The ARMA filter placed before the activation unit of 
the neuron implements a local activation feedback. 



This acts as a memory of the past values of the 
network inputs. The ARMA filter placed on the back 
connection from the output of the neuron to its input 
implements a local output feedback that incorporates 
the neuron�s static non-linearity. This acts as a 
memory of the past values of the network output. 
Both filters reduce the level of the noise that affects 
the network inputs. 
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Fig. 2. The architecture of a FLNN with internal 
dynamic structure (DFLNN). 

 
The output of the network, y� , is obtained using the 
following equations: 
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where ][~ kx  is the output of the ARMA filter placed 
before the activation unit of the neuron: 
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Above, An  and Bm  represent the filter�s 
denominator and numerator orders, respectively, 
whilst Ai nia ,...,1, =  and Bj mjb ,...,0, =  are the 
coefficients of the denominator and numerator, 
respectively. x[k] represents the weighted sum of the 
neuron�s inputs augmented with the output of the 
ARMA filter placed on the reaction from the output 
to the input of the neuron: 
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where ][~ ky o  is the output of the ARMA filter that 
implements the local output feedback: 
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In the previous equation, Cn  and Dm  represent the 
filter�s denominator and numerator orders, 
respectively, whilst Ci nic ,...,1, =  and 

Dj mjd ,...,1, =  are the coefficients of the 
denominator and numerator, respectively. 
 
The parameters characterising the architecture of the 
network (S, BA mn , , DC mn , ) are determined by a 
trial-and-error process in a pre-defined search space 
determined by the application to be developed. For a 

given architecture, the network�s parameters are the 
connection weights, the bias term, and the filters' 
coefficients. These parameters, collected in a vector 
θ , are determined with an extended dynamic back-
propagation algorithm. The objective is to ascertain 
an optimal parameter set *θ  of the DFLNN that 
minimises a quadratic performance index J. The 
latter is defined based on the output prediction errors 
between the desired model output, ][kyd , and the 
actual DFLNN output, ][� ky : 
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where K denotes the number of training data. 
Moreover, the batch learning mode is applied to, i.e. 
the net parameters are adapted after an entire pass of 
the training set through the network (one epoch). The 
mechanisms of variable parameter of learning rate 
and momentum term are also used (Hagan, et al., 
1996; Marcu, et al., 2001). 
 
 

4. APPLICATIONS 
 
4.1 Simulation study 
 
The difference equation of a simulated non-linear 
process (Patra, et al., 1999) is given by: 
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where the non-linear function Pf  is : 
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In the performed experiments, the following input of 
the plant was considered (Patra, et al., 1999): 
 

500,...,1,
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The output of the plant was approximated by both 
presented FLNN structures. The training data of the 
networks were selected using a sampling period 
TS=10 (k = 1, 11, ... ). To test the trained neural 
networks, the following input of the plant was 
considered (Patra, et al., 1999): 
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The training of the neural networks was performed in 
the batch learning mode for a number of 5000 
epochs. The order of the functional expansion was 
varied from S = 1 to S = 15. The FLNN with external 
dynamic elements identified the series-parallel model 
(1) corresponding to the equation (3). The FLNN 
with internal dynamic elements identified the series-
parallel model (2). In the latter case, the search space 
for the orders of the ARMA filters was considered in 



the set {0, 1, 2, 3} with 0>+ BA mn  and 
1≥+ CD nm  for each fixed value of the functional 

expansion order S. 
 
The best results of system identification, using the 
FLNN with external dynamic elements, are presented 
in Fig. 3a. They correspond to the case when the 
order of the functional expansion is S = 6. One 
remarks the very good quality of approximation of 
the training data (k=1,�,500) and the poor results 
when untrained data are processed by the net 
(k=501,...,800). 
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Fig. 3. Results of system identification with the 
FLNN: with external dynamic elements (a), and 
with internal dynamic elements � DFLNN (b). 

 
Fig. 3b shows the best results of system identification 
using the FLNN with internal dynamic elements. The 
results correspond to a net with the architecture 
characterised by S=2, mB=3, nA=3, mD=1, nC=1. The 
performance of approximating the training data is 
slightly better in the case of FLNN with external 
dynamic elements (k=1,�,500). However, the 
quality of approximation is better when untrained 
data are processed by a FLNN with internal dynamic 
structure (k=501,...,800). 
 
The influence of the measurement noise was 
considered as well. Gaussian noise with zero mean, 
unitary variance and amplitude of a certain value that 
determines a specified Noise-to-Signal Ratio (NSR) 

was added to the process output. The considered 
NSR parameter was varied from 5% to 50%, being 
constant for a certain training experiment. The 
DFLNN was trained with noisy data. Knowing the 
added noise, the goal was to find out the network 
with the minimal architecture such that the sum of 
squared errors between the output of the net and the 
noise-free output of the process to be as small as 
possible. The results presented in Fig. 4 correspond 
to a net with the architecture characterised by S=2, 
mB=1, nA=1, mD=1, nC=1. The noise is filtered 
efficiently, while the true (noise-free) output of the 
system is acceptably reproduced. 
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Fig. 4. Results of system identification with the 
FLNN with internal dynamic elements � DFLNN, 
trained in noisy environment (NSR=50%) and 
evaluated with noisy process data (NSR=100%). 

 
 
4.2 Identification of a three-tank system 
 
The experimental set-up "Three-Tank System" 
(Amira, 1993) consists of three cylindrical tanks with 
identical cross sections being filled with water. 
Circular pipes interconnect the tanks (Fig. 5). 
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Fig. 5. The Three-Tank System DTS200. 
 
An analytical model of the system is represented by 
three first-order non-linear differential equations. 
That model is used by an appropriate strategy to 
control the water inlet by two pumps. The volume 



flows )(and)( 21 tqtq  of lateral tanks T1 and T2, 
respectively, are controlled such that the level in the 
corresponding tanks, )(and)( 21 thth , are pre-
assigned independently. The level )(3 th , in the 
middle tank T3, is uncontrollable. Here t stands for 
the time variable. The control strategy works at a 
sampling rate of 0.1 seconds. Although the dynamic 
modelling of the considered system is relatively 
simple, the resulted non-linear analytical model is a 
limited approximation (Marcu, et al., 1999). 
 
For the experiments, the reference values of the 
liquid levels in the lateral tanks were changed pulse-
wise with different magnitude and duration for each 
controlled tank. A test period of 400 seconds was 
considered. The system data were sampled at every 5 
seconds, due to the slow nature of the process. 
Thirty-five experiments were done in a period of a 
month in order to take into consideration the 
influence of the plant environment. 
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Fig. 6. Three-tank system, output h1 of the process 
and of the identified DFLNN model (S=1, mB=2, 
nA=2, mD=1, nC=0) � generalisation. 
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Fig. 7. Three-tank system, output h2 of the process 
and of the identified DFLNN model (S=1, mB=0, 
nA=1, mD=3, nC=3) � generalisation. 

 
The purpose was to obtain neural models for each 
system output, i.e. the measured liquid level in each 
tank: 
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The FLNNs with internal dynamic elements were 
used to determine the unknown functions if . The 
input-output data set that was used in the training 
stage, among all the 35 sets available, had the 
corresponding values for the steady-states closest to 
the mean values characterising all available data sets. 
A systematic search for the best approximation was 
carried out in a similar way to that presented in the 
previous simulation study. The training of the neural 
nets was done over 1000 epochs. Figures 6 and 7 
illustrate some of the results obtained with data not 
used in the training (generalisation). 
 
 
4.3 Identification of an evaporator 
 
Real data from the Lublin sugar factory in Poland 
were considered (Bartys and Wasiewicz, 1998). The 
investigated process refers to the heater and the first 
section of the Evaporation Station (ES) illustrated in 
Fig. 8. That process is used to reduce the water 
contents of the sucrose juice. The latter goes through 
a series of five sections. In each passage the sucrose 
concentration increases and the steam recovered from 
one stage is used as a heating source for the next 
section. No analytical models are known from the 
sugar factory. 
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Fig. 8. The heater and first section of evaporation 

station of the Lublin sugar factory. 
 
The results related to the identification of the 
"evaporator" sub-system of ES (Fig. 8) are presented 
in the following. The considered inputs of the process 
are: uP,1 � the steam flow to the input of ES, uP,2 � the 
steam temperature at the input of ES, and uP,3 � the 
juice temperature after heater. The modelled output is 
yP � the juice temperature after section 1 of ES. The 
data stored during one month, every TS = 10 seconds, 
were used to develop a neural model based on 
DFLNN: 
 

3,...,1,PPPP ]][[:][]);1[],[(:][� ==−= ii kukkykfky uu . 
 
To design the model, a spectral analysis was 
performed. Based on this, a low-pass filtering by 
means of appropriate discrete-time  Butterworth 
filters of 4th order was applied to reduce the noise. 



This also allowed for the reduction of the amount of 
data used in the ANN learning. The training data 
containing 3000 rows of measurements, 
corresponding to a production shift of 8 hours, were 
decimated using each 10th sampled value. 
 
The DFLNN was trained for 3000 epochs for each 
pre-defined value of the order of functional 
expansion S=1,...,3, and orders of ARMA filters in 
the set {0,1,2,3}. The best results of identification are 
presented in Fig. 9 and they correspond to a net with 
the architecture characterised by S=3, mB=0, nA=3, 
mD=3, nC=3. 
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Fig. 9. Evaporator, output of the process and of the 
identified model with the DFLNN: (a) expanded 
training data set of 3000 rows; (b) testing data set 
from a previous month of plant exploitation. 

 
 

5. CONCLUSIONS 
 
The present paper investigates the development and 
application to system identification of a functional-
link neural network with internal dynamic elements. 
The experimental results obtained by using the 
suggested neural network reveal its good 
performances of approximation and generalisation, 
being characterised by a reduced training and 
evaluation time. 
 
Further research will investigate the application of 
the suggested neural network to fault detection and 

isolation (Marcu, et al., 1999). Moreover, the genetic 
evolving of the presented dynamic neural net 
architecture is foreseen for an automatic procedure of 
design. This refers to the genetic selection of the 
functional expansion order, of the filters' orders, and 
the optimal placement of the ARMA filters: either 
before the activation unit of the neuron, or on the 
connection path from the output to the input of the 
neuron, or on both positions. 
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